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Abstract
Background: In gene expression analysis, statistical tests for differential gene expression provide
lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation
of each single p-value within complex systems involving several interacting genes is problematic. In
parallel, in the last sixty years, game theory has been applied to political and social problems to
assess the power of interacting agents in forcing a decision and, more recently, to represent the
relevance of genes in response to certain conditions.

Results: In this paper we introduce a Bootstrap procedure to test the null hypothesis that each
gene has the same relevance between two conditions, where the relevance is represented by the
Shapley value of a particular coalitional game defined on a microarray data-set. This method, which
is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene
expression in children differentially exposed to air pollution. The results provided by CASh are
compared with the results from a parametric statistical test for testing differential gene expression.
Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed
subjects on the basis of their gene expression profiles. While many genes are selected in common
by CASh and the parametric test, it turns out that the biological interpretation of the differences
between these two selections is more interesting, suggesting a different interpretation of the main
biological pathways in gene expression regulation for exposed individuals. A simulation study
suggests that CASh offers more power than t-test for the detection of differential gene expression
variability.

Conclusion: CASh is successfully applied to gene expression analysis of a data-set where the joint
expression behavior of genes may be critical to characterize the expression response to air
pollution. We demonstrate a synergistic effect between coalitional games and statistics that
resulted in a selection of genes with a potential impact in the regulation of complex pathways.
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Background
Microarray technology allows for the simultaneous detec-
tion of expression levels of thousands of genes. By means
of gene expression microarrays it is possible to generate a
matrix of expression data, where the rows index the genes
and the columns the study samples. Numbers in the
matrix represent gene expression values in the study sam-
ples. Many statistical methods have been proposed for the
selection of candidate genes that potentially play an
important role in the mechanisms governing the biologi-
cal system [1-3].

Unfortunately, the main difficulty in choosing which sta-
tistical approach to use is that most methods are not
directly related with a sound biological interpretation. For
example, statistical testing [1,4,5] for gene selection aims
at finding genes which are 'strongly' differentially
expressed between two conditions, where for condition we
mean whatever state of the biological samples that is con-
jectured to affect gene expression (e.g. the exposure to
environmental or therapeutic agents, disease state, etc.).
Following this approach, genes are usually ranked accord-
ing to their p-values, being genes with the smallest p-val-
ues the most differentially expressed. Since no biological
meaning is necessarily associated to the notion of p-value,
the interpretation of single p-values within complex bio-
logical systems where several genes are known to interact
is problematic. For instance, a crucial issue to address is
whether a subset of genes identified as being individually
differentially expressed in the study samples is more or
less efficient in characterizing samples than a subset of
genes which show different levels of interaction between
the two conditions.

A method for gene expression analysis based on game the-
ory was proposed in [6] and is further explored in this
paper. The main advantage of the game theory approach
is the possibility to compute a numerical index, i.e. a rele-
vance index, which represents the relevance of each gene
under a certain condition taking into account the expres-
sion behaviors of the other genes under the same condi-
tion. An additional feature of the game theory approach
developed in [6] is that it is provided a novel property
driven characterization of the Shapley value in order to
contextualize and justify the use of the Shapley value as
relevance index for genes. Five simple properties with a
biological interpretation are introduced in [6] and it is
proved that they characterize the Shapley value. One sim-
ple property is that a relevance index should attribute null
relevance to genes that are never up- or down- regulated
under a certain condition. This idea is captured by the
Null Gene (NG) property. In addition, if one is interested
to bring smaller gene pathways into prominence, then
another reasonable property is that if two disjoint sets of
genes are up- or down-regulated in a same rate of samples,

then genes in the smaller set should receive a higher rele-
vance index than genes in the bigger one (Partnership
Monotonicity (PM)). The Partnership Rationality (PR)
property and the Partnership Feasibility (PF) property
determine, respectively, a lower and an upper bound of
the power of certain pathways of genes in determining the
onset of the tumor. Lastly, it is used a special version of
additivity, namely the Equal Splitting (ES) property,
which has the natural interpretation of giving the same
reliability to different microarray experiments. It is proved
in [6] that the Shapley value is the unique relevance index
which satisfies the properties PR, PF, PM, ES and NG on
the class of microarray games. We refer to [6] for a more
detailed description and discussion of such properties.

According to the game theory approach, the frequency of
associations (see Methods) of all of the subsets of genes with
a condition of interest is described by means of a microar-
ray game. The definition of relevance index for genes is
provided in terms of the Shapley value [7,8], which is the
unique relevance index for microarray games satisfying
the set of properties introduced in [6]. The higher the
number attributed by the Shapley value to a certain gene
in a given microarray game, the higher the relevance of
that gene for the mechanisms governing the genomic
effects of the condition under study.

Since gene expression is a stochastic, or 'noisy', process
[9,10] and a microarray game is defined on a gene expres-
sion data-set, a microarray game itself follows a stochastic
law, significantly affecting the stability of a relevance
index. This fact must be considered in comparing the rel-
evance index of genes under different conditions, e.g. dif-
ferent environmental exposures.

The purpose of this work is to introduce a new method to
analyze gene expression data, which combines the game
theory notion of relevance index [6] with the notion of
statistical significance. A Bootstrap based algorithm
applied to the sample statistics of the Shapley value is
introduced in this paper and is used to perform a Compar-
ative Analysis of Shapley value (shortly, CASh). CASh is used
to select those genes whose relevance index results stable
against noise in gene expression, meaning that the index
has the tendency to be weakly affected when a few obser-
vations are removed. The basic idea of Bootstrap [11-13]
is to use re-sampling techniques to collect information
about the shape, center, and spread of the sampling distri-
bution of the statistic of interest. This idea is particularly
valuable when it is not possible to assume a given model
describing the distributions in the population and to cal-
culate the parameters of the corresponding sampling dis-
tribution.
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To illustrate the framework's utility of the method, we
applied CASh to gene expression data published in [14].
In [14] genome-wide oligonucleotide microarray analysis
was applied in peripheral blood cells of children from
Teplice (TP) area (n = 23), and compared with children
from the rural control area of Prachatice (PR) (n = 24) in
the Czech Republic. The TP area is a mining district char-
acterized by high levels of airborne pollutants including
carcinogens [14]. The results provided by CASh in this
application are compared with the results provided by a
parametric statistical analysis for the selection of differen-
tially expressed genes between the two areas.

Other approaches using Game Theory for gene expression
analysis have been proposed in literature. An approach
explored in [15] is based on the framework of minimum
cost spanning trees (MCST), that is used to represent the
interactions between all possible pairs of genes and is
extended to implement the notion of association for coa-
litions of genes. Basically, this approach is rooted on two
main steps: first, a method based on the MCST problem is
introduced to represent the interactions between the
involved genes; second, the MCST representation of a
gene expression dataset is used to analyze a related game
theoretical problem for the determination of the relevance
of genes. Another application introduced in [16] is related
to the problems of making good prediction of sample
conditions. Classification games are defined and used to
analyze the power of groups of genes to classify samples
into the right study conditions. Classification games turn
out to be closely related to microarray games and, on
some numerical examples, the Shapley value is studied as
a method for selection of genes with high performance in
sample classification. Recently, in [17], a set of genes
selected according to the Shapley value is studied in con-
nection with the pathogenesis of neuroblastic tumors.

