
PCAViz: An Open-Source Python/JavaScript Toolkit for Visualizing
Molecular Dynamics Simulations in the Web Browser
Sayuri Pacheco,† Jesse C. Kaminsky,† Iurii K. Kochnev, and Jacob D. Durrant*

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States

*S Supporting Information

ABSTRACT: Molecular dynamics (MD) simulations reveal
molecular motions at atomic resolution. Recent advances in
high-performance computing now enable microsecond-long
simulations capable of sampling a wide range of biologically
relevant events. But the disk space required to store an MD
trajectory increases with simulation length and system size,
complicating collaborative sharing and visualization. To
overcome these limitations, we created PCAViz, an open-
source toolkit for sharing and visualizing MD trajectories via
the web browser. PCAViz includes two components: the
PCAViz Compressor, which compresses and saves simulation data; and the PCAViz Interpreter, which decompresses the data in
users’ browsers and feeds it to any of several browser-based molecular-visualization libraries (e.g., 3Dmol.js, NGL Viewer, etc.).
An easy-to-install WordPress plugin enables “plug-and-play” trajectory visualization. PCAViz will appeal to a broad audience of
researchers and educators. The source code is available at http://durrantlab.com/pcaviz/, and the WordPress plugin is available
via the official WordPress Plugin Directory.

■ INTRODUCTION

Molecular dynamics (MD) simulations predict biomolecular
dynamics by applying Newton’s laws of motion to atomic-
resolution models. In brief, MD engines represent atoms and
bonds as simple spheres connected by virtual springs.1 If the
radii/partial charges of the spheres and the stiffness/length of
the springs are properly parametrized, virtual Newtonian and
actual quantum-mechanical forces are similar.2 The MD engine
nudges virtual atoms per the approximated forces and advances
the simulation mere femtoseconds. Repeating this process
millions of times produces trajectories that capture protein
motions.
Simulations reveal important information that static

structures cannot. For example, they can resolve structural
artifacts introduced by protein crystallography (e.g., crystal
contacts that are not biologically relevant,3 potential steric
clashes, etc.). Simulations can also demonstrate the relation-
ships between protein structure and function,4 the effects of
solvent pH on protein dynamics,5 and the paths through
conformational space that a protein must traverse to reach
different energetic states.6

Simulations also play a prominent role in structure-based,
computer-aided drug discovery. Crystal structures capture
single, static protein conformations. In contrast, MD
simulations sample a more continuous range of conformations.
As binding-pocket geometries transition between states,
transient druggable subpockets sometimes form that are
hidden to experiment. These cryptic pockets7,8 often play
important roles in allostery and protein−protein interactions

and so provide new drug-discovery opportunities for targeting
otherwise challenging proteins.
JavaScript libraries such as 3DMol.js,9 NGL Viewer,10 and

PV11 allow researchers and web developers to visualize static
molecular structures in any modern web browser. Many of
these libraries can also load small MD trajectories (e.g., several
frames). But more extensive MD simulations are far larger,
demanding too much bandwidth and memory for in-browser
visualization. And yet, with advances in computer paralleliza-
tion and software, the extensive microsecond-long simulations
that are required to capture biological events such as ligand
binding or protein folding (e.g., refs 12 and 13) have become
routine.
We here present PCAViz, an open-source Python/JavaScript

toolkit for visualizing long MD trajectories in a web browser.
Browser-based visualization is a powerful collaboration and
teaching tool. It allows researchers to send URLs for
convenient viewing rather than having to transfer large MD
trajectories that are often many gigabytes in size. Educators can
also share PCAViz URLs with their students in a classroom
setting. Convenient 3D viewing of biomolecules on laptops,
phones, and tablets often provides a clearer understanding of
biological systems.
The PCAViz toolkit includes both a compression tool and

an in-browser interpreter. The PCAViz Compressor is an easy-
to-use, Python-based, command-line utility that extracts
information from an MD trajectory using principal component

