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Abstract 
 
Background: Atrophy related to Multiple Sclerosis (MS) has been found at the early stages of 

the disease. However, the archetype dynamic trajectories of the neurodegenerative process, 

even prior to clinical diagnosis, remain unknown.  

Methods: We modeled the volumetric trajectories of brain structures across the entire lifespan 

using 40944 subjects (38295 healthy controls and 2649 MS patients).  Then, we estimated the 

chronological progression of MS by assessing the divergence of lifespan trajectories between 

normal brain charts and MS brain charts.  

Results: Chronologically, the first affected structure was the thalamus, then the putamen and 

the pallidum (3 years later), followed by the ventral diencephalon (7 years after thalamus) and 

finally the brainstem (9 years after thalamus). To a lesser extent, the anterior cingulate gyrus, 

insular cortex, occipital pole, caudate and hippocampus were impacted. Finally, the precuneus 

and accumbens nuclei exhibited a limited atrophy pattern. 

Conclusion: Subcortical atrophy was more pronounced than cortical atrophy. The thalamus 

was the most impacted structure with a very early divergence in life. It paves the way toward 

utilization of these lifespan models for future preclinical/prodromal prognosis and monitoring 

of MS. 
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Introduction 
 
Multiple Sclerosis (MS) is a chronic, demyelinating and inflammatory pathology of the central 

nervous system, that involves significant neurodegenerative damages. The brain atrophy 

resulting from neurodegeneration is an important biomarker of disease progression, even better 

than the traditional white matter lesion assessment [1].  

Magnetic resonance imaging (MRI) has proven to be a useful tool for estimating brain atrophy 

in neurodegenerative diseases. In MS, MRI mainly focuses on the white matter lesions to 

establish the initial diagnosis [2] and to monitor therapeutic response, but MS progression could 

also be monitored through volumetric measures independently of relapses [3]. Thanks to 

advances in automatic analysis of brain MRI, the volume of brain structures can be estimated 

accurately and robustly [4]. Therefore, while previously focusing on global brain volume, 

recent studies have been able to analyze MS-related brain atrophy more finely at the structural 

level [5].  

Evidence suggests that global brain atrophy is mainly driven by gray matter (GM) alterations 

rather than to white matter damage [6]. These GM alterations have been found in both cortical 

and subcortical structures in MS patients [7]. Also, some brain structures seem more likely to 

be affected than others [5]. GM atrophy has been observed across all the stages of the disease 

even in preclinical MS stage (e.g., clinical isolated syndromes – CIS) [8]. Moreover, several 

studies investigated the progression of GM atrophy across multiple sclerosis phenotypes [5]. 

However, so far, we do not know when such a process starts and the full dynamic over several 

decades has not been revealed. Without a database starting long before the appearance of the 

first symptoms and providing the corresponding follow-up over decades, such a study is very 

challenging. 

Recently, the concatenation of a large number of cross-sectional data has been used to reveal 

the typical course of brain volumes during the lifespan [9]. We pioneered an approach that 

consists in comparing such normative trajectories with those from patients, and we 

demonstrated its relevance to estimate preclinical GM atrophy in Alzheimer’s disease [10,11]. 

To overcome the lack of data prior to clinical diagnosis, pathological lifespan modeling 

combines healthy subjects and patients covering the entire lifespan. In this study, we propose 

to adapt this strategy to MS. Thanks to these lifespan models, we present new insights on the 

spatiotemporal evolution of GM atrophy across the entire lifespan. Moreover, we estimate the 
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most atrophic structures, the sequence of impacted structures and the average age of onset of 

significant atrophy.      

 

Methods 

Standard protocol approvals, registrations, and patient consents 

All the used images were obtained from public datasets. Database providers ensured 

compliance with ethical guidelines such as informed consent and anonymization (see 

Acknowledgments).  

Datasets 

In our study, lifespan models of brain volume trajectories were estimated using 24 open-access 

MRI databases. To this end, we collected MRIs of 41671 subjects, 38978 from cognitively 

normal, healthy control (HC) subjects covering the entire lifespan (from 1 to 100 years of age) 

and 2693 from patients with MS. All the MRIs were collected on 1.5T or 3T magnets.  