Another approach to computational biology using game
theory is the multi-perturbation Shapley value analysis (MSA)
[18], that is a method for causal function localization
which addresses the challenge of defining and calculating
the contributions of network elements from a data set of
multiple lesions or other type of perturbations and their
corresponding performance scores. In this framework, a
set of multiple lesion experiments is represented as a coa-
litional game. Specifically, MSA defines the set of contri-
butions to be the Shapley value, which stands for the
unique fair division of the game's worth (the network's
performance score when all elements are intact) among
the different players (the network elements). The contri-
bution of an element to a function measures its impor-
tance, that is, the part it causally plays in the successful
performance of that function. MSA has recently been used
in analysis of data from genetic experiments in a work by
[19]. The aim of the work by [19] was to identify the

importance in terms of causal responsibility of some
genes in performing a certain function in yeast cells. In
their approach, [19] evaluate the value of each coalition as
a measure of the biological system's performance for a cer-
tain function (e.g. the ability of the system to survive the
UV irradiation).

Results
Model application

We applied CASh to the analysis of gene expression data
published in [14] of 23 children from the polluted area of
Teplice (TP) and 24 children from the rural control area of
Prachatice (PR), in the Czech Republic. We addressed the
problem of quantifying the relevance of genes in the TP
area using the information provided by the microarray
game defined when up-regulated genes are considered

( ) and the microarray game defined when down-reg-

ulated genes are considered ( ). The relevance of

genes was computed as the Shapley values of games 

and game  (see Methods for more computational
details about CASh). The plot of the Shapley value distri-

butions of genes in games  and  is shown in
Figure 1 (for the formal definition of the notations used
in this section see Methods).

Algorithm 1 was applied to compare the Shapley value ϕ

of games  and  with the Shapley value com-
puted on the microarray game defined when up-regulated

genes in PR area are considered ( ) and the Shapley
value computed on the microarray game defined when

down-regulated genes in PR area are considered ( ),
respectively. More precisely, Algorithm 1 was applied

twice: first, to test the null hypothesis |ϕi( ) -

ϕi( )| = 0 against the alternative hypothesis |ϕi( )

- ϕi( )|≠ 0; second, to test the null hypothesis

|ϕi( ) - ϕi( )| = 0 against the alternative hypothe-

sis |ϕi( ) - ϕ( )| ≠ 0.

Selection of significantly modified gene expressions in 
exposed versus non-exposed children
Genes were selected according to the double criterium of
small p-value from CASh and large Shapley value in
microarray games defined on TP data. More precisely,
genes with an un-adjusted p-value, provided by Algorithm
1, lower than a predefined cut-off and Shapley value
greater than the mean plus the standard deviation in 
(838 genes; see Figure 1, left side) or  (889 genes; see
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Figure 1, right side), were selected (Table 1). The Shapley
value in games defined on TP data represents a measure of
the relevance of genes for the mechanisms governing the
genomic effects of pollution in TP, whereas the Shapley
value of microarray games defined on PR data is taken as

a reference value. The latter is used in CASh to remove the
effects of stochastic noise from the Shapley value of games
defined on TP data. In Methods: Data processing for CASh,
the procedure adopted to define all microarray games on

Shapley value plotFigure 1

Shapley value plot. (left side) Shapley value plot in game  (also called TP-over microarray game). (right side) Shapley 

value plot in game  (also called TP-under microarray game). Shapley values are shown in decreasing order. Genes with 
Shapley value greater than the mean plus the standard deviation are shown in the colored intervals (precisely, 838 genes in 

game  and 889 genes in game ).
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the basis of the reference gene expression levels observed
in PR is described.

Note that for each predefined value of p in Table 1, the

number of genes selected in the microarray game  is

larger than that selected in the microarray game . Fig-
ure 2 shows the scatterplots of the p-values versus the
absolute differences in Shapley values. These plots indi-

cates that the 838 genes selected in  and the 889

genes selected in  are closed to the respective Pareto
optimal frontiers.

The numbers of genes selected by CASh and t-test for dif-
ferent levels of p are presented in Table 1, together with
the number of genes which are selected by both methods.
Table 2 shows the expression differences between individ-
uals of the two regions of the 28 genes selected by CASh
or t-test at p < 0.0001. Seven genes are selected by both
methods.

The overlap between CASh and t-test in terms of the
number of selected genes when ranked according to their
p-values (p <0.05) in both CASh and t-test is represented
in Figure 3 (red lines). Figure 3 also shows other three
curves: the green line represents the overlap between a list
of genes generated with the criterium of highest fold-
change of average expression between TP and PR and a list
of genes generated with the criterium of highest differen-
tial Shapley value between games on TP and PR; the blue
line represents the overlap between a list of genes ranked
according to their p-value (p < 0.05) in the t-test and a list
of genes generated with the criterium of highest differen-
tial Shapley value between games on TP and PR; the
orange line represents the overlap between a list of genes
ranked according to their p-value (p < 0.05) in CASh and
a list of genes generated with the criterium of highest dif-

ferential Shapley value between games on TP and PR. The
overlap between CASh p-values and t-test (red line) or
between differential Shapley values and t-test (blue lines)
is remarkable higher than the overlap between fold-
changes and differential Shapley values (green lines).
Using CASh instead of differential Shapley value does not
determine any significant differences in terms of overlap
with the t-test list.

The hierarchical clustering (Figure 4(a)) based on the set
of 159 genes with highest Shapley value and unadjusted
p-value < 0.01 returned a distinct separation of 22 (cluster
B) exposed subjects and 15 (cluster A) non-exposed sub-
jects (accuracy 78.7%). The hierarchical clustering (Figure
4(b)) based on the set of all of the 265 genes differentially
expressed at p < 0.01 in the t-test returned a distinct sepa-
ration of 22 (cluster A) exposed and 21 (cluster B) non-
exposed subjects (accuracy 97.7%). The red/green bar on
the top of the heat-maps is used to label the subjects of the
two clusters provided by K-means clustering with K = 2. K-
means clustering shows an accuracy of 88.4% for the list
of genes selected by CASh and 97.7% for the list of genes
selected by t-test.

Figure 5(a) shows that most of the 160 genes with highest
Shapley value difference have also a small p-value: 37
genes out of these 160 have a p-value from CASh bigger
than 0.01, and only 2 have a p-value bigger then 0.05. Blue
arrows show two genes, precisely A_23_P166677
(MFSD1, major facilitator superfamily domain containing
1) and A_23_P106002 (NFKBIA, nuclear factor of kappa
light polypeptide gene enhancer in B-cells inhibitor,
alpha), with the same Shapley value difference between

 and  of 0.0063, and very different p-values of
0.029 and 0.004, respectively. As it is shown in the table
of Figure 5(a), for gene A_23_P166677 the difference
between the medians of the sample statistics of the Shap-

Table 1: Analysis of real data with CASh and t-test. 

CASh t-test CASh, t-test
p-value Genes Genes TP up TP down Intersection

< 0.0001 20 16 4 16 15 1 7
< 0.001 33 27 6 62 48 14 17
< 0.01 159 107 52 265 169 96 92
< 0.05 434 245 189 762 408 354 272

Overview of the number of genes with p-values lower than predefined cutoffs (first column). Columns 'Genes' show the total number of genes 

selected by CASh and t-test, respectively; column ' ' shows the number of genes with Shapley value significantly different in microarray game 

 as compared to ; column ' ' shows the number of genes with Shapley value significantly different in microarray game  as 

compared to ; column 'TP up' shows the number of genes up-regulated in children from TP as compared to children from PR; column 'TP 
down' shows the number of genes up-regulated in children from TP as compared to children from PR; column 'Intersection' shows the number of 
genes selected by both t-test and CASh at different levels of p-value.
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ley value in  and  is null, whereas the analogue
difference of medians for gene A_23_P106002 is 0.00098.
The mean of the sample statistic of the Shapley value in a
microarray game equals the Shapley value of the game
[see Additional file 1]. Differently, the median of the sam-
ple statistic of the Shapley value of a microarray game has
not an immediate game theoretical interpretation but it is
more stable than the mean with respect to exceptional val-
ues.