Received: August 23, 2019
Published: October 3, 2019

Application Note

pubs.acs.org/jcimCite This: J. Chem. Inf. Model. 2019, 59, 4087−4092

© 2019 American Chemical Society 4087 DOI: 10.1021/acs.jcim.9b00703
J. Chem. Inf. Model. 2019, 59, 4087−4092

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

http://durrantlab.com/pcaviz/
pubs.acs.org/jcim
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.9b00703
http://dx.doi.org/10.1021/acs.jcim.9b00703
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


analysis.14 It stores that information in the JSON format, a
format specifically designed to ease data transfer between web
servers and browsers. The PCAViz Interpreter is a JavaScript
library that runs in the browser without requiring users to
install any plugins. It accepts the JSON file from the server and
converts it back into a format that can be visualized using any
of several in-browser molecular visualization libraries.9,10,15,16

The PCAViz download includes examples showing how to
integrate the Interpreter into existing web pages, and a
PCAViz-powered WordPress plugin makes browser-based
trajectory visualization particularly easy.
PCAViz will be a useful tool for the computational-biology

community. It is available free of charge from http://
durrantlab.com/pcaviz/ under the terms of the open-source
GNU General Public License, version 2.

■ RESULTS AND DISCUSSION
Atom-Position Accuracy. PCAViz uses several lossy

techniques to reduce bandwidth, memory, and CPU demands.
Consequently, the atomic positions of a PCAViz-processed
trajectory will not exactly match those of the original
simulation. But if one chooses the proper compression settings,
the accuracy is acceptably high for in-browser visualization. In
contrast, dedicated molecular-visualization programs such as
VMD17 and PyMOL18 are better suited for more rigorous
analyses of trajectory dynamics.
Understanding the trade-offs between atom-position accu-

racy and file size will help users pick the best PCAViz settings
for their needs. The first potential source of atom-position
inaccuracy is the PCA compression itself. The first principal
component describes the predominant motions of the protein.
But projecting a trajectory onto this component alone
eliminates the more subtle motions that are only explained
by subsequent components. After reverse transformation from
PCA space back into Cartesian space, the atomic positions may
differ substantially from those of the source trajectory (i.e.,
PCA compression is lossy). Using the top two components
captures more detailed atomic motions, but the added data
reduces compression, resulting in larger file sizes. At the other
extreme, projecting a trajectory onto all principal components
captures all simulated motions exactly, but the resulting data is
not compressed at all.
The second potential source of atom-position inaccuracy

arises due to rounding. To reduce the size of the JSON file
containing the PCA data, our implementation rounds all
principal-component vectors and coefficients to a user-defined
number of decimal places. Rounding substantially reduces file
sizes, but retaining too few decimal places introduces
inaccuracies into the reverse-transformed atomic coordinates
beyond those intrinsic to PCA itself.
To illustrate the impact of PCA compression and rounding,

we used PCAViz to transform a simulation of La-related
protein 1 (LARP1)19 into PCA space and then back into
Cartesian space (Figure 1 and Table S1). The simulation
consisted of 100 frames spaced 4.4 ns apart. We considered
only non-hydrogen protein atoms (1326 atoms per frame). To
remove global translational and rotation motions, each frame
was aligned to a common reference by minimizing Cα RMSD
using VMD.17 We applied PCAViz to this trajectory multiple
times, each time retaining the top principal components
required to account for 20%, 25%, 30%, 40%, 50%, 60%, 70%,
75%, 80%, 90%, and 100% of the positional variance captured
by the aligned simulation, respectively. We also tested different

rounding precisions, including rounding to the nearest tenth,
hundredth, and thousandth. To measure atomic-position
accuracy, in each case we calculated the non-hydrogen-atom
RMSD between the original and processed frames (Figure 1A).
We also recorded the file sizes associated with each setting
(Figure 1B). Figure 2 illustrates the impact of these various
settings on a specific frame taken from the simulation.
As is clear from Figure 1, accuracy improves as more

principal components are retained. Similarly, accuracy
improves with higher numeric precision (i.e., the number of
digits retained after the decimal point). But these improve-
ments come at the cost of file size. We note that when the
output files are further compressed using GZIP, as is common
when transmitting data over the Internet, the file sizes are
further reduced (between ∼2.5 and ∼20 times in our tests).
As a second demonstration, we used PCAViz to transform a

