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In medical science, disease diagnosis is one of the difficult tasks for medical experts who are confronted with challenges in dealing
with a lot of uncertain medical information. And different medical experts might express their own thought about the medical
knowledge base which slightly differs from other medical experts.Thus, to solve the problems of uncertain data analysis and group
decisionmaking in disease diagnoses, we propose a new rough set model called dual hesitant fuzzymultigranulation rough set over
two universes by combining the dual hesitant fuzzy set and multigranulation rough set theories. In the framework of our study,
both the definition and some basic properties of the proposed model are presented. Finally, we give a general approach which is
applied to a decision making problem in disease diagnoses, and the effectiveness of the approach is demonstrated by a numerical
example.

1. Introduction

In real-life disease diagnoses, due to the inherent uncertainty
of human’s expression of preferences, and the management,
storage, and extraction of various useful information avail-
able to physicianswhich is not always presented as crisp num-
bers, it is believed that fuzzy numbers own many advantages
for dealing with medical information systems. Moreover, in
order to seek a diagnosis for the considered patients, it is
essential for physicians to take into account a number of
symptoms at the same time; this process might take a long
time to reach a final conclusion. What is worse, the situation
of overlooking a few trivial symptoms may trigger wrong
disease diagnosis. To solve this complex decision making
problem, lots of efforts have been made based on combining
the uncertain decision making methods with the traditional
disease diagnosis study. Fuzzy set theory [1], proposed by
Zadeh in 1965, provides robust solutions in many application
domains. In the concept of fuzzy sets, themembership degree
of an element is a single crisp value within [0, 1]. However,
to cope with imperfect and uncertain information induced

by several sources of vagueness, the classical fuzzy set is
confronted with some limitations. Thus, many extension
forms of fuzzy sets have been introduced and utilized in
disease diagnoses [2–5].

Among the numerous decision making processes, we
often encounter such situations in which decision makers
hesitate among several possible membership values when
determining the membership of an element belonging to a
given set. To address this issue, Torra [6] and Torra and
Narukawa [7] introduced the concept of hesitant fuzzy set
(HFS) which has been proved useful to deal with uncertain
information in multiattribute decision making procedures.
We could illustrate the above-mentioned motivation in the
following example. Suppose there is an expert who intends
to determine the membership degree of whether a house
is beautiful. The expert may consider that the membership
degree is 0.7, while he holds a view that 0.8 is also justifiable.
The hesitant fuzzy set is useful in the above case when
the membership degree of 𝑥 can be expressed as {0.7, 0.8}.
Ever since the establishment of the hesitant fuzzy set theory,
many researchers have studied the HFS from various facets
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and obtained an increasing number of achievements. In
the extensions of hesitant fuzzy set, Zhu et al. introduced
the concept of dual hesitant fuzzy set (DHFS) in 2012 [8],
which includes the fuzzy set, intuitionistic fuzzy set, hesitant
fuzzy set, and multifuzzy set as special cases. The DHFS is
described by themembership hesitancy and nonmembership
hesitancy functions. It is evident that the DHFS can reflect
the human’s hesitancy more objectively than the other widely
developed fuzzy set approaches. Thereafter, many scholars
have studied the DHFS from different angles and obtained
plenty of meaningful results [9–13].

In addition, rough set theory, proposed by Pawlak [14], is
a well-established mechanism for dealing with uncertainty in
data analysis.The rough set theory has been widely employed
in many domains such as medical diagnosis, formal concept
analysis, feature selection, and uncertainty reasoning [15–
18]. The basic structure of rough set is an approximation
space consisting of a universe of discourse and a binary
relation imposed on it. In classical approximation space, the
equivalence relation is a very restrictive condition, so the
application domain of rough set model is narrowed, to some
extent. Thus, various extension forms of classical rough set
have been introduced over the past years. In the extension of
universe, since the rough set on single universe may limit the
description of decision information provided by experts, two
ormultiple universes can describe the real-world information
more effectively and reasonably.Thus, the model of rough set
over two universes has been studied extensively and applied
in many real-life decision making problems [19–23]. For
example, Pei and Xu [19] studied rough set over two-universe
model and researched its properties in detail. Sun and Ma
[20] studied fuzzy rough set over two universes and its related
applications. Yang et al. [21] proposed a fuzzy probabilistic
rough set model over two universes and utilized the model in
a clinical diagnosis case. Luo and Xu [22] introduced a rough
Atanassov’s intuitionistic fuzzy set model over two different
universes and discussed a problem about how to arrange
patients to see the doctor reasonably. Sun et al. [23] utilized
the model of fuzzy rough set theory over two universes
under the background of the emergency material demand
predictions.

Considering the view of granular computing [24], the set
approximations in the above rough set theory are described
by a single binary relation on a given universe. However,
it is beneficial to view a problem through multiple binary
relations in multigranulation backgrounds. To address the
situation, Qian et al. proposed the model of multigranulation
rough set (MGRS) by taking multiple binary relations into
account [25, 26]. And two types of multigranulation rough
set, that is, optimistic multigranulation rough set based
on “seeking common ground while reserving differences”
(SCRD) strategy and pessimistic multigranulation rough set
based on “seeking common ground while eliminating dif-
ferences” (SCED) strategy, were introduced [27]. Moreover,
several extension forms of multigranulation rough set have
been put forward during these years [28–33]. Among them,
Sun and Ma [33] proposed the multigranulation rough set
over two universes and discussed its properties and some
uncertainty measures. The multigranulation rough set over

two universes owns some superiorities in group decision
making. In information fusion procedures, in order to
enhance the decision level, we usually need to obtain the
optimal solutions according to the assessment information
provided by multiple experts. And different expert often
views the decision making problems from different angles,
but they share a common goal in reaching a final agreement
that synthesizes each expert’s opinion. Thus, the method of
multigranulation rough set over two universes is an ideal
information fusion strategy which could synthesize each
decision maker’s view to form a final decision.