Figure 5(b) shows that the list of 160 genes with the high-
est Shapley value difference has the same classification

success (accuracy 78.7%) of the list of 159 genes selected
by CASh at p < 0.01. The same classification accuracy of
78.7% is also achieved by the list of genes obtained from
the 160 ones with the highest Shapley value difference
after that 47 genes with p-value from CASh greater than
0.01 are removed (Figure 5(c)).

To compare the classification success of the lists of genes
selected by CASh and t-test, we performed hierarchical
clustering for equal numbers of genes (Figure 6). Table 3
shows a similar high level of classification accuracy for
lists of genes by CASh and t-test, with a small increment
in accuracy (4.2%) for t-test lists with 33 and 159 genes.

v TP+ v PR+

p-value vs. absolute Shapley differenceFigure 2
p-value vs. absolute Shapley difference. Scatterplot of the p-values provided by the CASh method versus the absolute dif-

ference of Shapley values abs(ϕ( ) - ϕ( )) (left side) and abs(ϕ( ) - ϕ( )) (right side). Red points represent 

the 838 genes selected in game ; green points represent the 889 genes selected in game .
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Over-representation of biological themes obtained by the
pathway-finding tool DAVID [20] using the list of 434
genes with unadjusted p-values < 0.05 from CASh is pre-
sented in Table 4. Since the game theory method yielded
434 genes with p < 0.05 whereas the t-test yielded much
more genes for the same level of p (see Table 1), we
selected the same number of genes (with lowest p-values)
from the t-test, to have equally sized gene lists for DAVID.
The over-represented biological themes on the CASh list
are compared with the over-represented biological themes
in the list of 434 genes with smallest p-value in the t-test
(Table 5).

Upon t-test analysis DAVID returned more modified path-
ways (n = 84) than after CASh selection (n = 50). CASh-
based pathway identification shares 11 annotation terms
with t-test analysis-based pathway selection.

Simulation study
In microarray studies, the detection of differential gene
expression under two different conditions is very impor-
tant. On the other hand, also the detection of differential

gene expression variance may allow to identify experi-
mental variables that affect different biological processes
and accuracy of DNA microarray measurements. So, in
this simulation we compare the performance of CASh and
t-test in selecting genes which differ between two condi-
tions in terms of average expression or expression vari-
ance.

To assess the statistical power of CASh as a function of the
sample size, we conducted a simulation study. We com-
pared the performance of CASh against t-test on a simu-
lated gene expression data-set of n = 1000 genes obtained
by random samples from normal distributions under two
simulated conditions: 90% of genes were sampled from
the same distribution under the two conditions; the
remaining 10% of genes was split in two groups of equal
size: one group of genes 2-fold different in average expres-
sion between the two conditions and another group char-
acterized by different variability across measures under
the two conditions. Both CASh and t-test were applied on
the simulated data-set, and genes with p-value smaller
than predefined cutoffs, used to control the false positive

Table 2: Description of genes selected by t-test or CASh (n = 28). 

ProbeID Genbank Accession Gene Symbol GeneName Effect Selected by

A_23_P154849 NM_138983 OLIG1 oligodendrocyte transcription factor 1 0,48 CASh
A_23_P35534 NM_020999 NEUROG3 neurogenin 3 0,28 CASh, t-test
A_23_P29248 NM_003312 TST thiosulfate sulfurtransferase (rhodanese) 0,27 CASh, t-test
A_23_P412409 NM_015172 BAT2D1 BAT2 domain containing 1 -0,25 CASh, t-test
A_23_P382775 NM_014417 BBC3 BCL2 binding component 3 0,25 t-test
A_23_P122445 NM_005319 HIST1H1C histone 1, H1c 0,25 CASh
A_23_P219060 NM_022107 GPSM3 G-protein signalling modulator 3 (AGS3-like, C. elegans) 0,24 t-test
A_23_P23194 NM_032409 PINK1 PTEN induced putative kinase 1 0,24 t-test
A_23_P69652 NM_080819 GPR78 G protein-coupled receptor 78 0,23 t-test
A_23_P154766 NM_080611 DUSP15 dual specificity phosphatase 15 0,22 CASh, t-test
A_23_P8293 AK093571 SCML4 sex comb on midleg-like 4 (Drosophila) -0,22 CASh
A_23_P132285 NM_001013440 MPST mercaptopyruvate sulfurtransferase 0,21 t-test
A_23_P38876 NM_005357 LIPE lipase, hormone-sensitive 0,20 CASh
A_23_P357374 NM_178449 TIP39 tuberoinfundibular 39 residue protein precursor 0,20 CASh
A_23_P22487 NM_013271 PCSK1N proprotein convertase subtilisin/kexin type 1 inhibitor 0,19 CASh, t-test
A_23_P143385 NM_004118 FKHL18 forkhead-like 18 (Drosophila) 0,19 t-test
A_23_P42991 unknown unknown unknown 0,18 CASh, t-test
A_23_P401524 NM_005205 COX6A2 cytochrome c oxidase subunit VIa polypeptide 2 0,17 CASh
A_23_P54330 NM_014691 AQR aquarius homolog (mouse) -0,17 t-test
A_23_P60520 U43747 FXN frataxin 0,16 CASh, t-test
A_23_P57089 NM_020182 TMEPAI transmembrane, prostate androgen induced RNA 0,16 CASh
A_23_P109837 NM_014850 SRGAP3 SLIT-ROBO Rho GTPase activating protein 3 0,16 t-test
A_23_P8571 NM_080744 SRCRB4D scavenger receptor cysteine rich domain containing, group B 

(4 domains)
0,16 CASh

A_23_P109643 NM_172027 ABTB1 ankyrin repeat and BTB (POZ) domain containing 1 0,15 CASh
A_23_P57941 NM_005777 RBM6 RNA binding motif protein 6 -0,15 CASh
A_23_P130926 NM_017914 C19orf24 chromosome 19 open reading frame 24 0,13 CASh
A_23_P106641 NM_014329 RCD-8 autoantigen -0,10 CASh
A_23_P127475 NM_005125 CCS copper chaperone for superoxide dismutase 0,08 CASh

Expression changes of the 28 genes that were selected by t-test or CASh at p-value< 0.0001. 'Effect' column shows the difference between the 
average expression ratio in TP minus the average expression ratio in PR. In the last column, the method used for each gene selection is shown: t-
test or CASh or both.
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Overlap curvesFigure 3
Overlap curves. Overlap of relevant gene lists generated using different selection criteria. The x-axis represents the number 
of genes selected as relevant genes, and the y-axis represents the overlap (%) of two gene lists for a given number of relevant 

genes. Figure (a) shows the overlap curves between different selection methods when the microarray game  is consid-

ered; Figure (b) shows the overlap between different selection methods when the microarray game  is considered. Green 
line: fold-change rank ordering versus absolute Shapley value difference rank ordering (for first 1000 genes ranked); blue line: p-
value rank ordering (p < 0.05) on t-test versus Shapley value difference rank ordering; red line: p-value rank ordering (p < 0.05) 
on t-test versus p-value rank ordering (p < 0.05) on CASh; orange line: p-value rank ordering (p < 0.05) on CASh versus abso-
lute Shapley value difference rank ordering.
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rate at 0.1 in both methods, were selected. Figure 7 shows
that the power of the t-test converges to 0.5 as expected,
since half of the genes sampled from different distribu-
tions have a fold change not equal to 1. Differently, CASh
converges to 1.