previously aligned trajectory of TEM-1 β-lactamase (TEM-
1)21 into PCA space and then back into Cartesian space. The
TEM-1 simulation consisted of 1000 frames spaced 50 ps
apart. We considered only non-hydrogen protein atoms (2030
atoms per frame). The RMSDs between the original and
PCAViz-processed trajectory frames for different variance and
precision settings are given in Table S2, together with the sizes
of the output JSON files. We saw the same trends with the
TEM-1 simulation that we saw with the LARP1 simulation.
Accuracy improved when we used higher positional-variance
and numeric-precision cutoffs, at the cost of file size.

Comparison to Related Programs. We are not the first
to use PCA to compress and expand MD trajectories. For
example, the pyPcazip Python package22 uses a compression
scheme similar to ours to enable PCA-based analysis via third-

Figure 1. Atom-position accuracy and file sizes. We compressed the
benchmark LARP1 simulation using various positional-variance (X
axis) and rounding-precision parameters (line styles). (A) To judge
atom-position accuracy, we decompressed each simulation to recover
the atomic Cartesian coordinates. We calculated the average RMSD
between each frame of the original trajectory and the corresponding
frame of the PCAViz-processed trajectory. (B) We also recorded the
file size of each output JSON file produced using the same positional-
variance/rounding-precision combinations.

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00703
J. Chem. Inf. Model. 2019, 59, 4087−4092

4088

http://durrantlab.com/pcaviz/
http://durrantlab.com/pcaviz/
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00703/suppl_file/ci9b00703_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00703/suppl_file/ci9b00703_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00703


party packages such as MDAnalysis.14 But our primary goal is
browser-based trajectory visualization, so PCAViz additionally:

1. Stores the compressed PCA data as a JSON file to
facilitate browser/server communication,

2. Includes the information required to correctly represent
atomic bonds in the browser,

3. Allows users to stride the trajectory to further reduce file
size, relying on interpolation between frames to
approximate intermediate conformations,

4. Rounds numeric values to further reduce file sizes,

5. Includes a JavaScript decompression library (the
PCAViz Interpreter) to decompress the trajectory files
in users’ browsers.

Popular browser-based molecular visualization packages
such as 3DMol.js,9 NGL Viewer,10 and PV11 can also display
multiframe PDB files such as those produced by NMR. But
visualizing a long-timescale MD trajectory using these tools is
not practical given bandwidth and memory constraints. The
PCAViz JavaScript interpreter effectively enhances these
popular libraries. It downloads the compressed PCA data
and decompresses it in the browser, delivering PDB-formatted
frames to these packages as needed. The PCAViz download
includes examples showing how to use PCAViz with
3DMol.js,9 NGL Viewer,10 and PV.11

Programs such as MDSrv23 and HTMoL24 similarly
interface with browser-based molecular viewers to enable
trajectory visualization. But MDSrv/HTMoL and PCAViz take
fundamentally different approaches. MDSrv and HTMoL
require users to separately set up a web server that streams
trajectory frames to the browser on request, eliminating the
need to approximate atomic positions. But few researchers and
educators have the ability to set up a separate server dedicated
exclusively to streaming simulation data. Additionally, on slow
Internet connections the need to download each frame may
lead to substantial lag times. In contrast, PCAViz downloads
the PCA representation of the entire trajectory as a single file,
using the same technology a standard Web site might use to
download an image file. It then approximates the atomic
positions of any frame in the browser itself, without requiring a
separate trajectory-streaming server.
We have recently created other software tools that similarly

enable browser-based trajectory visualization. For example, our
BlendMol20 plugin for the popular 3D modeling program
Blender allow users to import VMD- or PyMOL-visualized
proteins as meshes. Our Pyrite25 plugin can then animate these
meshes according to MD-captured motions. Additional plugins
created by others allow Blender to export animations in file
formats that are compatible with JavaScript libraries such as
Babylon.js and three.js. Depending on the details of the
workflow, this approach can produce photorealistic trajectory
visualizations that are excellent for outreach and education. But
the process is far from automated. Additionally, because the
animations are applied to protein-shaped meshes rather than
full atomistic models, accurately capturing atomic-resolution
motions is more challenging. PCAViz overcomes these
limitations.