In this paper, we propose the dual hesitant fuzzy (DHF)
multigranulation rough set over two-universe model by
combining the dual hesitant fuzzy set and multigranulation
rough set over two universes. Both the general definition
and some useful properties of the proposed model will be
discussed. Then, we explore a new approach to the decision
making problem in medical diagnoses by utilizing the DHF
multigranulation rough set over two-universe model. Finally,
we give an illustrative example to verify the developed
approach and demonstrate its validity and feasibility.

The remaining part of this paper is organized as follows.
In Section 2, we present the basic knowledge about hesitant
fuzzy sets, dual hesitant fuzzy sets, rough set over two
universes, andmultigranulation rough set over two universes.
In Section 3, we introduce the DHF multigranulation rough
set over two universes and some properties are discussed.
Section 4 presents an approach to the decision making prob-
lem in medical diagnoses by utilizing the proposed model.
In Section 5, we illustrate the steps of the proposed decision
making method by a numerical example. In Section 6, we
conclude this paper with some remarks.

2. Preliminaries

In this section, we first review some basic concepts such
as hesitant fuzzy sets, dual hesitant fuzzy sets, and their
properties. Then we present the definition of rough set
over two universes and multigranulation rough set over two
universes.

2.1. Hesitant Fuzzy Sets. Hesitant fuzzy sets (HFSs) were
introduced by Torra [6] and Torra and Narukawa [7], which
permit the membership degree of an element to a reference
set expressed by several possible values between 0 and 1.

Definition 1 (see [7]). Let 𝑈 be the universe of discourse;
a hesitant fuzzy set 𝐹 on 𝑈 is defined as a function ℎ

𝐹
(𝑥)

that returns a subset of [0, 1], which can be expressed as the
following mathematical symbol:

𝐹 = {⟨𝑥, ℎ
𝐹 (𝑥)⟩ | 𝑥 ∈ 𝑈} , (1)

where ℎ
𝐹
(𝑥) is a set of some different finite values in [0, 1],

describing the possible membership degrees of the element
𝑥 ∈ 𝑈 to the set 𝐹. For convenience, ℎ

𝐹
(𝑥) is called a hesitant

fuzzy element. The set of all hesitant fuzzy elements is called
HFEs.
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2.2. Dual Hesitant Fuzzy Sets. Zhu et al. [8] further extended
the concept of HFSs to develop the dual hesitant fuzzy sets
(DHFSs), which are defined in terms of two functions which
returns two sets of membership values and nonmembership
values, respectively.

Definition 2 (see [8]). Let𝑈 be the universe of discourse; then
a dual hesitant fuzzy set 𝐷 on 𝑈 is defined as

𝐷 = {⟨𝑥, ℎ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑈} , (2)

where ℎ(𝑥) and 𝑔(𝑥) are two sets of some different finite
values in [0, 1], describing the possible membership degrees
and nonmembership degrees of the element 𝑥 ∈ 𝑈 to the set
𝐷, respectively, with the conditions 0 ≤ 𝛾, 𝜂 ≤ 1, 0 ≤ 𝛾

+
+𝜂
+

≤

1, where 𝛾 ∈ ℎ(𝑥), 𝜂 ∈ 𝑔(𝑥), 𝛾+ ∈ ℎ
+
(𝑥) = ∪

𝛾∈ℎ(𝑥)
max{𝛾}, and

𝜂
+

∈ 𝑔
+
(𝑥) = ∪

𝜂∈𝑔(𝑥)
max{𝜂} for all 𝑥 ∈ 𝑈. For convenience,

the pair 𝑑(𝑥) = (ℎ(𝑥), 𝑔(𝑥)) is called a dual hesitant fuzzy
element. The set of all dual hesitant fuzzy elements is called
DHFEs.

Suppose that 𝑈 is the universe of discourse; then the set
of all dual hesitant fuzzy sets on 𝑈 is denoted by DHF(𝑈).

Example 3. Let 𝑈 = {𝑥
1
, 𝑥
2
} be a universe set; then a

dual hesitant fuzzy set defined by 𝐷 = {⟨𝑥
1
, {0.6, 0.7},

{0.2, 0.3}⟩, ⟨𝑥
2
, {0.3, 0.4}, {0.5, 0.6}⟩} is a dual hesitant fuzzy

set.

Here, we present two special dual hesitant fuzzy sets as
follows:

(1) 𝐷 is referred to as an empty dual hesitant fuzzy set
[8] if and only if ℎ(𝑥) = {0} and 𝑔(𝑥) = {1} for all
𝑥 ∈ 𝑈. In that case, the empty dual hesitant fuzzy set
is denoted by 0 in this paper.

(2) 𝐷 is referred to as a full dual hesitant fuzzy set [8] if
and only if ℎ(𝑥) = {1} and 𝑔(𝑥) = {0} for all 𝑥 ∈ 𝑈. In
that case, the full dual hesitant fuzzy set is denoted by
𝑈 in this paper.

Similar to hesitant fuzzy set theory, Zhu et al. [8] also
defined the complement, union, and intersection operations
on dual hesitant fuzzy set as follows.