Table 1: Databases description. This table provides the total number (n) of considered images 
(after quality control), the gender proportion, and the average ages and intervals in brackets.  

 n Sex 
 

Age at first 
symptom 

Mean (years) 
[range] 

Age at MRI 
Mean (years) 

[range] 

EDSS 
Mean (years) 

[range] 

HC subjects 38295 F = 19025; M = 19270 n.a 57.5 [0.7 – 
100.2] 

n.a 

MS patients 2649 F = 1917; M = 732 32.1 [5 - 73] 42.1 [13 – 79] 2.6 [0 - 9] 

 

HC database: For HC subjects, we used the baseline T1-weigthed MRI from the following 

datasets: UKbiobank (n=29932, https://www.ukbiobank.ac.uk/), C-MIND (n=236, 

https://research.cchmc.org/c-mind/), NDAR (n=382, https://ndar.nih.gov), ABIDE (n=492 

http://fcon_1000.projects.nitrc.org/indi/abide/), ICBM: (n=294 

http://www.loni.usc.edu/ICBM/), IXI (n=549, http://brain-development.org/ixi-dataset/), 

ADNI1&2 (n=404, http://adni.loni.usc.edu), AIBL (n=232, http://www.aibl.csiro.au/), OASIS 

(n=298, https://www.oasis-brains.org), ADHD-200 (n=544, 

http://fcon_1000.projects.nitrc.org/indi/adhd200/), DLBS (n=315, 

http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html), ISYB (n=213, 

https://www.scidb.cn/en/detail?dataSetId=826407529641672704), MIRIAD (n=23, 

https://www.ucl.ac.uk/drc/research/research-methods/minimal-interval-resonance-imaging-
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alzheimers-disease-miriad), PPMI (n=166, https://www.ppmi-info.org/), PREVENT-AD 

(n=307, https://openpreventad.loris.ca/), Amsterdam open MRI collection (AOMIC_ID100 & 

PIOP1 & PIOP2, n=1361, https://nilab-uva.github.io/AOMIC.github.io/), Calgary cohort 

(n=267, https://osf.io/axz5r/), CamCAN (n=653, https://camcan-archive.mrc-

cbu.cam.ac.uk/dataaccess/), PIXAR (n=155, 

https://openneuro.org/datasets/ds002228/versions/1.1.0), SALD (n=494, 

http://fcon_1000.projects.nitrc.org/indi/retro/sald.html), SRPBS (n=791, https://bicr-

resource.atr.jp/srpbsopen/ ), NACC (n=161, https://naccdata.org), NIFD (n=135, 

https://memory.ucsf.edu/research-trials/research/allftd) and SLIM (n=574, 

http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html). After quality 

control (QC – see Image Processing section), this database contained 38295 HC subjects (see 

Table 1). 

MS database: For MS patients, we used the first available T1-weighted and FLAIR MRIs from 

the “Observatoire Français de la Sclérose en Plaques” (OFSEP) dataset (n=2692, 

https://www.ofsep.org/en/) including 544 subjects with a clinically isolated syndrome (CIS), 

1686 patients with relapsing-remitting multiple sclerosis (RRMS), 288 secondary-progressive 

multiple sclerosis (SPMS) and 174 patients with primary-progressive multiple sclerosis 

(PPMS) [12]. After QC, this database contained 2649 MS subjects (see Table 1). The average 

age at the first of symptoms suggestive of MS was 32y and the average age at the MRI used for 

analysis was 42y. 

Construction of lifespan groups 

To study the brain volumetric trajectories of HC subjects and MS patients across the entire 

lifespan, we compiled several open-access databases to construct normal and diseased models. 

For the HC models, we used the 38295 MRIs from HC subjects remaining after QC covering 

the entire lifespan (see Table 1). For the MS models, we followed the strategy proposed in 

[10,11] for lifespan analysis of Alzheimer’s disease. This framework is based on the assumption 

that neurodegeneration is a continuous and progressive process along the pathology evaluation. 

Therefore, to constrain the model over the entire lifespan, it has been proposed to mix HC with 

patients. Herein, we combined MRIs of 2649 MS patients after QC (see Table 1) with MRIs of 

3711 healthy controls younger than 23 years. This age was the quantile at 5% of the MS 

population that enabled a smooth transition from HC subjects to MS patients. These HC 

subjects were all the subjects younger than 23y in the 38295 HC subjects used for HC models 

after QC. Consequently, for the MS models, between 1y-13y only HC subjects were used, 
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between 13y-23y a mix of HC subjects and MS patients were used, and after 23y only MS 

patients were used. At the end, the parametric MS models were constrained over the entire 

lifespan using 6360 subjects. To ensure model validity, we analyzed results over 1-62y, 62y 

being the quantile at 95% of the MS population age distribution. 