Discussion
The purpose of our study is to introduce a new method
(CASh) to analyze gene expression data, which combines
the game theory notion of relevance index [6] with the
notion of statistical significance. We illustrate the frame-
work's utility by applying it to a published data-set [14]

and the results of this application are discussed and com-
pared with the output of a classical analysis for differential
expression detection. A more detailed discussion on the
statistical issues related to p-value generation in CASh is
provided in Additional files [see Additional file 2].

Looking at the intersections of the set of genes selected by
CASh with the set of genes selected by t-test, for each level
of p in Table 1, we have that about 50% of genes selected
by CASh are also selected by t-test. The different results
obtained by CASh and t-test, are not very surprising. In
fact, as further explained in Methods, the two approaches

Clustering on genes selected by CASh and t-test at p < 0.01Figure 4
Clustering on genes selected by CASh and t-test at p < 0.01. (a) Heat-map of the log-expression values together with 
hierarchical clustering (Ward method, Euclidean distance) and K-means (a priori specified number of clusters K = 2) of 47 sub-
jects (columns) and 159 genes (rows) with highest Shapley values and with un-adjusted p-values smaller than 0.01 (from CASh, 
Algorithm 1). (b) Heat-map of the log-expression values together with the hierarchical clustering (Ward method, Euclidean dis-
tance) and K-means (a priori specified number of clusters K = 2) of 47 subjects (columns) and 265 genes (rows) with p-values 
smaller than 0.01 (from t-test). Yellow: up-regulation and blue: down-regulation. In subject labels, 1 means exposed subject, 
whereas 0 means non-exposed subject. The red and green labels on the top of the heat-map represent the two clusters of sub-
jects provided by K-means. Orange rectangles highlight misclassified subjects. The vertical dashed line shows the separation 
between the two main clusters.
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select relevant genes using different criteria. The t-test
selects genes according to their individual differential
expression between the two study conditions. Using the t-
test, genes are considered significant on the basis of the
difference of their expression profile between two condi-
tions: gene i is called significant when its p-value is suffi-
ciently small. The CASh method keeps into account the
expression of each gene under two conditions, but the
added value of the Shapley value is the ability to highlight
the contribution of those genes which consistently inter-
act with other genes. The CASh method calculates the rel-

evance of genes as their average marginal contribution
over all possible permutations of genes. Therefore, genes
with the highest relevance are those that likely explain the
difference between the two conditions, because they play
an important role (on average) over all possible permuta-
tions, not only with respect to their individual differential
expression.

Overlap rate of lists of genes generated according to differ-
ent methods is shown in Figure 3. CASh method and dif-
ferential Shapley value show a bigger overlap with the list

CASh p-values versus differential Shapley valueFigure 5
CASh p-values versus differential Shapley value. (a) Scatterplot of the p-values provided by the CASh method versus the 

differential Shapley values of the first 450 genes with the smallest p-value from CASh applied to vs.  and to vs. 

. Red points correspond to 80 genes selected with respect to the differential Shapley value ϕ( ) - ϕ( ). Green 

points correspond to 80 genes selected with respect to the differential Shapley value ϕ( ) - ϕ( ). The blue dashed line 
intercepts the y-axis in p = 0.05; The brown dashed line intercepts the y-axis in p = 0.01. Blue arrows indicate the two genes 
which are shown in the table (column 'Probe ID'), that are characterized by different p-values provided by CASh (column 'p-

value') but with the same Shapley value difference ϕ( ) - ϕ( ) = 0.00063 (see column 'Shapley value'). The medians of 

the statistics of the Shapley value in  and  together with the difference of the medians are shown in column 'Median 
Shapley value'. (b) Hierarchical clustering (Ward method, Euclidean distance) of 47 subjects (columns) on 160 genes selected 
according to the differential Shapley value (green and red points in (a)). (c) Hierarchical clustering (Ward method, Euclidean 
distance) of 47 subjects (columns) on 113 genes selected from the list of 160 genes with the highest differential Shapley value 
having a p-value from CASh lower than 0.01 (green and red points in (a) below the brown dashed line). In subject labels, 1 
means exposed subject, whereas 0 means non-exposed subject. Orange rectangles highlight misclassified subjects.
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v PR− v TP+ v PR+
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provided by t-test than the list provided by fold-change.
As far as we know, this is the first time that this result is
reported on a real microarray data-set. Lists of genes
selected from CASh and differential Shapley value show a

large overlap, that for more then 50 selected genes varies
between 70% and 80%.

The structure of the main representative groups provided
by hierarchical clustering and K-means clustering based
on the set of genes with differential expression and genes
selected by CASh at < 0.01 shows gene expression profiles
discriminating between the two areas.

In addition, hierarchical clustering and K-means cluster-
ing based on the set of genes selected by CASh, highlight
a group of non-exposed subjects with homogenous levels
of expression closer to another homogenous group of
exposed subjects. To assess the reliability of this third clus-
ter, we applied K-means clustering with K = 3 instead of K
= 2, and we used the notion of mutual information in the
framework of information theory [21]. Specifically, clus-

Hierarchical clusterings on genes selected by CASh and t-test for same numbers of genesFigure 6
Hierarchical clusterings on genes selected by CASh and t-test for same numbers of genes. Hierarchical clustering 
(Ward method, Euclidean distance) of 47 subjects (columns): on 33 genes from CASh (a.1) and t-test (a.2); on 159 genes from 
CASh (b.1) and t-test (b.2); on 434 genes from CASh (c.1) and t-test (c.2). In subject labels, 1 means exposed subject, whereas 
0 means non-exposed subject. Orange rectangles highlight misclassified subjects.
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Table 3: Classification performance of lists of genes from t-test 
and CASh. 

Gene list size CASh t-test

33 78.7% 82.9%
159 78.7% 82.9%
434 87.2% 87.2%

Classification acuracy based on clusters provided by hierarchical 
clustering performed on lists of genes selected by CASh and t-test 
with equal number of genes. Gene lists size is given by the number of 
genes selected by CASh at p smaller than 0.001, 0.01 and 0.05, 
respectively.
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ter-wise mutual information (CMI) relates the distribu-
tions of two random variables to each other providing a
score which represents the amount of information that

the distribution of one variable encodes about the other
variable. CMI scores show that the reliability of the third
cluster is very low in comparison with the two major clus-

Table 4: Over-represented annotation terms in genes selected by CASh. 