Definition 4 (see [8]). Let 𝑈 be the universe of discourse,
∀𝐷, 𝐷

1
, 𝐷
2

∈ DHF(𝑈). Then, the complement, union, and
intersection operations are defined as follows:

(1) The complement of 𝐷, denoted by 𝐷
𝑐, is defined as

∼ 𝑑 (𝑥)

=

{{{{

{{{{

{

∪
𝛾∈ℎ(𝑥),𝜂∈𝑔(𝑥)

{{𝜂} , {𝛾}} , if 𝑔 (𝑥) ̸= 0, ℎ (𝑥) ̸= 0

∪
𝛾∈ℎ(𝑥)

{{1 − 𝛾} , {0}} , if 𝑔 (𝑥) = 0, ℎ (𝑥) ̸= 0

∪
𝜂∈𝑔(𝑥)

{{0} , {1 − 𝜂}} , if 𝑔 (𝑥) ̸= 0, ℎ (𝑥) = 0.

(3)

(2) The union of 𝐷
1
and 𝐷

2
, denoted by 𝐷

1
∪ 𝐷
2
, is

defined as 𝑑
1
(𝑥) ∨ 𝑑

2
(𝑥) = {ℎ(𝑥) ∈ (ℎ

1
(𝑥) ∪ ℎ

2
(𝑥)) |

ℎ(𝑥) ≥ max(ℎ
−

1
(𝑥), ℎ
−

2
(𝑥)), 𝑔(𝑥) ∈ (𝑔

1
(𝑥) ∪ 𝑔

2
(𝑥)) |

𝑔(𝑥) ≤ min(𝑔
+

1
(𝑥), 𝑔
+

2
(𝑥))}.

(3) The intersection of 𝐷
1
and 𝐷

2
, denoted by 𝐷

1
∩ 𝐷
2
, is

defined as 𝑑
1
(𝑥) ∧ 𝑑

2
(𝑥) = {ℎ(𝑥) ∈ (ℎ

1
(𝑥) ∪ ℎ

2
(𝑥)) |

ℎ(𝑥) ≤ min(ℎ
+

1
(𝑥), ℎ
+

2
(𝑥)), 𝑔(𝑥) ∈ (𝑔

1
(𝑥) ∪ 𝑔

2
(𝑥)) |

𝑔(𝑥) ≥ max(𝑔
−

1
(𝑥), 𝑔
−

2
(𝑥))},

where 𝑑
1
(𝑥) and 𝑑

2
(𝑥) are DHFEs of two DHFSs, 𝐷

1
and

𝐷
2
, respectively. Moreover, ℎ

−
(𝑥), ℎ

+
(𝑥), 𝑔

−
(𝑥), and 𝑔

+
(𝑥)

are lower and upper bounds of ℎ(𝑥) and 𝑔(𝑥), respec-
tively. Among them, ℎ

−
(𝑥) = ∪

𝛾∈ℎ(𝑥)
min{𝛾}, ℎ

+
(𝑥) =

∪
𝛾∈ℎ(𝑥)

max{𝛾}, 𝑔
−
(𝑥) = ∪

𝜂∈𝑔(𝑥)
min{𝜂}, and 𝑔

+
(𝑥) =

∪
𝜂∈𝑔(𝑥)

max{𝜂}.

It should be noted in above definition that the operations
𝑐,∪, and∩ are defined on dual hesitant fuzzy sets, respectively,
while the operations∼,∨, and∧ are defined on corresponding
dual hesitant fuzzy elements, respectively. In what follows, we
present the properties of the above operations as follows.

Theorem 5. Let 𝑈 be the universe of discourse,
∀𝐷, 𝐷

1
, 𝐷
2
, 𝐷
3

∈ DHF(𝑈). Then the following properties are
true:

(1) Double negation law: (𝐷𝑐)𝑐 = 𝐷.
(2) DeMorgan’s laws: (𝐷

1
∪𝐷
2
)
𝑐

= 𝐷
1

𝑐
∩𝐷
2

𝑐, (𝐷
1
∩𝐷
2
)
𝑐

=

𝐷
1

𝑐
∪ 𝐷
2

𝑐.
(3) Commutativity:𝐷

1
∪𝐷
2

= 𝐷
2
∪𝐷
1
,𝐷
1
∩𝐷
2

= 𝐷
2
∩𝐷
1
.

(4) Associativity: 𝐷
1

∪ (𝐷
2

∪ 𝐷
3
) = (𝐷

1
∪ 𝐷
2
) ∪ 𝐷
3
, 𝐷
1

∩

(𝐷
2

∩ 𝐷
3
) = (𝐷

1
∩ 𝐷
2
) ∩ 𝐷
3
.

(5) Distributivity:𝐷
1
∪(𝐷
2
∩𝐷
3
) = (𝐷

1
∪𝐷
2
)∩(𝐷
1
∪𝐷
3
),

𝐷
1

∩ (𝐷
2

∪ 𝐷
3
) = (𝐷

1
∩ 𝐷
2
) ∪ (𝐷

1
∩ 𝐷
3
).

Proof. It can be obtained directly from Definition 4.

Example 6. Let 𝑑
1
(𝑥) = {{0.1, 0.4, 0.5}, {0.2, 0.3}} and 𝑑

2
(𝑥) =

{{0.2, 0.3, 0.4}, {0.4, 0.5}} be two DHFEs; then we can obtain
the complement, union, and intersection as follows:

(1) ∼ 𝑑
1
(𝑥) = {{0.2, 0.3}, {0.1, 0.4, 0.5}} and ∼ 𝑑

2
(𝑥) =

{{0.4, 0.5}, {0.2, 0.3, 0.4}}.
(2) 𝑑
1
(𝑥) ∨ 𝑑

2
(𝑥) = {{0.2, 0.3, 0.4, 0.5}, {0.2, 0.3}}.

(3) 𝑑
1
(𝑥) ∧ 𝑑

2
(𝑥) = {{0.1, 0.2, 0.3, 0.4}, {0.4, 0.5}}.

To compare themagnitude of different dual hesitant fuzzy
elements, Zhu et al. [8] introduced the following comparison
laws.