Image processing 

All the considered T1-weighted MRI were segmented using AssemblyNet [13] 

(https://github.com/volBrain/AssemblyNet/). This software produce sfine-grained 

segmentation (i.e., 132 structures) of the entire brain.  

Pipeline for HC subjects: All the T1-weighted MRI were first preprocessed to harmonize them. 

The preprocessing consisted of denoising [14], inhomogeneity correction [15], affine 

registration into the Montreal Neurological Institute (MNI) space [16], tissue-based intensity 

normalization [17] and intracranial cavity segmentation [18]. Afterward, all the preprocessed 

images were checked by automatic quality control (QC) based on artificial intelligence [19]. 

Finally, structure segmentation was achieved using 250 deep learning models through a multi-

scale framework [13]. 

Pipeline for MS patients: For MS patients, T1-weighted MRI were preprocessed as for HC. In 

addition, the FLAIR images were processed using denoising [14], inhomogeneity correction 

[15], rigid registration into the T1-weighted MRI native space and then projection into Montreal 

Neurological Institute (MNI) space using T1-weighted registration matrix. Afterward, MS 

lesions were segmented using DeepLesionBrain [20] 

(https://github.com/volBrain/DeeplesionBrain/). The lesion masks were then used to perform 

in-painting of MS lesions on T1-weighted MRI [21]. This step was done to limit the impact of 

MS lesions visible in T1-weighted MRI on brain segmentation. As for HC, at the end, the 

preprocessed images were controlled using automatic QC [19] and segmented using 

AssemblyNet [13]. 

In the following, we considered 124 structures of the 132 structures produced by AssemblyNet 

according to the Neuromorphometrics protocol. First, we used 120 symmetric structures (60 

left and 60 right): 9 subcortical structures, 17 frontal gyri/lobules, 8 temporal gyri/lobules, 6 

parietal gyri/lobules, 8 occipital gyri/lobules, 6 gyri in the limbic cortex, 5 sub-regions of the 

insular cortex and the cerebellar GM. Moreover, we used four central structures: the brainstem 

and three groups of vermal cerebellum lobules (i.e., lobules I-V, lobules VI-VII and lobules 

VIII-X).  
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Lifespan trajectory estimation 

As in [11], we used normalized volumes (% of total intracranial volume) to compensate for the 

head size. Afterward, we used a z-score normalization to enable comparison between structures 

of different sizes. For each structure, the mean and the standard deviation of the volumes over 

the HC were used to normalize all the volumes (i.e., both normal and pathological). 

Moreover, as in [10], we considered different model types to estimate the best trajectory of each 

brain structure. To this end, we first estimated several low-order polynomial models (i.e., linear 

model, quadratic model, and cubic model). Then, we kept a model as a potential candidate when 

F-statistic based on ANOVA (i.e., model vs. constant model) was significant (p<0.05) and all 

its coefficients were significant using t-statistic (p<0.05). We finally used the Bayesian 

Information Criterion (BIC) to select the best candidate. This procedure was done for all the 

structures and for both populations. All the performed statistics were done using Matlab with 

default parameters.  

Divergence between pathological and healthy models 

Once the models were estimated for both populations, distances between healthy and MS 

trajectories were computed for each brain structure. We used an adjusted confidence level of 

95% (i.e., 99.96% after correction for multiple comparisons using Dunn’s procedure) to 

estimate the prediction bounds of the trajectories. Moreover, we considered that a structure 

significantly diverged from normal aging when the adjusted 95% confidence intervals of CN 

models and MS models do not overlap (Fig. 1). Then, all divergent structures were mapped 

across time and space on the MNI template (see Fig. 2). Finally, the sequence of significant 

divergence of the most affected brain structures (top 25 structures diverging the most) was listed 

in chronological order to obtain the MRI staging scheme of lifespan MS atrophy (see Fig. 3).  
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Results 

We found that 33 left brain structures, 32 right brain structures and 3 central structures (i.e., 

brainstem, and two groups of cerebellar lobules) significantly diverged between MS patients 

and normal brain charts. Therefore, on the 124 studied structures, we found that 68 of them 

(more than 50%) exhibited significant smaller volumes for MS trajectories.  