Functional Category Term efc p-value

SP_PIR_KEYWORDS Lectin 2,898 0,010
SP_PIR_KEYWORDS elongation factor 5,367 0,011
SP_PIR_KEYWORDS sh3 domain 2,402 0,014
SP_PIR_KEYWORDS Symport 3,340 0,015
GOTERM_MF_ALL translation elongation factor activity 4,579 0,019
GOTERM_MF_ALL sugar binding 2,564 0,021
BIOCARTA h_mapkPathway:MAPKinase Signaling Pathway 2,627 0,022
UP_SEQ_FEATURE cross-link:Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in & ubiquitin)* 4,318 0,023
COG_KOG_ONTOLOGY Inorganic ion transport and metabolism 3,378 0,023
UP_SEQ_FEATURE repeat:Solcar 3 6,045 0,023
INTERPRO_NAME IPR001452:Src homology-3 2,183 0,026
GOTERM_MF_ALL FAD binding 5,698 0,027
SP_PIR_KEYWORDS Disease mutation 9,661 0,032
UP_SEQ_FEATURE repeat:Solcar 1 5,374 0,032
UP_SEQ_FEATURE repeat:Solcar 2 5,374 0,032
SP_PIR_KEYWORDS ubl conjugation 2,115 0,032
UP_SEQ_FEATURE metal ion-binding site:Magnesium (via carbonyl oxygen) 9,068 0,036
INTERPRO_NAME IPR001440:Tetratricopeptide TPR_1 2,478 0,038
INTERPRO_NAME IPR013026:Tetratricopeptide region 2,478 0,038
SP_PIR_KEYWORDS protease 1,668 0,038
GOTERM_BP_ALL tRNA processing 3,707 0,040
SMART_NAME SM00326:SH3 2,113 0,041
INTERPRO_NAME IPR011990:Tetratricopeptide-like helical 2,116 0,043
GOTERM_MF_ALL carbohydrate binding 2,1019 0,044
SP_PIR_KEYWORDS Transferase 4,684 0,048
SP_PIR_KEYWORDS Ubl conjugation* 4,684 0,048
BIOCARTA h_gleevecpathway:Inhibition of Cellular Proliferation by Gleevec 4,446 0,051
UP_SEQ_FEATURE domain:SH3* 2,303 0,053
KEGG_PATHWAY HSA04540:GAP JUNCTION* 2,813 0,055
GOTERM_CC_ALL obsolete cellular component* 4,403 0,056
SMART_NAME SM00028:TPR 2,452 0,059
GOTERM_MF_ALL purine nucleotide binding* 1,253 0,061
SMART_NAME SM00177:ARF* 4,086 0,067
SP_PIR_KEYWORDS inner membrane 2,373 0,069
GOTERM_CC_ALL spindle pole 6,604 0,069
SP_PIR_KEYWORDS transport 1,305 0,069
GOTERM_MF_ALL aspartic-type endopeptidase activity 6,411 0,073
INTERPRO_NAME IPR002067:Mitochondrial carrier protein 3,907 0,076
GOTERM_BP_ALL biopolymer metabolism* 1,153 0,080
GOTERM_BP_ALL secretion 1,719 0,084
BIOCARTA h_erkPathway:Erk1/Erk2 Mapk Signaling pathway 3,613 0,086
BIOCARTA h_fMLPpathway:fMLP induced chemokine gene expression in HMC-1 cells 3,613 0,086
GOTERM_MF_ALL nucleotide binding* 1,201 0,087
SP_PIR_KEYWORDS lipid transport 3,680 0,088
SP_PIR_KEYWORDS nucleotide-binding 1,253 0,088
GOTERM_MF_ALL microtubule binding 3,663 0,089
GOTERM_BP_ALL macromolecule metabolism* 1,100 0,092
SP_PIR_KEYWORDS endocytosis 2,800 0,097
GOTERM_BP_ALL DNA metabolism 1,375 0,098
INTERPRO_NAME IPR005123:2OG-Fe(II) oxygenase* 5,442 0,099

Overview of significant over-represented functional themes and pathways within the lists of most significant 434 genes selected by CASh. Only 
functional terms and pathways with p-value smaller than 0.1 are listed. The enrichment fold change (efc) is shown in the third column. Terms which 
are significantly over-represented also in genes from t-test (Table 5) are marked by *.
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Table 5: Over-represented annotation terms and pathways in genes selected by t-test. 

Functional Category Term efc p-value

UP_SEQ_FEATURE cross-link:Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in & ubiquitin) 6,320 0,000
GOTERM_MF_ALL guanyl nucleotide binding 2,344 0,000
GOTERM_MF_ALL GTP binding 2,256 0,001
INTERPRO_NAME IPR000217:Tubulin 6,384 0,001
INTERPRO_NAME IPR002452:Alpha tubulin 9,120 0,001
INTERPRO_NAME IPR008280:Tubulin/FtsZ, C-terminal 6,384 0,001
SP_PIR_KEYWORDS Ubl conjugation 7,089 0,001
INTERPRO_NAME IPR000558:Histone H2B 7,980 0,002
INTERPRO_NAME IPR001660:Sterile alpha motif SAM 4,966 0,002
GOTERM_CC_ALL Chromatin 2,683 0,003
SMART_NAME SM00427:H2B 7,422 0,003
INTERPRO_NAME IPR000047:Helix-turn-helix motif, lambda-like repressor 5,107 0,004
GOTERM_CC_ALL Chromosome 2,139 0,005
GOTERM_BP_ALL protein metabolism 1,243 0,005
SP_PIR_KEYWORDS gtp-binding 2,122 0,007
SP_PIR_KEYWORDS dna-binding 1,444 0,007
INTERPRO_NAME IPR003008:Tubulin/FtsZ, GTPase 5,804 0,008
SMART_NAME SM00454:SAM 4,453 0,008
PIR_SUPERFAMILY_NAME SF002306:tubulin 8,354 0,009
UP_SEQ_FEATURE nucleotide phosphate-binding region:GTP 2,107 0,013
KEGG_PATHWAY HSA04540:GAP JUNCTION 3,353 0,014
SP_PIR_KEYWORDS chromosomal protein 2,658 0,017
GOTERM_BP_ALL microtubule-based movement 3,257 0,017
GOTERM_BP_ALL macromolecule metabolism 1,154 0,019
GOTERM_BP_ALL chromatin assembly or disassembly 2,412 0,020
GOTERM_BP_ALL cytoskeleton-dependent intracellular transport 3,144 0,020
SP_PIR_KEYWORDS DNA binding 1,786 0,021
GOTERM_MF_ALL GTPase activity 2,252 0,021
UP_SEQ_FEATURE DNA-binding region:Homeobox 3,447 0,025
GOTERM_BP_ALL protein polymerization 3,398 0,027
UP_SEQ_FEATURE domain:SAM 5,618 0,028
INTERPRO_NAME IPR007124:Histone-fold/TFIID-TAF/NF-Y 2,883 0,030
GOTERM_MF_ALL DNA binding 1,272 0,034
GOTERM_BP_ALL glycoprotein biosynthesis 2,542 0,034
INTERPRO_NAME IPR007125:Histone core 3,192 0,035
GOTERM_BP_ALL tRNA metabolism 2,481 0,038
GOTERM_CC_ALL nucleosome 2,719 0,039
GOTERM_BP_ALL nucleosome assembly 2,682 0,041
GOTERM_CC_ALL cell surface 3,048 0,042
GOTERM_BP_ALL cellular macromolecule metabolism 1,176 0,043
UP_SEQ_FEATURE domain:SH3 2,408 0,043
SP_PIR_KEYWORDS nucleosome core 2,999 0,044
GOTERM_BP_ALL primary metabolism 1,087 0,044
GOTERM_MF_ALL binding 1,060 0,045
GOTERM_MF_ALL sequence-specific DNA binding 1,739 0,046
GOTERM_BP_ALL cellular protein metabolism 1,173 0,049
UP_SEQ_FEATURE repeat:Spectrin 5 7,584 0,053
UP_SEQ_FEATURE repeat:Spectrin 6 7,584 0,053
UP_SEQ_FEATURE repeat:Spectrin 7 7,584 0,053
UP_SEQ_FEATURE repeat:Spectrin 8 7,584 0,053
UP_SEQ_FEATURE repeat:Spectrin 9 7,584 0,053
GOTERM_CC_ALL obsolete cellular component 4,403 0,056
INTERPRO_NAME IPR002017:Spectrin repeat 2,483 0,058
GOTERM_BP_ALL anion transport 2,465 0,059
GOTERM_BP_ALL metabolism 1,070 0,062
GOTERM_MF_ALL purine nucleotide binding 1,255 0,062
GOTERM_BP_ALL cellular metabolism 1,073 0,068
GOTERM_MF_ALL transcription factor activity 1,398 0,068
GOTERM_MF_ALL L-ascorbic acid binding 6,552 0,071
GOTERM_BP_ALL regulation of mitosis 4,008 0,071
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ters, suggesting that both lists of genes identified by CASh
and t-test best classify subjects in only two groups (Table
6).