Definition 7 (see [8]). Let 𝑑
𝑖
(𝑥) = {ℎ

𝑑𝑖
(𝑥), 𝑔
𝑑𝑖

(𝑥)} (𝑖 = 1, 2)

be any two DHFEs. The score function of 𝑑
𝑖
(𝑥) is 𝑆

𝑑𝑖(𝑥)
=

(1/#ℎ(𝑥)) ∑
𝛾∈ℎ(𝑥)

𝛾 − (1/#𝑔(𝑥)) ∑
𝜂∈𝑔(𝑥)

𝜂, where #ℎ(𝑥) and
#𝑔(𝑥) are the numbers of the elements in ℎ(𝑥) and 𝑔(𝑥),
respectively. Then, if 𝑆

𝑑1(𝑥)
> 𝑆
𝑑2(𝑥)

, 𝑑
1
(𝑥) ≻ 𝑑

2
(𝑥); if 𝑆

𝑑1(𝑥)
<

𝑆
𝑑2(𝑥)

, 𝑑
1
(𝑥) ≺ 𝑑

2
(𝑥); if 𝑆

𝑑1(𝑥)
= 𝑆
𝑑2(𝑥)

, 𝑑
1
(𝑥) ∼ 𝑑

2
(𝑥).

Example 8. Let 𝑑
1
(𝑥) = {{0.7, 0.8}, {0.2, 0.3}} and 𝑑

2
(𝑥) =

{{0.4, 0.6}, {0.2, 0.3}} be two DHFEs; then we can obtain that
𝑆
𝑑1(𝑥)

> 𝑆
𝑑2(𝑥)

; thus 𝑑
1
(𝑥) ≻ 𝑑

2
(𝑥).

In granular computing, it is noted that the hierarchy
acts as a significant part. In classical set, the hierarchy is
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characterized by set containment. However, in the back-
ground of fuzzy set, the hierarchy is characterized by the
comparisons of membership degrees. Since dual hesitant
fuzzy set is a further extension formof fuzzy set, it is necessary
to develop new definition for comparing two dual hesitant
fuzzy sets. Different from the score function introduced in
Definition 7 which aims to compare some different DHFEs,
we will introduce the concept of DHF subset to compare two
dual hesitant fuzzy sets.

Definition 9. Let 𝑈 be the universe of discourse; ∀𝐷
1
, 𝐷
2

∈

DHF(𝑈), 𝑑
1
(𝑥) = (ℎ

1
(𝑥), 𝑔
1
(𝑥)) and 𝑑

2
(𝑥) = (ℎ

2
(𝑥), 𝑔
2
(𝑥))

are DHFEs of 𝐷
1
and 𝐷

2
, respectively. If 𝑑

1
(𝑥) ⪯ 𝑑

2
(𝑥) holds

for each 𝑥 ∈ 𝑈 such that ℎ
1
(𝑥) ⪯ ℎ

2
(𝑥) ⇔ ℎ

𝜎(𝑘)

1
(𝑥) ≤ ℎ

𝜎(𝑘)

2
(𝑥)

and 𝑔
1
(𝑥) ⪰ 𝑔

2
(𝑥) ⇔ 𝑔

𝜎(𝑘)

1
(𝑥) ≥ 𝑔

𝜎(𝑘)

2
(𝑥), where ℎ

𝜎(𝑘)

1
(𝑥)

and 𝑔
𝜎(𝑘)

1
(𝑥) denote the 𝑘th largest values in ℎ

1
(𝑥) and 𝑔

1
(𝑥),

respectively, while ℎ
𝜎(𝑘)

2
(𝑥) and 𝑔

𝜎(𝑘)

2
(𝑥) denote the 𝑘th largest

values in ℎ
2
(𝑥) and 𝑔

2
(𝑥), respectively, then, 𝐷

1
is referred

to as a dual hesitant fuzzy subset of 𝐷
2
, which is denoted by

𝐷
1

⊆ 𝐷
2
.

It is noted that the comparison of two DHFSs is based
on the partial orders between corresponding DHFEs for
all objects in the universe. And the partial orders between
DHFEs are further based on the comparisons of each value in
corresponding DHFEs.Thus, we can see that the comparison
of two DHFSs is based on the comparisons of each value in
corresponding DHFEs for all objects in the universe.

2.3. Rough Set over Two Universes

Definition 10 (see [19]). Let 𝑈 and 𝑉 be two universes and
let 𝑅 be a compatibility relation from 𝑈 to 𝑉. The mapping
𝐹 : 𝑈 󳨃→ 2

𝑉, for any 𝑢 ∈ 𝑈, V ∈ 𝑉, and 𝑢 → {V ∈ 𝑉 |

(𝑢, V) ∈ 𝑅}, is called a mapping induced by 𝑅. The ordered
triple (𝑈, 𝑉, 𝑅) is called an approximation space. The lower
and upper approximations of 𝑋 ⊆ 𝑉 are defined as follows:

apr (𝑋) = {𝑥 ∈ 𝑈 | 𝐹 (𝑥) ⊆ 𝑋} ,

apr (𝑋) = {𝑥 ∈ 𝑈 | 𝐹 (𝑥) ∩ 𝑋 ̸= 0} .
(4)

Then the pair (apr(𝑋), apr(𝑋)) is called rough set over two
universes of 𝑋 with respect to (𝑈, 𝑉, 𝑅).

2.4. Multigranulation Rough Set over Two Universes. Based
on the rough set over two universes [19] and the model
of multigranulation rough set proposed by Qian et al. [25],
Sun and Ma [33] introduced the model of multigranulation
rough set over two universes recently. In order to present the
concept of multigranulation rough set over two universes, we
give the definition of multigranulation approximation space
over two universes at first.