Most impacted structures in terms of atrophy 

First, we analyzed the most affected structures over time in terms of atrophy peaks (i.e., 

maximum distance to the HC models). Figure 1 shows models for the most impacted structures. 

These structures were the right thalamus (1.72 at 53y), the left thalamus (1.53 at 54y), the right 

putamen (1.11 at 54y), the left pallidum (1.09 at 53y), the right ventral diencephalon (DC – 

1.04 at 52y), the left ventral DC (1.01 at 52y), the left putamen (1.01 at 54y), the right pallidum 

(0.94 at 53y), the brainstem (0.92 at 57y), the right hippocampus (0.81 at 56y), the right caudate 

(0.79 at 60y), the left occipital pole (0.78 at 61y), the right posterior insula (0.77 at 57y) and 

left anterior cingulate (0.76 at 57y). 

 
Figure 1. Lifespan trajectories based on z-scores of the main impacted brain structures for healthy aging 

subjects (in black) and MS patients (in red). Black dots represent all healthy individuals and red dots MS patients. 

The orange curves represent the distance between the healthy and pathological models. The orange areas indicate 

the time period where confidence intervals of both models do not overlap. The prediction bounds of the models 

are estimated with an adjusted confidence level at 95%.  

Spatiotemporal evolution of atrophy related to MS 

Afterward, we studied the spatiotemporal evolution of the MS patients compared to normal 

brain charts. To this end, we performed a mapping of the divergence between HC and MS 
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trajectories over an MRI atlas (see Fig. 2) and we estimated a global timeline of trajectory 

divergence considering the top 25 most atrophic structures (see Fig. 3).  

 
Figure 2. Spatiotemporal progression of the MS-related atrophy. Progression of MS-related atrophy along the 

three axes with radiological convention for all the structures.  

Thanks to these analyses, we observed that the most pronounced atrophy related to MS started 

in deep GM structures (mainly thalamus, pallidum and putamen) then spread through the 

ventral diencephalon (a structure regrouping the hypothalamus, mammillary body, subthalamic 

nuclei, substantia nigra, red nucleus, lateral geniculate nucleus, and medial geniculate nucleus) 

to finally reach the brainstem.  

The mean age of the most significant atrophy onset was 19y for the thalamus, between 24-24y 

for the pallidum and the putamen, around 26y for the ventral diencephalon and 28y for the 

brainstem. This is to contrast with the mean age of the first symptom that was of 32 years old 

in our MS cohort. Overall, this means that such lifespan model could help us to estimate atrophy 

related to MS more than one decade before the first symptom. 

Besides, although less important than deep GM atrophy, we also found cortical atrophy started 

in the parietal lobe (mainly in the precuneus around 21y) and the insular cortex (mainly in the 

central operculum around 22y) before reaching the limbic cortex (mainly the anterior cingulate 

gyrus around 25y) to finally end in the occipital lobe (mainly the occipital pole around 27y) 

and the temporal lobe (mainly the hippocampus around 28y). 
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Figure 3. Chronological progression of MS over the most impacted structures. Timeline representing the 

sequential divergence of the most atrophied structures (top 25) between healthy and MS trajectories. The effect-

size of structural divergence is color-coded according to the bar at the bottom right of the figure. The mean age 

at the first symptom (32y) in this cohort is illustrated with vertical dashed line.  

Discussion 
 
In this study, we used a massive number of subjects (N=40944) to model the archetype 

progression of MS-related atrophy at the structure level across the entire lifespan. Thanks to 

this modeling, we inferred the spatiotemporal sequence of GM atrophy in MS over the entire 

course of the disease, including the preclinical stage. Moreover, such framework accounted for 

atrophy due to normal aging since healthy and diseased lifespan models were compared. 

Thereby, we automatically estimated the most impacted structures, the atrophy evolution and 

the average age of atrophy onset.  

The MRI staging of atrophy involved the thalamus, then the pallidum and putamen, followed 

by the ventral diencephalon and finally the brainstem. Moreover, we found that the anterior 

cingulate gyrus, the insular cortex, and the hippocampus were impacted but on a smaller extent. 