Table 3 shows that both CASh and t-test achieve a good
separation performance when hierarchical clustering is
applied to lists of genes of equal size. We are aware that
clustering technique is not a classification procedure (see
[22] for a comparison of different gene selection algo-
rithm using performance on classification methods), but
rather a method to reveal structural information in a data
set. Therefore, achieving high levels of accuracy in cluster-
ing means that the information related to selected genes is
sufficient to efficiently characterize the study conditions.

The same classification performance in terms of accuracy
of clusters shown in Figures 5(b) and 5(c) suggests that
genes with smallest p-value from CASh are the most
informative among those with highest differential Shap-
ley value. This fact may be explained by the ability of
CASh method to provide genes with more stable Shapley
value when small p-values are considered.

We also compared the medians of the sample statistics of
the Shapley value of two genes, MFD1 and NFKBIA, with
the same differential Shapley value but very different p-
values from CASh. While the difference between TP and
PR of the medians of Shapley value statistics for gene
MFSD1 (p = 0.029) is zero, the corresponding difference
of medians for the gene NFKBIA (p = 0.004) is larger than
the differential Shapley value. On this particular instance,
this result is consistent with the claimed ability of CASh to
select genes with stable Shapley value. Note also that NFK-

BIA may be involved in diverse biological processes such
as cell proliferation, differentiation, apoptosis and metas-
tasis [23,24].

Among the genes selected by CASh only at p < 0.0001 (see
Table 2), oligodendrocyte transcription factor 1 (OLIG1)
was recently described in [25] as a prognostic marker for
non-small cell lung cancer (NSCLC). Hormone-sensitive
lipase (Lipe) is known to catalyze both the release of fatty
acids from storage triglycerides in adipocytes and the lib-
eration of cholesterol from cholesterol esters in steroidog-
enic tissues playing a key role in energy metabolism
[26,27]. TMEPAI, an androgen induced gene, was found
up-regulated in a time- and concentration-specific man-
ner in prostate cancer cells (LNCaP) [28].

SRCRB4D contains 4 group B scavenger receptor cysteine-
rich (SRCR) domains, a group of proteins known to be
involved in the development of the immune system and
the regulation of both innate and adaptive immune
responses [29]. The sequence of human RBM6 is identical
to DEF-3, that was found as differentially expressed dur-
ing myelopoiesis [30], and of the lung cancer antigen NY-
LU-12 [31].

For the seven genes selected by both CASh and t-test (p
<0.0001) it is not clear at this moment exactly how they
biologically relate to exposure to air pollution. We simply
remark that DUSP15 encodes a protein that belongs to the
protein-tyrosine phosphatase family, having both pro-
tein-tyrosine phosphatase activity and serine/threonine-
specific phosphatase activity.

SP_PIR_KEYWORDS vitamin c 6,499 0,072
SMART_NAME SM00177:ARF 3,958 0,072
GOTERM_MF_ALL carboxylic ester hydrolase activity 2,621 0,073
GOTERM_BP_ALL chromatin assembly 2,338 0,073
INTERPRO_NAME IPR006162:Phosphopantetheine attachment site 6,384 0,074
INTERPRO_NAME IPR006620:Prolyl 4-hydroxylase, alpha subunit 6,384 0,074
GOTERM_CC_ALL microtubule cytoskeleton 1,816 0,076
GOTERM BP ALL microtubule-based process 2,127 0,077
GOTERM_MF_ALL nucleotide binding 1,206 0,083
SMART_NAME SM00702:P4Hc 5,938 0,084
GOTERM_MF_ALL nucleic acid binding 1,150 0,087
INTERPRO_NAME IPR001715:Calponin-like actin-binding 2,902 0,087
GOTERM_BP_ALL biopolymer metabolism 1,150 0,090
GOTERM_MF_ALL enzyme regulator activity 1,402 0,091
GOTERM_BP_ALL glycoprotein metabolism 2,043 0,091
SMART_NAME SM00033:CH 2,827 0,093
GOTERM_MF_ALL enzyme activator activity 1,737 0,097
INTERPRO_NAME IPR001526:CD59 antigen 5,472 0,098
INTERPRO_NAME IPR005123:2OG-Fe(II) oxygenase 5,472 0,098
INTERPRO_NAME IPR006703:AIG1 5,472 0,098

Overview of significant over-represented functional themes and pathways within the lists of most significant 434 genes selected by t-test. Only 
functional terms and pathways with p-value smaller than 0.1 are listed.

Table 5: Over-represented annotation terms and pathways in genes selected by t-test.  (Continued)
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Given the properties of air pollutants in the TP region, one
would hypothetically expect modifications of pathways
related to (pre-)cancerous events and immune disorders.
CASh-based pathway identification shares 11 common
annotation terms with t-test analysis-based pathway selec-
tion (see Table 4); none of these however show any
known biological annotation referring to carcinogenis or
immunotoxicity. Of more interest are the differences
between these two selections: t-test-based analysis dem-
onstrates pathways related to nucleosome function and
microtubule structure and function which may be associ-
ated with observed differences in genotoxic damage
between children from TP and from PR [14], while CASh
retrieves affected MAPK-signaling pathways which may

refer to deregulation of cellular growth predisposing to
tumorigenesis [32].

Conclusion
In this paper, a new method to analyze the relevance of
genes under a given condition is studied. CASh integrates
the game theory model introduced in [6] with a novel
Boostrap-based test procedure that allows to compare a
gene relevance index computed within game theory, i.e.,
the Shapley value, which reflects the joint expression
behavior of genes. We argued that the added value of
CASh with respect to the approach in [6] is to perform sta-
tistical inference based on the distributions of the sample

Simulation results for CASh and t-testFigure 7
Simulation results for CASh and t-test. Estimated effect of sample size on the statistical power (left panel) and on the 
false positive rate (right panel)of CASh (lines with black squares) and the t-test (lines with white squares).
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statistics of microarray games and the corresponding sta-
tistics of Shapley values.

On simulated data where differential expression and dif-
ferential variability of genes characterize two conditions,
we showed that CASh affords more power than the t-test
at the same false positive rate. CASh and t-test were
applied to data published in [14], concerning the gene
expression measured in children from the Czech Republic
differentially exposed to air pollution. A group of children
lived in the area of TP, which is characterized by relatively
high levels of air pollution and the other in the less pol-
luted area of PR. Hierarchical clustering and K-means clus-
tering are used to group together individuals on the basis
of the expression patterns of genes selected by CASh and
t-test, and to compare the performance of the two meth-
ods in selecting genes that jointly act in characterizing
samples from the polluted and the non-polluted areas.
Clustering methods show that the lists of genes provided
by CASh and t-test are informative enough to discriminate
between TP subjects and PR subjects on the basis of their
gene  expression profiles.

Most of genes selected by CASh at p < 0.0001 are involved
in important processes related to the mechanism of car-
cinogenesis. While most of the gene categories shown in
Tables 3 and 4 cannot yet be toxicologically interpreted, it
is demonstrated that t-test analysis generates presumably
relevant pathways, e.g. related to nucleosome and micro-
tubuli function, but also misses a few, e.g. related to cell
signaling and growth regulation, which are retrieved by
CASh. At the level of identified pathways as affected by
exposure to air pollution in Teplice children, it is the com-
bination of both methods that yields most of the relevant
information regarding genes with a potential impact in
regulation of complex pathways predisposing to tumori-
genesis. It is therefore recommended to apply CASh and
parametric tests for differential expression in combina-
tion.