Definition 11 (see [19]). Let 𝑈, 𝑉 be two nonempty and finite
universes of discourse. 𝑅 is a family binary compatibility
relation from 𝑈 to 𝑉 induced by binary mapping family
𝐹
𝑖

: 𝑈 → 2
𝑉, 𝑢 󳨃→ {V ∈ 𝑉 | (𝑢, V) ∈ 𝑅

𝑖
},

and 𝑅
𝑖

∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑚. The ordered triple set
(𝑈, 𝑉, 𝑅) is the multigranulation approximation space over
two universes.

In what follows, we introduce the definition of optimistic
and pessimistic multigranulation rough sets over two uni-
verses.

Definition 12 (see [33]). Let (𝑈, 𝑉, 𝑅) be a multigranulation
approximation space over two universes. Let 𝐹 and 𝐺 be two
binary mappings from universes 𝑈 to 𝑉. For any 𝑋 ⊆ 𝑉 the
optimistic lower and upper multigranulation approximations
with respect to (𝑈, 𝑉, 𝑅) are defined as follows:

apr𝑂
𝐹+𝐺

(𝑋) = {𝑥 ∈ 𝑈 | 𝐹 (𝑥) ⊆ 𝑋 ∨ 𝐺 (𝑥) ⊆ 𝑋} ,

apr𝑂
𝐹+𝐺

(𝑋) = apr𝑂
𝐹+𝐺

(𝑋
𝑐
)
𝑐
.

(5)

The pair (apr𝑂
𝐹+𝐺

(𝑋), apr𝑂
𝐹+𝐺

(𝑋)) is the optimistic multi-
granulation rough set over two universes if apr𝑂

𝐹+𝐺
(𝑋) ̸=

apr𝑂
𝐹+𝐺

(𝑋); otherwise,𝑋 is definable on (𝑈, 𝑉, 𝑅)with respect
to 𝐹 and 𝐺. Moreover, the boundary region of 𝑋 on (𝑈, 𝑉, 𝑅)

is defined as follows:

Bnd𝑂
𝐹+𝐺

(𝑋) = apr𝑂
𝐹+𝐺

(𝑋) − apr𝑂
𝐹+𝐺

(𝑋) . (6)

Similarly, the pessimistic lower and upper multigranulation
approximations with respect to (𝑈, 𝑉, 𝑅) are defined as
follows:

apr𝑃
𝐹+𝐺

(𝑋) = {𝑥 ∈ 𝑈 | 𝐹 (𝑥) ⊆ 𝑋 ∧ 𝐺 (𝑥) ⊆ 𝑋} ,

apr𝑃
𝐹+𝐺

(𝑋) = apr𝑃
𝐹+𝐺

(𝑋
𝑐
)
𝑐
.

(7)

The pair (apr𝑃
𝐹+𝐺

(𝑋), apr𝑃
𝐹+𝐺

(𝑋)) is the pessimistic multi-
granulation rough set over two universes if apr𝑃

𝐹+𝐺
(𝑋) ̸=

apr𝑃
𝐹+𝐺

(𝑋); otherwise,𝑋 is definable on (𝑈, 𝑉, 𝑅)with respect
to 𝐹 and 𝐺. Moreover, the boundary region of 𝑋 on (𝑈, 𝑉, 𝑅)

is defined as follows:

Bnd𝑃
𝐹+𝐺

(𝑋) = apr𝑃
𝐹+𝐺

(𝑋) − apr𝑃
𝐹+𝐺

(𝑋) . (8)

In above definition, the word “optimistic” means that, in
multiple independent granular structures, at least one gran-
ular structure must satisfy the inclusion condition between
an equivalence class and a target concept, while the word
“pessimistic” means all granular structures must satisfy the
inclusion condition between an equivalence class and a target
concept.

3. DHF Multigranulation Rough Set
over Two Universes

In this section, we discuss the concept of dual hesitant fuzzy
multigranulation rough set over two universes systematically.
At first, it is necessary to develop the definition of dual
hesitant fuzzy rough set over two universes.
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3.1. DHF Rough Set over Two Universes

Definition 13. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse. A dual hesitant fuzzy relation 𝑅 from 𝑈 to 𝑉 is
defined as follows:

𝑅 = {⟨(𝑥, 𝑦) , ℎ
𝑅

(𝑥, 𝑦) , 𝑔
𝑅

(𝑥, 𝑦)⟩ | (𝑥, 𝑦) ∈ 𝑈 × 𝑉} , (9)

where ℎ
𝑅
(𝑥, 𝑦) and 𝑔

𝑅
(𝑥, 𝑦) are two sets of some different

finite values in [0, 1], denoting the possible membership
degrees and nonmembership degrees for all (𝑥, 𝑦) ∈ 𝑈 × 𝑉,
respectively. With the conditions 0 ≤ 𝛾, 𝜂 ≤ 1, 0 ≤ 𝛾

+
+ 𝜂
+

≤

1, where 𝛾 ∈ ℎ
𝑅
(𝑥, 𝑦), 𝜂 ∈ 𝑔

𝑅
(𝑥, 𝑦), 𝛾

+
∈ ℎ
𝑅

+
(𝑥, 𝑦) =

max
𝛾∈ℎ𝑅(𝑥,𝑦)

{𝛾}, and 𝜂
+

∈ 𝑔
𝑅

+
(𝑥, 𝑦) = max

𝜂∈𝑔𝑅(𝑥,𝑦)
{𝜂} for all

(𝑥, 𝑦) ∈ 𝑈 × 𝑉. Moreover, the family of all dual hesitant fuzzy
relations over 𝑈 × 𝑉 is denoted by DHFR(𝑈 × 𝑉).