Usage. The PCAViz download includes a detailed
README file describing how to use the Python and JavaScript
components of the toolkit, together with examples of use. The
download also includes simple trajectory files for testing. To
obtain a detailed description of the available PCAViz-
Compressor command-line parameters, users need only pass
the “--help” parameter to the Python script (i.e., python
PCAViz.py --help). To see how to integrate the PCAViz
Interpreter into an existing HTML page, users can examine the
highly commented example HTML files included with the
PCAViz download.
To encourage browser-based molecular visualization among

educators and scientists without HTML and JavaScript
expertise, we also developed a PCAViz WordPress plugin
that automatically integrates the PCAViz Interpreter into any
WordPress site. WordPress is an easy-to-use, open-source

Figure 2. Atom-position accuracy depicted visually. We considered
the 50th frame of our 100-frame LARP1 simulation. The original
structure is shown in pink. PCAViz-processed structures are shown in
blue and white. (A) Rounding PCA values to the nearest tenth and
hundredth gave the blue and white structures, respectively. In both
cases, principal components accounted for 100% of the positional
variance. Rounding to the nearest hundredth and thousandth gave
structures nearly identical to the original (pink). (B) Including
sufficient principal components to account for 25% and 50% of the
positional variance gave the blue and white structures, respectively. In
both cases, the PCA values were rounded to the nearest hundredth.
Accounting for 75% of the variance gave a structure nearly identical to
the original (pink). These figures were generated using BlendMol.20

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00703
J. Chem. Inf. Model. 2019, 59, 4087−4092

4089

http://dx.doi.org/10.1021/acs.jcim.9b00703


content management system that powers roughly 75 million
websites around the world.26 WordPress shortcodes make it
easy to add a PCAViz widget to any post or page. We have
included several PCAViz JSON files with the WordPress plugin
itself so educators without their own MD trajectories can teach
their students about protein dynamics.
Conclusion. PCAViz is a useful tool for visualizing MD

trajectories online that drastically reduces the amount of data
that must be transmitted from the server to the browser. For
example, consider PCAViz applied to our 100-frame, 1326-
atom benchmark LARP1 simulation. When we retained only
the components required to account for 90% of the variance
and rounded all values to the nearest hundredth (see Figure 1
and Table S1), the resulting JSON file was only 497 K (101 K
when further compressed with GZIP). In contrast, a PDB file
containing the full trajectory was 10M. And yet the frames of
the PCAViz-processed trajectory deviated from those of the
original by only 0.62 Å on average (RMSD).
When performing detailed analyses of MD simulations,

subangstrom accuracy may be necessary. In these cases, we
recommend dedicated analysis programs such as VMD17 and
PyMOL,18 or an online streaming solution such as MDSrv.23

But PCAViz is ideal when one wishes only to easily and
effectively visualize MD simulations in the browser.
We expect PCAViz to appeal to a broad audience, including

researchers who wish to collaboratively share their simulations,
outreach coordinators who wish to communicate the power of
computational biology, and students learning about protein
motions in a classroom setting. We release it under the terms
of the open-source GNU General Public License, version 2. A
copy can be downloaded free of charge from http://durrantlab.
com/pcaviz/. The WordPress plugin is available via the official
WordPress Plugin Directory.

■ MATERIALS AND METHODS
PCAViz Compressor (Python). The PCAViz Compressor

script is a command-line program written in Python that
converts MD files from standard 3D-Cartesian formats (e.g.,
dcd, netcdf, xtc) to the compressed/simplified PCAViz JSON
format. We have tested the PCAViz Compressor on several
operating systems, using several different versions of the
required Python libraries (Table 1). To obtain a copy of the

compressor, users can (1) download (or clone) the entire
PCAViz git repository at http://git.durrantlab.com/jdurrant/
pcaviz, (2) download only the compressor-relevant files from
the repository (pcaviz-compressor-python.zip), or (3) install
the compressor via the pip package-management system (pip
install pcaviz-durrantlab).