Methods
Game Theory
In this section we introduce some basic game theoretical
notions and definitions. A coalitional game is a pair (N, v),
where N denotes a finite set of players and v : 2N → � the
characteristic function, with v(∅) = 0. Often we identify a
coalitional game (N, v) with the corresponding character-
istic function v. A group of players T ⊆ N is called a coali-
tion and v(T) is the worth of the coalition T.

The unanimity game (N, uR) based on R ⊆ N is the game

described by uR(T) = 1 if R ⊆ T and uR(T) = 0, otherwise.

Every coalitional game (N, v) can be written as a linear
combination of unanimity games in a unique way, i.e. v =

∑S⊆N, S≠∅ λS (v) uS (see for instance [33]. The coefficients

 are called unanimity coefficients or divi-

dends of the game (N, v).

Given a coalitional game (N, v), an allocation or payoff vec-
tor is a vector (xi)i∈N ∈ �N assigning to player i ∈ N the
amount xi.

A solution for a class of coalitional games is a function ψ
that assigns a payoff vector ψ(v) to every coalitional game
in the class. A well-known solution for coalitional games
is the Shapley value, introduced by [7].

The Shapley value assigns to each player his average mar-
ginal contribution over all the possible orderings, i.e. per-
mutations, of the players. Formally, given a coalitional
game (N, v), the Shapley value assigns to player i ∈ N:

where π is a permutation of the players, P(π; i) is the set of
players that precede player i in the permutation π and n is
the cardinality of N.

In [6], the definition of microarray game was introduced as
a coalitional game (N, ) with the objective to stress the
relevance ('sufficiency') of groups of genes in relation to a
specific condition. Let N = {1,...,n} be a set of genes. On a
single microarray experiment on N, a sufficient require-

ment to realize in a coalition S ⊆ N the association
between a condition and an expression property is that all
the genes showing that expression property belong to coa-
lition S (sufficiency principle). Different expression proper-
ties for genes might be considered like, e.g., under- or
over-expression, strong variation, abnormal expression

etc. A group of genes S ⊆ N which realizes the association

( ( ))
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λS S
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π
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n
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Table 6: Cluster-wise mutual information of K-means clustering. 

Procedure clusters size CMI score

CASh cluster 1 28 0.2369
cluster 2 18 0.2943
cluster 3 1 0.0255

t-test cluster 1 25 0.2825
cluster 2 19 0.2922
cluster 3 3 0.0733

Cluster-wise mutual information (CMI) scores computed on clusters 
of subjects as provided by K-means with K = 3 (genes selected by 
CASh and t-test at p < 0.01).
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between the expression property and the condition on a
single array is called a winning coalition for that array. For
example, consider a single microarray experiment on a set
of genes N = {1, 2,...,10} under a given condition (e.g.,
exposure to air pollution) and suppose that only genes 1,
3 and 7 show the expression property (e.g., over-expres-

sion). Then, each set of genes S ⊆ N with 1, 3, 7 ∈ S is a
winning coalition in such an experiment.

Moving to k ≥ 1 microarray experiments on N, we refer to
a Boolean matrix B ∈ {0,1}n × k, where the Boolean values
0 – 1 represent two complementary expression properties,
for example the property of normal expression (coded by
0) and the property of abnormal expression (coded by 1).
Let B.j be the j-th column of B. We define the support of B.j,
denoted by sp(B.j), as the set sp(B.j) = {i ∈ N | Bij = 1}.

The microarray game corresponding to B is the coalitional

game (N, ) with N = {1,...,n} and where : 2N → �+ is

such that (T) is the rate of occurrences of the coalition T
as a winning coalition, i.e., is the rate of occurrences of the
coalition T as a superset of the supports in the Boolean

matrix B. in formula, we define (T), for each T ∈ 2N \

{∅}, as the value

where Θ(T) = {j ∈ K | sp(B.j) ⊆ T, sp(B.j) ≠ ∅}, with K =

{1,...,k} and where card(Θ(T)) is the cardinality of Θ(T).

Finally, we define (∅) = 0.

Note that the expression of a gene is a continuous variable
which hypothetically may assume whatever value across
different samples, then it is not at all easy to identify good
criteria to discriminate between different expression prop-
erties. The binarization method used in this work is
described in section Data processing for CASh. For alterna-
tive binarization methods in gene expression analysis, see
for instance [34,35].

Comparative Analysis of Shapley Value
Consider two groups of microarray experiments on the
same set of genes N = {1,...,n}, respectively collected
under two different conditions 1 and 2. Let B1 ∈ {0, 1}n ×

k and B1 ∈ {0, 1}n × h be two Boolean matrices, where B1 is
obtained via a discretization procedure from an expres-
sion data set with k biological samples under condition 1,
and B2 is obtained via a discretization procedure from an
expression data set with h biological samples under con-
dition 2.

Let ,  be the microarray games corresponding to the

Boolean matrices B1 and B2, respectively. Let ϕ( ) be the

Shapley value on the game  and let ϕ( ) be the Shap-

ley value on the game .

Consider the following absolute difference of Shapley val-
ues

for each i ∈ N, where ϕi( ) is the Shapley value of gene

i in the microarray game corresponding to the Boolean

matrix B1 and ϕi( ) is the Shapley value of gene i in the

microarray game corresponding to the Boolean matrix B2.

We formally present a procedure (Algorithm 1) to test the
null hypothesis that each gene in N has the same Shapley
value between the two conditions 1 and 2. In fact we want

to test the null hypothesis δi(ϕ( ), ϕ( )) = 0 against the

alternative hypothesis δi(ϕ( ), ϕ( )) ≠ 0. More precisely,

we introduce a test procedure based on a non-parametric
Bootstrap method of re-sampling with replacement (see
[12,13] as general introduction to Bootstrap methods; see
[36] as a Bootstrap application to microarray analysis),
which is able to test the null hypothesis of no difference
between the means of two random samples without
assuming under the null hypothesis that the probability
distributions in the populations are the same.

Algorithm 1
INPUT:

- Two Boolean matrices B1 ∈ {0,1}n × k, B2 ∈ {0, 1}n × h,
with n, k, h ∈ {1, 2,...};

- an integer number b of Bootstrap re-samples (with
replacement).

OUTPUT:

- a Bootstrap estimation of the null distribution of Shap-
ley value differences on the n genes;

- a vector of n (un-adjusted for multiple comparisons)
estimated p-values.

BEGIN:

v v

v

v

v T
card T

k
( )

( ( ))= Θ (2)

v

v 1 v 2

v 1

v 1 v 2

v 2

δ φ φ φ φi i iv v v v( ( ), ( )) : | ( ) ( ) |,1
2
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- Compute the observed Shapley value difference

 for each i ∈ N, where

 and  are the microarray game correspondingto B1

and B2, respectively.

FOR r : 1 TO b BEGIN:

- Compute the r1-th Bootstrap re-sample (with replace-
ment) on the column indices {1,...,k} of B1; compute the
r2-th Bootstrap re-sample (with replacement) on the col-
umn indices {1,...,h} of B2, respectively.

- Define the Boolean matrix  correspond-

ing to the r1-th re-sample and the Boolean matrix

 corresponding to the r2-th re-sample.