Definition 14. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse and𝑅 ∈ DHFR(𝑈×𝑉); the pair (𝑈, 𝑉, 𝑅) is called
a dual hesitant fuzzy approximation space over two universes.
For any 𝐴 ∈ DHF(𝑉), the lower and upper approximations
of 𝐴 with respect to (𝑈, 𝑉, 𝑅), denoted by 𝑅(𝐴) and 𝑅(𝐴), are
two dual hesitant fuzzy sets and are, respectively, defined as
follows:

𝑅 (𝐴) = {⟨𝑥, ℎ
𝑅(𝐴)

(𝑥) , 𝑔
𝑅(𝐴)

(𝑥)⟩ | 𝑥 ∈ 𝑈} ,

𝑅 (𝐴) = {⟨𝑥, ℎ
𝑅(𝐴) (𝑥) , 𝑔

𝑅(𝐴) (𝑥)⟩ | 𝑥 ∈ 𝑈} ,

(10)

where ℎ
𝑅(𝐴)

(𝑥) = ⋁
𝑦∈𝑉

{ℎ
𝑅
(𝑥, 𝑦) ∧ ℎ

𝐴
(𝑦)}, 𝑔

𝑅(𝐴)
(𝑥) =

⋀
𝑦∈𝑉

{𝑔
𝑅
(𝑥, 𝑦) ∨ 𝑔

𝐴
(𝑦)}, ℎ

𝑅(𝐴)
(𝑥) = ⋀

𝑦∈𝑉
{𝑔
𝑅
(𝑥, 𝑦) ∨ ℎ

𝐴
(𝑦)},

and 𝑔
𝑅(𝐴)

(𝑥) = ⋁
𝑦∈𝑉

{ℎ
𝑅
(𝑥, 𝑦) ∧ 𝑔

𝐴
(𝑦)}.

𝑅(𝐴) and 𝑅(𝐴) are called the lower and upper approxi-
mations of 𝐴 with respect to (𝑈, 𝑉, 𝑅), respectively. The pair
(𝑅(𝐴), 𝑅(𝐴)) is called the dual hesitant fuzzy rough set over
two universes of 𝐴 with respect to (𝑈, 𝑉, 𝑅) and 𝑅, 𝑅 are
referred to as lower and upper dual hesitant fuzzy rough
approximation operators over two universes, respectively.

In what follows, based on the constructive approach
to dual hesitant fuzzy rough set over two universes, we
extend the dual hesitant fuzzy relation into the background
of multigranulation rough set. Both the definitions and some
basic properties of optimistic and pessimistic DHF multi-
granulation rough sets over two universes will be elaborated
on.

3.2. Optimistic DHF Multigranulation Rough
Set over Two Universes

Definition 15. Let 𝑈, 𝑉 be two nonempty and finite uni-
verses of discourse and 𝑅

𝑖
∈ DHFR(𝑈 × 𝑉) (𝑖 =

1, 2, . . . , 𝑚) are 𝑚 dual hesitant fuzzy relations over 𝑈 ×

𝑉; the pair (𝑈, 𝑉, 𝑅
𝑖
) is called a dual hesitant fuzzy

multigranulation approximation space over two universes.
For any 𝐴 ∈ DHF(𝑉), the optimistic lower and upper

approximations of 𝐴 with respect to (𝑈, 𝑉, 𝑅
𝑖
) are defined as

follows:

𝑚

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴)

= {⟨𝑥, ℎ
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥) , 𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥)⟩ | 𝑥 ∈ 𝑈} ,

𝑚

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴)

= {⟨𝑥, ℎ
∑
𝑚

𝑖=1
𝑅𝑖

𝑂

(𝐴)
(𝑥) , 𝑔

∑
𝑚

𝑖=1
𝑅𝑖

𝑂

(𝐴)
(𝑥)⟩ | 𝑥 ∈ 𝑈} ,

(11)

where ℎ
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥) = ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ ℎ
𝐴

(𝑦)},
𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥) = ⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ 𝑔
𝐴

(𝑦)},
ℎ
∑
𝑚

𝑖=1
𝑅𝑖

𝑂

(𝐴)

(𝑥) = ⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ ℎ
𝐴

(𝑦)}, and
𝑔
∑
𝑚

𝑖=1
𝑅𝑖

𝑂

(𝐴)

(𝑥) = ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ 𝑔
𝐴

(𝑦)}.

We call the pair (∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴), ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴)) an optimistic
DHFmultigranulation rough set over two universes of𝐴with
respect to (𝑈, 𝑉, 𝑅

𝑖
). If ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) = ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴), we call 𝐴

optimistic-definable in (𝑈, 𝑉, 𝑅
𝑖
); otherwise, 𝐴 is optimistic-

undefinable in (𝑈, 𝑉, 𝑅
𝑖
). It is noted that the optimistic DHF

multigranulation rough set over two universes will reduce to
a DHF rough set over two universes if 𝑚 = 1.

Theorem 16. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse and 𝑅

𝑖
∈ DHFR(𝑈 × 𝑉) (𝑖 = 1, 2, . . . , 𝑚) are

m dual hesitant fuzzy relations over 𝑈 × 𝑉. For any 𝐴, 𝐴
󸀠

∈

DHF(𝑉), the optimistic DHF multigranulation rough set over
two universes has the following properties:

(1) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
𝑐
) = (∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴))
𝑐; ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
𝑐
) =

(∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴))
𝑐.

(2) 𝐴 ⊆ 𝐴
󸀠

⇒ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ⊆ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
󸀠
); 𝐴 ⊆ 𝐴

󸀠
⇒

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) ⊆ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
󸀠
).