Loading the Trajectory. The PCAViz Compressor uses the
MDAnalysis package14 to load simulation coordinate (trajec-
tory) and topology files. MDAnalysis supports many popular
coordinate-file formats (e.g., dcd, xtc, trr, out, trz, mdcrd,
inpcrd, restrt, netcdf, nc) as well as many topology-file formats
(e.g., psf, prmtop, parm7, top, and xml).
To preserve the global translational and rotational motions

of the simulated system, PCAViz does not perform any least-
squares fitting of trajectory frames to a common reference
(e.g., the first frame). In many cases, users may wish to use a
separate program (e.g., VMD17 or PyMOL18) to align the
trajectory before PCAViz processing. Otherwise, global
motions may dominate the positional variance of the system,
degrading the representation of often more interesting internal
motions.

Pruning the Trajectory. The compressor allows the user to
remove atoms from the simulated system that will not be
visualized in the browser. Removing unnecessary atoms
simplifies the trajectory and accelerates subsequent steps. It
also helps alleviate the memory and bandwidth constraints
associated with in-browser viewing. For example, if the user
does not wish to display solute−solvent interactions, water
molecules can be removed. If the user is primarily interested in
side-chain motions, hydrogen atoms may also be unnecessary.
If the intent is to visualize a protein using the ribbon or new
cartoon representations, retaining only backbone atoms is
sufficient.
The user can also stride the simulation, keeping only every

few frames. Striding drastically reduces the amount of data that
must be stored, improving the performance of subsequent
steps. Interpolating between the retained frames often
reasonably reconstructs the dropped frames.

Principal Component Analysis. The PCAViz Compressor
next uses principal component analysis (PCA),27 as
implemented in the scikit-learn Python package,28 to
approximate the motions of the remaining atoms. PCA
involves identifying orthogonal vectors (principal components)
that maximize the positional variation across the trajectory.
The first component explains the most variation, with each
consecutive component explaining less. The atomic coordi-
nates of each frame can be expressed as a linear combination of
the components, where each component is multiplied by a
frame-specific coefficient. To reduce the dimensionality of the
data while minimizing the loss of variation in a quantified way,
one can approximate atomic coordinates by considering only
the first n components. But, the resulting lossy compression
comes at the cost of atom-position accuracy.
The user can specify the amount of positional variance that

should be explained by the principal components. In a given
PCA decomposition, each component accounts for a certain
percentage of the total variance. The PCAViz Compressor
identifies the smallest set of top components thatwhen
considered togetheraccount for the user-specified (cumu-
lative) positional variance. Allowing users to specify the
cumulative variance is more intuitive than requiring them to
directly specify the number of principal components. For
interested users, running the PCAViz Compressor with the
“check_accuracy” flag outputs the number of top components
retained. Tables S1 and S2 provide two illustrations of how the
number of retained components varies according to the user-
specified cumulative-variance cutoff. To obtain the best results,
users should find a good balance between the variance cutoff
and the desired atom-position accuracy. Accounting for more

Table 1. PCAViz Compressor Compatibilitya

Operating System Python
MD

analysis
Scikit-
learn NumPy

macOS Mojave 10.14.4 3.6.7 0.19.2 0.20.3 1.16.3
macOS Mojave 10.14.4 2.7.15 0.19.2 0.20.3 1.16.3
Ubuntu 18.04.1 3.6.6 0.19.2 0.19.1 1.15.4
Ubuntu 18.04.1 2.7.16 0.18.0 0.20.0 1.15.2
Microsoft Windows 10 Home 3.7.1 0.19.2 0.20.3 1.16.3
aWe have tested the PCAViz Compressor on several operating
systems using different versions of Python, MDAnalysis, scikit-learn,
and NumPy.