Finally, we observed that the precuneus and the accumbens nuclei, while early impacted, were 

slightly atrophic compared to the thalamus. Most of these structures have been previously 

reported as atrophic in the literature [5,22]. The chronological sequence of atrophy reported 

here is also consistent with a previous study using an event-based analysis [5]. Our findings 

also provide new knowledge that could not have been addressed with these previous studies. 
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Importantly, we estimated the very early divergence in life of normal and pathological brain 

charts, more than one decade before the average age of symptoms onset (i.e., 32-years-old). 

This observation echoes the volume loss that was already reported in small sample size cohorts 

of patient with radiologically and clinically isolated syndrome [8], but also provides an 

estimation of the mean age of divergence which has never been reported before. While it is 

well-known that several white matter lesions are already visible at the time of diagnosis (which 

is the basis for the MRI-based criteria of dissemination in space and time after a first clinical 

episode [2]), we also demonstrate here that several GM structures will exhibit atrophy at this 

time. This argues for a neurodegenerative component that is very early and probably 

compensated for before that lesions would reach eloquent areas leading to a first clinical 

episode and, in turn, to the clinical diagnosis [23]. 

The thalamus is the earliest affected structure which is in line with previous literature pointing 

out the thalamus as a sensitive MRI biomarker of neurodegeneration in the early stage of MS 

[5,22,24,25]. The thalamus is correlated with a wide range of clinical manifestations and is an 

important biomarker of disease progression [26]. Significant thalamic atrophy has been found 

in the early stage of MS suggesting that neurodegeneration begins long before the first 

symptoms [27]. However, so far, the dynamic of thalamic atrophy at the preclinical stage of 

MS was unknown. It is likely that thalamic atrophy and atrophy of the other deep gray matter 

nuclei could be altered through several mechanisms explaining their particular vulnerability 

early in life of the MS patients [28]. Indeed, it is known that these structures can be altered 

indirectly through disconnection of their projections by white matter lesions [29]. Direct 

targeting might add to this secondary phenomenon and therefore accelerate the overall 

damages. In this process, the high amount of iron within the deep nuclei [30] could accelerate 

oxydative stress [31]. The deep nuclei adjacent to the CSF of the ventricles could also be 

directly targeted by inflammatory and neurotoxic soluble factors coming from CSF [32].  

On top of the thalamus and the other deep grey matter nuclei, we also found rapid volume loss 

affecting the brainstem that is directly connected with thalamus and could therefore share the 

same vulnerability. This also reminds atrophy of the cervical spinal cord that is known to take 

place rapidly [33].  The cortical ribbon is altered at later stages with some regions showing 

earlier and more pronounced volume loss than others, especially the hippocampus and the 

insular cortex. The micro or macrostructural vulnerability of these regions have been 

continuously highlighted in cross-sectional and short-term longitudinal analyses [5]. Their 

vulnerability could be related to a large number of connections and therefore a higher 
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probability to be affected by white matter disconnections. The CSF flow is also supposed to be 

more restricted within the deep invaginations facing these sites which could drive more 

alterations induced by meningeal inflammation [34].   

 
In order to build such average models, we had to make few assumptions. The first is that there 

is a smooth transition between the normal and pathological states which is the rational for 

combining volumes of HC early in life with those from MS patients. This is likely the case 

regarding (i) the slow rate of atrophy in MS reported before and (ii) the previous validation of 

our modeling strategy using longitudinal data in other conditions such as Alzheimer’s disease 

[10,11]. The other assumption is that all the clinical phenotypes of MS follow the same dynamic 

which is the rational for combing all of them within a single mean model. There are some 

histological data showing that the pathological processes are regionally consistent between 

early relapsing-remitting and progressive MS [35]. Furthermore, through other approaches, 

other authors have reported consistent sequence of events between different clinical phenotypes 

[5,27].   

 
 
Overall, the proposed lifespan models could have future potential interests in prognosis and 

diseased monitoring. We recently showed for Alzheimer’s disease that the distance to healthy 

and diseased lifespan models can be used to detect neurodegenerative pathologies at their 

earliest stage while taking into account normal aging [36]. Therefore, as perspectives, such MS 

brain charts from high number of data modeling the archetype trajectories are likely to be used 

for comparing individual patient against the mean dynamic profile, at diagnosis or under 

therapies.    
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