(3) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴 ∩ 𝐴

󸀠
) = ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ∩ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
󸀠
);

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴 ∪ 𝐴
󸀠
) = ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) ∪ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
󸀠
).

(4) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴 ∪ 𝐴

󸀠
) ⊇ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ∪ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
󸀠
);

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴 ∩ 𝐴
󸀠
) ⊆ ∑

𝑚

𝑖=1
𝑅
𝑖

O
(𝐴) ∩ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
󸀠
).

Proof. (1) For all 𝑥 ∈ 𝑈, we have ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
𝑐
) =

{⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ ℎ
∼𝐴

(𝑦)}, ⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦) ∧

𝑔
∼𝐴

(𝑦)}⟩ | 𝑥 ∈ 𝑈} = {⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ 𝑔
𝐴

(𝑦)},

⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ ℎ
𝐴

(𝑦)}⟩ | 𝑥 ∈ 𝑈} = (∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴))
𝑐.

Similarly, it is not difficult to prove that ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
𝑐
) =

(∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴))
𝑐.
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(2) Since𝐴 ⊆ 𝐴
󸀠, then by Definition 9, we have ℎ

𝜎(𝑘)

𝐴
(𝑦) ≤

ℎ
𝜎(𝑘)

𝐴
󸀠 (𝑦) and𝑔

𝜎(𝑘)

𝐴
(𝑦) ≥ 𝑔

𝜎(𝑘)

𝐴
󸀠 (𝑦) for all𝑦 ∈ 𝑉. So it follows that

{⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∨ ℎ

𝜎(𝑘)

𝐴
(𝑦)}, ⋀𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∧

𝑔
𝜎(𝑘)

𝐴
(𝑦)}⟩ | 𝑥 ∈ 𝑈} ≤ {⟨𝑥, ⋁

𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∨ ℎ

𝜎(𝑘)

𝐴
󸀠 (𝑦)},

⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∧ 𝑔

𝜎(𝑘)

𝐴
󸀠 (𝑦)}⟩ | 𝑥 ∈ 𝑈}. Hence, for

each 𝑥 ∈ 𝑈, we have ℎ
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥) ⪯ ℎ
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴
󸀠
)
(𝑥) and

𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥) ⪰ 𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴
󸀠
)
(𝑥), which means ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ⊆

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
󸀠
). Similarly, it is not difficult to prove that 𝐴 ⊆

𝐴
󸀠

⇒ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) ⊆ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
󸀠
).

(3) Consider ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴 ∩ 𝐴

󸀠
) = {⟨𝑥, ⋁

𝑚

𝑖=1

⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦)∨ℎ
𝐴∩𝐴
󸀠(𝑦)},⋀𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦)∧𝑔
𝐴∩𝐴
󸀠(𝑦)}⟩ |

𝑥 ∈ 𝑈} = {⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ (ℎ
𝐴

(𝑦) ∧ ℎ
𝐴
󸀠(𝑦))},

⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ (𝑔
𝐴

(𝑦) ∧ 𝑔
𝐴
󸀠(𝑦))}⟩ | 𝑥 ∈ 𝑈} =

{⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{(𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ ℎ
𝐴

(𝑦)) ∧ (𝑔
𝑅𝑖

(𝑥, 𝑦) ∧ ℎ
𝐴
󸀠(𝑦))},

⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{(ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ 𝑔
𝐴

(𝑦)) ∧ (ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ 𝑔
𝐴
󸀠(𝑦))}⟩ | 𝑥 ∈

𝑈} = {⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦)∨ℎ
𝐴

(𝑦)},⋀𝑚
𝑖=1

⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦)∧

𝑔
𝐴

(𝑦)}⟩ | 𝑥 ∈ 𝑈} ∧ {⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ ℎ
𝐴
󸀠(𝑦)},

⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ 𝑔
𝐴
󸀠(𝑦)}⟩ | 𝑥 ∈ 𝑈} =

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ∩ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
󸀠
). Similarly, it is not difficult

to prove that ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴 ∪ 𝐴
󸀠
) = ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) ∪ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
󸀠
).

(4) From the discussions above, it is not difficult to prove
that ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴 ∪ 𝐴

󸀠
) ⊇ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ∪ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴
󸀠
) and

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴 ∩ 𝐴
󸀠
) ⊆ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) ∩ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴
󸀠
).

In the above theorem, (1) shows the complement of opti-
mistic DHF multigranulation rough set over two universes;
(2) shows the monotone of optimistic DHFmultigranulation
rough set over two universes with respect to the variety of
dual hesitant fuzzy target; (3) and (4) show themultiplication
and addition of optimistic DHF multigranulation rough set
over two universes.

Theorem 17. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse and 𝑅

𝑖
, 𝑅
󸀠

𝑖
∈ DHFR(𝑈 × 𝑉) (𝑖 = 1, 2, . . . , 𝑚) are

two dual hesitant fuzzy relations over 𝑈×𝑉. If 𝑅
𝑖
⊆ 𝑅
󸀠

𝑖
, for any

𝐴 ∈ DHF(𝑉), one has the following properties:

(1) ∑
𝑚

𝑖=1
𝑅
󸀠

𝑖

𝑂

(𝐴) ⊆ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴), for all 𝐴 ∈ DHF(𝑉).

(2) ∑
𝑚

𝑖=1
𝑅󸀠
𝑖

𝑂

(𝐴) ⊇ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴), for all 𝐴 ∈ DHF(𝑉).