- Compute the Bootstrap Shapley value difference

,

for each i ∈ N, where ,  are the microarray games

corresponding to the Boolean matrices  and ,
respectively.

END.

- for each i ∈ N, compute the (un-adjusted for multiple
comparisons) estimate Achieved Significance Level (ASL)

or p-value pi of each gene i ∈ N as follows

.

END.

In Additional files, a more detailed version of the pseudo-
code of Algorithm 1 [see Additional file 1] and its imple-
mentation [see Additional file 4] are given. A discussion
on the generation of raw p-values using bootstrap method
and the related procedures to adjust p-values for multiple
hypothesis testing is provided [see Additional file 2]. Cal-
culations of CASh on a numerical instance are also illus-
trated [see Additional file 3].

Description of data processing
We analyzed the microarray gene expression data pub-
lished in [14]. Study subjects were children from the Tep-
lice (TP) area in the north and from the rural Prachatice
(PR) in the south of the Czech Republic, for a total of 47
children; 23 from the TP area and 24 from the PR area. For
details on study population, collection and processing of

blood, RNA isolation and microarray analysis of gene
expression see [14].

Data pre-processing
Raw data files from ImaGene (BioDiscovery, Marina del
Rey, CA, USA) published in [14] were uploaded into
Expressionist Refiner Array (Genedata AG, Basel, Switzer-
land) for data transformation. Data transformations were
applied in the following order: background was corrected
according to [37,38]; LOWESS correction with a smooth-
ing factor of 0.1 to remove any nonlinearity between the
two channels was applied [39]; expression ratios of the
subjects's sample with respect to the common reference
sample were calculated using a specific bayesian algo-
rithm to estimate the most likely expression signal given
the measurements for the spot and background intensi-
ties. The following data were derived:

• Expression ratio = signal Cy5/signal Cy3;

• Signal to noise (S/N) ratio for each channel =

;

• Relative error computed = .

For the analysis of the data the quality thresholds were set
as follows:

• Relative error < 0.5;

• S/N ratio > 2.0;

• Saturated features masked.

In addition, only the transcripts were used which have,
after the previously described filtering, at least 50% valid
values per group, i.e. ≥ 12 valid values for the PR group
and also ≥ 12 for the TP group. From the about 20000
spots on the microarray, 5873 fulfill the above described
quality and filtering criteria and were used for further sta-
tistical analysis. These spots from the series of 47 experi-
ments are represented as a gene expression matrix X, with
n = 5873 (after filtering) rows and 47 columns, where the
i-th row consists of a 47-elements expression vector Xi. =
(Xi1,...,Xi47), for a single gene sequence i.

On such a matrix, a t-test analysis was used to identify
genes significantly differing in expression between the two
groups of individuals (TP compared to PR).
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Data processing for CASh
The final matrix X of 5873 genes and 47 samples that was
distilled from the data filtering and preparation as
described above, was split in two distinct expression
matrices, XTP and XPR, whose columns were selected from
X accordingly to the 23 subjects from TP area and the 24
subjects from PR area.

First, a procedure aimed to discriminate over-regulated
levels of gene expression with respect to expressions meas-
ured in the PR area was applied. Each continuous value in
the vector Xi. = (Xi1,...,Xi47) which was equal to or greater

than Mean [ ] + Stdev[ ] was coded as 1, or as 0 if

otherwise. Consequently, a Boolean matrix B+ with n rows
and 47 columns and with values {0, 1} was generated
from X. Separately, a procedure aimed to discriminate
under-regulated levels of gene expression with respect to
expressions measured in the PR area was applied. Each
continuous value in the vector Xi. = (Xi1,...,Xi47) which was

equal to or smaller than Mean[ ] - Stdev[ ] was

coded as 1, or as 0 if otherwise. Consequently, a Boolean
matrix B- with n rows and 47 columns with values {0, 1}
was also generated from X. According to the distinction
between PR and TP biological samples, the Boolean
matrix B+ was split in two different Boolean matrices BTP+

and BPR+, and the Boolean matrix B- was split in two other
Boolean matrices BTP- and BPR-. By relation (2), from the

Boolean matrix BTP+ the microarray game  is defined

and, in a similar way, the microarray game  from the
Boolean matrix BTP- is also defined.

In order to remove those genes whose high level of Shap-
ley value may be attributed to chance, we applied the
Bootstrap-based Algorithm 1. In practice, we applied
Algorithm 1 (b = 1000) with BTP+ in the role of B1 and BPR+

in the role of B2 and the un-adjusted p-values were com-
puted. In a similar manner, we applied Algorithm 1 (b =
1000) with BTP- in the role of B1 and BPR- in the role of B2

and the corresponding un-adjusted p-values were com-
puted.

As further criterium for filtering, genes with Shapley value
smaller than the mean plus the standard deviation in both

microarray games  and  were filtered out. Fol-
lowing this criterium, 838 genes were selected in game

 and 889 genes were selected in game ) (see the
highlighted intervals of Figure 1).

The overlap between two lists with the same number n of
genes is defined as the following fraction

for n ≥ 1.

Hierarchical cluster analysis and gene ontology
We used hierarchical clustering and K-means clustering to
detect similarity relationships in gene expressions
between TP and PR areas, based on the set of genes
selected by CASh and t-test. In hierarchical clustering, all
agglomerative hierarchical clusters were computed using
the Euclidean distance between single vectors and the
Ward method [40]. In K-means clustering, the algorithm
of Hartigan and Wong [41] is used, the number of clusters
a priori specified is K = 2 and the maximum number of
iterations allowed is 10000. Before clustering analysis, we
imputed missing values by the k-Nearest Neighbors
method (k = 5) [42]. Heat-maps were representative of
logged gene expression values, which are centered and
scaled in the row direction. Statistical analysis were per-
formed with Expressionist Pro from Genedata or the soft-
ware R [see http://www.r-project.org]. Classification
accuracy of clusters is measured as the percentage of cor-
rectly classified subjects. More precisely, classification
accuracy was computed in two steps: first, each cluster is
assigned to the area (TP or PR) with the majority of sub-
jects in the cluster; second, the accuracy is computed
according to the following ratio:

For functional annotation analysis, we used the online
software DAVID [20], which employs a modified Fishers
exact test [43,44] to derive biological themes within par-
ticular gene sets defined by functional annotation. In this
way, over-representation of a particular annotation term
corresponding to a group of genes was quantified in terms
of the p-value computed in the test procedure.

Simulation study
A simulated gene expression data-set of of n = 1000 genes
obtained by random samples from normal distributions
under two simulated conditions which are denoted by a
class variable y ∈ {1, 2}. Nine hundred genes were ran-
domly sampled from a normal distribution with mean= 1
and stdev = 1 under both conditions 1 and 2. The remain-
ing 100 genes were slpit in two sets of target genes (i.e., to
be discovered genes), since the parameters of the normal
distributions from which the expression values are sam-
pled change with the conditions: 50 genes were randomly
sampled from a normal distribution with mean = 2 and
stdev = 1 under condition 1, and from a normal distribu-
tion with mean = 1 and stdev = 1 under condition 2;

X i
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. X i

PR
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X i
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. X i
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remaining 50 genes were randomly sampled from a nor-
mal distribution with mean = 1 and stdev = 1 under con-
dition 1, and from a normal distribution with mean = 1
and stdev = 2 under condition 2. To be processed by
CASh, each randomly sampled continuous value of gene
i, i = 1,..., 1000, under condition 1 (condition 2) which
was equal to or greater than the average expression of gene
i plus its standard deviation under condition 2 (condition
1) was coded as 1, or as 0 if otherwise.
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