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00703
J. Chem. Inf. Model. 2019, 59, 4087−4092

4090

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00703/suppl_file/ci9b00703_si_001.pdf
http://durrantlab.com/pcaviz/
http://durrantlab.com/pcaviz/
http://git.durrantlab.com/jdurrant/pcaviz
http://git.durrantlab.com/jdurrant/pcaviz
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00703/suppl_file/ci9b00703_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00703


variance (by allowing PCAViz to include more components)
improves accuracy at the cost of compression.
Controlling the JSON File Size. The compressor outputs a

JSON file that contains the PCA components and frame-
specific coefficients; the average atomic Cartesian coordinates
(i.e., the origin in PCA space); the residue names and
sequence numbers; the atom names; and the atomic
coordinates of the first frame to enable in-browser bond-by-
distance calculations. To optimize the JSON file for transfer
over the web, the compressor stores this information as
efficiently as possible. It deletes unnecessary spaces present in
the file, rounds floating-point numbers to a user-defined
precision, and represents all numeric values as integers
(eliminating decimal points). These approaches substantially
reduce the file size, enabling rapid transfer over the Internet.
Evaluating Accuracy. To evaluate the impact of compres-

sion on atom-position accuracy, users can optionally instruct
the PCAViz Compressor to calculate the root-mean-square
deviation (RMSD) between each pre- and postcompression
frame. Examining the output CSV file containing these values
provides a sense for how much accuracy is lost due to
compression.
PCAViz Interpreter (JavaScript). The PCAViz Inter-

preter displays the processed trajectories in any modern web
browser. We have specifically tested it on Google Chrome,
Firefox, and Safari. To obtain a copy of the interpreter, users
can download the entire PCAViz git repository at http://git.
durrantlab.com/jdurrant/pcaviz. The same Web site also
includes a single ZIP file containing only the interpreter-
relevant files (pcaviz-interpreter-javascript.zip).
Converting from PCA to Cartesian Space. The Interpreter

first retrieves the JSON file from a web server and converts all
the numeric values from integers back into decimal numbers. If
the original trajectory was strided, the PCA coefficients
associated with some trajectory frames may be missing. The
JavaScript interpreter estimates the values of the missing
coefficients by linearly interpolating between frames that do
have defined coefficients.
Next, the JavaScript interpreter converts the PCA data back

into 3D Cartesian coordinates, as required to visualize the
trajectory using popular molecular-visualization JavaScript
libraries such as 3DMol.js,9 NGL Viewer,10 and PV.11 For
each frame, the original coordinates can be recovered by
multiplying each principal component by the corresponding
frame-specific coefficient, summing the scaled vectors, and
adding the average atomic Cartesian coordinates.
Optimizing the Use of Available Resources. Converting

from PCA space back to Cartesian space can be computation-
ally expensive. The JavaScript interpreter provides three
caching options to manage these calculations. The first,
though CPU intensive, allows for quick start times and low
memory usage. The coordinates of each frame are (re)-
calculated every time that frame is displayed. Previously
calculated frame coordinates are discarded to keep memory
usage low. Unfortunately, because this option is CPU
intensive, trajectory playback on low-end machines is some-
times choppy.
The second option, though more memory intensive, allows

for quick start times and lower CPU usage. The coordinates of
each frame are calculated only once, when the frame is first
displayed. The initial trajectory playback may be choppy as the
CPU performs these initial calculations. But calculated
coordinates are saved to memory, so the animation is smoother

each time the trajectory is replayed (e.g., in loop playback
mode).
The third option prioritizes smooth playback at the expense

of both quick start times and memory usage. The coordinates
of all frames are calculated and saved to memory before
displaying any frame of the trajectory. As no new coordinates
need be calculated during playback, playback tends to be much
smoother once it starts.
Several other PCAViz options also aim to improve in-

browser playback. The user can instruct the JavaScript
interpreter to update atomic positions less frequently than
the default 60 times per second (i.e., every 16.7 ms).
Shortening the trajectory-playback duration can also reduce
the number of frame coordinates that need be calculated in
some cases. These adjustments may require the user to smooth
the trajectory to improve visualization. If so, the PCAViz
interpreter can also calculate a moving average of the frame
coordinates, using a sample window of user-specified length.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jcim.9b00703.

Tables S1 and S2, an extended description of PCAViz
accuracy vs compression (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*Email: durrantj@pitt.edu.
ORCID
Jacob D. Durrant: 0000-0002-5808-4097
Author Contributions
†The authors wish it to be known that, in their opinion, the
first two authors should be regarded as joint first authors.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by a computing allocation from the
University of Pittsburgh’s Center for Research Computing
(allocation to J.D.D). We also acknowledge funding from the
National Institutes of Health’s Building Infrastructure Leading
to Diversity (BUILD) program (no. 8TL4GM118977-02).

■ REFERENCES
(1) Durrant, J. D.; McCammon, J. A. Computer-Aided Drug-
Discovery Techniques That Account for Receptor Flexibility. Curr.
Opin. Pharmacol. 2010, 10, 770−774.
(2) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.
M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.;
Kollman, P. A. A Second Generation Force Field for the Simulation of
Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc.
1995, 117, 5179−5197.
(3) Rhodes, G. An Overview of Protein Crystallography. In
Crystallography Made Crystal Clear; Academic Press: 2006; Chapter
2, pp 7−30.
(4) Hospital, A.; Goni, J. R.; Orozco, M.; Gelpi, J. L. Molecular
Dynamics Simulations: Advances and Applications. Adv. Appl.
Bioinform. Chem. 2015, 8, 37−47.
(5) Zhang, B. W.; Brunetti, L.; Brooks, C. L., 3rd. Probing Ph-
Dependent Dissociation of Hdea Dimers. J. Am. Chem. Soc. 2011, 133,
19393−19398.

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00703
J. Chem. Inf. Model. 2019, 59, 4087−4092

4091

http://git.durrantlab.com/jdurrant/pcaviz
http://git.durrantlab.com/jdurrant/pcaviz
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00703
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00703/suppl_file/ci9b00703_si_001.pdf
mailto:durrantj@pitt.edu
http://orcid.org/0000-0002-5808-4097
http://dx.doi.org/10.1021/acs.jcim.9b00703


(6) Rajan, A.; Freddolino, P. L.; Schulten, K. Going Beyond
Clustering in Md Trajectory Analysis: An Application to Villin
Headpiece Folding. PLoS One 2010, 5, e9890.
(7) Vajda, S.; Beglov, D.; Wakefield, A. E.; Egbert, M.; Whitty, A.
Cryptic Binding Sites on Proteins: Definition, Detection, and
Druggability. Curr. Opin. Chem. Biol. 2018, 44, 1−8.
(8) Beglov, D.; Hall, D. R.; Wakefield, A. E.; Luo, L.; Allen, K. N.;
Kozakov, D.; Whitty, A.; Vajda, S. Exploring the Structural Origins of
Cryptic Sites on Proteins. Proc. Natl. Acad. Sci. U. S. A. 2018, 115,
E3416−E3425.
(9) Rego, N.; Koes, D. 3dmol.Js: Molecular Visualization with
Webgl. Bioinformatics 2015, 31, 1322−1324.
(10) Rose, A. S.; Hildebrand, P. W. Ngl Viewer: A Web Application
for Molecular Visualization. Nucleic Acids Res. 2015, 43, W576−579.
(11) Biasini, M. Pv−Javascript Protein Viewer. https://biasmv.
github.io/pv/ (accessed 7/23/2019).
(12) Durrant, J. D.; Bush, R. M.; Amaro, R. E. Microsecond
Molecular Dynamics Simulations of Influenza Neuraminidase Suggest
a Mechanism for the Increased Virulence of Stalk-Deletion Mutants. J.
Phys. Chem. B 2016, 120, 8590−8599.
(13) Duan, M.; Liu, N.; Zhou, W.; Li, D.; Yang, M.; Hou, T.
Structural Diversity of Ligand-Binding Androgen Receptors Revealed
by Microsecond Long Molecular Dynamics Simulations and
Enhanced Sampling. J. Chem. Theory Comput. 2016, 12, 4611−4619.
(14) Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein,
O. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics
Simulations. J. Comput. Chem. 2011, 32, 2319−2327.
(15) Hanson, R. M. Jmol−a Paradigm Shift in Crystallographic
Visualization. J. Appl. Crystallogr. 2010, 43, 1250−1260.
(16) Hanson, R. M.; Prilusky, J.; Renjian, Z.; Nakane, T.; Sussman, J.
L. Jsmol and the Next-Generation Web-Based Representation of 3D
Molecular Structure as Applied to Proteopedia. Isr. J. Chem. 2013, 53,
207−216.
(17) Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular
Dynamics. J. Mol. Graphics 1996, 14, 33−38.
(18) DeLano, W. L. Pymol: An Open-Source Molecular Graphics
Tool. CCP4 Newsletter On Protein Crystallography 2002, 40, 82−92.
(19) Lahr, R. M.; Mack, S. M.; Heroux, A.; Blagden, S. P.; Bousquet-
Antonelli, C.; Deragon, J. M.; Berman, A. J. The La-related protein 1-
Specific Domain Repurposes HEAT-like Repeats to Directly Bind a
5′TOP Sequence. Nucleic Acids Res. 2015, 43, 8077−8088.
(20) Durrant, J. D. BlendMol: Advanced Macromolecular Visual-
ization in Blender. Bioinformatics 2019, 35, 2323−2325.
(21) Stec, B.; Holtz, K. M.; Wojciechowski, C. L.; Kantrowitz, E. R.
Structure of the Wild-Type Tem-1 Beta-Lactamase at 1.55 a and the
Mutant Enzyme Ser70Ala at 2.1 a Suggest the Mode of Noncovalent
Catalysis for the Mutant Enzyme. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 2005, 61, 1072−1079.
(22) Shkurti, A.; Goni, R.; Andrio, P.; Breitmoser, E.; Bethune, I.;
Orozco, M.; Laughton, C. A. Pypcazip: A Pca-Based Toolkit for
Compression and Analysis of Molecular Simulation Data. Data.
SoftwareX. 2016, 5, 44.
(23) Tiemann, J. K. S.; Guixa-Gonzalez, R.; Hildebrand, P. W.; Rose,
A. S. Mdsrv: Viewing and Sharing Molecular Dynamics Simulations
on the Web. Nat. Methods 2017, 14, 1123−1124.
(24) Carrillo-Tripp, M.; Alvarez-Rivera, L.; Lara-Ramirez, O. I.;
Becerra-Toledo, F. J.; Vega-Ramirez, A.; Quijas-Valades, E.; Gonzalez-
Zavala, E.; Gonzalez-Vazquez, J. C.; Garcia-Vieyra, J.; Santoyo-Rivera,
N. B.; Chapa-Vergara, S. V.; Meneses-Viveros, A. Htmol: Full-Stack
Solution for Remote Access, Visualization, and Analysis of Molecular
Dynamics Trajectory Data. J. Comput.-Aided Mol. Des. 2018, 32, 869−
876.
(25) Rajendiran, N.; Durrant, J. D. Pyrite: A Blender Plugin for
Visualizing Molecular Dynamics Simulations Using Industry-Standard
Rendering Techniques. J. Comput. Chem. 2018, 39, 748−755.
(26) Munford, M. How Wordpress Ate the Internet in 2016...And
the World in 2017. Forbes 2016, Dec 22.
(27) Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: New
York, 2011; p 478.

(28) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.;
Perrot, M.; Duchesnay, É. Scikit-Learn: Machine Learning in Python.
J. Mach. Learn. Res. 2011, 12, 2825−2830.

Journal of Chemical Information and Modeling Application Note

DOI: 10.1021/acs.jcim.9b00703
J. Chem. Inf. Model. 2019, 59, 4087−4092

4092

https://biasmv.github.io/pv/
https://biasmv.github.io/pv/
http://dx.doi.org/10.1021/acs.jcim.9b00703