Proof. Since 𝑅
𝑖

⊆ 𝑅
󸀠

𝑖
, then by Definitions 9 and 15, we have

ℎ
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ≤ ℎ

𝜎(𝑘)

𝑅
󸀠

𝑖

(𝑥, 𝑦) and 𝑔
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ≥ 𝑔

𝜎(𝑘)

𝑅
󸀠

𝑖

(𝑥, 𝑦) for any

(𝑥, 𝑦) ∈ (𝑈×𝑉). So it follows that {⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦)∨

ℎ
𝜎(𝑘)

𝐴
(𝑦)}, ⋀

𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∧ 𝑔

𝜎(𝑘)

𝐴
(𝑦)}⟩ | 𝑥 ∈ 𝑈} ≥

{⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝜎(𝑘)

𝑅
󸀠

𝑖

(𝑥, 𝑦) ∨ ℎ
𝜎(𝑘)

𝐴
(𝑦)}, ⋀𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝜎(𝑘)

𝑅
󸀠

𝑖

(𝑥, 𝑦) ∧

𝑔
𝜎(𝑘)

𝐴
(𝑦)}⟩ | 𝑥 ∈ 𝑈}. Hence, for each 𝑥 ∈ 𝑈, we

have ℎ
∑
𝑚

𝑖=1
𝑅
󸀠

𝑖

𝑂
(𝐴)

(𝑥) ⪯ ℎ
∑
𝑚

𝑖=1
𝑅
󸀠

𝑖

𝑂
(𝐴)

(𝑥) and 𝑔
∑
𝑚

𝑖=1
𝑅
󸀠

𝑖

𝑂
(𝐴)

(𝑥) ⪰

𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥), which means ∑
𝑚

𝑖=1
𝑅
󸀠

𝑖

𝑂

(𝐴) ⊆ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴).

Similarly, it is not difficult to prove that ∑
𝑚

𝑖=1
𝑅󸀠
𝑖

𝑂

(𝐴) ⊇

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴).

Theorem 17 indicates that the lower and upper approxi-
mations in optimistic DHF multigranulation rough set over
two universes are monotonic with respect to the monotonic
forms of the multiple binary DHF relations.

3.3. Pessimistic DHF Multigranulation Rough Set
over Two Universes

Definition 18. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse and 𝑅

𝑖
∈ DHFR(𝑈 × 𝑉) (𝑖 = 1, 2, . . . , 𝑚) are 𝑚

dual hesitant fuzzy relations over 𝑈 × 𝑉; the pair (𝑈, 𝑉, 𝑅
𝑖
) is

called a dual hesitant fuzzy multigranulation approximation
space over two universes. For any 𝐴 ∈ DHF(𝑉), the
pessimistic lower andupper approximations of𝐴with respect
to (𝑈, 𝑉, 𝑅

𝑖
) are defined as follows:

𝑚

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴)

= {⟨𝑥, ℎ
∑
𝑚

𝑖=1
𝑅𝑖
𝑃
(𝐴)

(𝑥) , 𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑃
(𝐴)

(𝑥)⟩ | 𝑥 ∈ 𝑈} ,

𝑚

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴)

= {⟨𝑥, ℎ
∑
𝑚

𝑖=1
𝑅𝑖

𝑃

(𝐴)
(𝑥) , 𝑔

∑
𝑚

𝑖=1
𝑅𝑖

𝑃

(𝐴)
(𝑥)⟩ | 𝑥 ∈ 𝑈} ,

(12)

where ℎ
∑
𝑚

𝑖=1
𝑅𝑖
𝑃
(𝐴)

(𝑥) = ⋀
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ ℎ
𝐴

(𝑦)},
𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑃
(𝐴)

(𝑥) = ⋁
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦)∧𝑔
𝐴

(𝑦)}, ℎ
∑
𝑚

𝑖=1
𝑅𝑖

𝑃

(𝐴)
(𝑥) =

⋁
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝑅𝑖

(𝑥, 𝑦) ∧ ℎ
𝐴

(𝑦)}, and 𝑔
∑
𝑚

𝑖=1
𝑅𝑖

𝑃

(𝐴)
(𝑥) = ⋀

𝑚

𝑖=1

⋀
𝑦∈𝑉

{𝑔
𝑅𝑖

(𝑥, 𝑦) ∨ 𝑔
𝐴

(𝑦)}.

We call the pair (∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴), ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴)) a pessimistic
DHF multigranulation rough set over two universes of 𝐴

with respect to (𝑈, 𝑉, 𝑅
𝑖
). If ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) = ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴),
we call 𝐴 pessimistic-definable in (𝑈, 𝑉, 𝑅

𝑖
); otherwise, 𝐴

is pessimistic-undefinable in (𝑈, 𝑉, 𝑅
𝑖
). It is also noted that

the pessimistic DHF multigranulation rough set over two
universes will reduce to a DHF rough set over two universes
if 𝑚 = 1.

Theorem 19. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse and 𝑅

𝑖
∈ DHFR(𝑈 × 𝑉) (𝑖 = 1, 2, . . . , 𝑚) are

m dual hesitant fuzzy relations over 𝑈 × 𝑉. For any 𝐴, 𝐴
󸀠

∈

DHF(𝑉), the pessimistic DHF multigranulation rough set over
two universes has the following properties:

(1) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴
𝑐
) = (∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴))
𝑐; ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴
𝑐
) =

(∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴))
𝑐.

(2) 𝐴 ⊆ 𝐴
󸀠

⇒ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ⊆ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴
󸀠
); 𝐴 ⊆ 𝐴

󸀠
⇒

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴) ⊆ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴
󸀠
).
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(3) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴 ∩ 𝐴

󸀠
) = ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ∩ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴
󸀠
);

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴 ∪ 𝐴
󸀠
) = ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴) ∪ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴
󸀠
).

(4) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴 ∪ 𝐴

󸀠
) ⊇ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ∪ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴
󸀠
);

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴 ∩ 𝐴
󸀠
) ⊆ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴) ∩ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴
󸀠
).

In the above theorem, (1) shows the complement of pes-
simistic DHFmultigranulation rough set over two universes;
(2) shows themonotone of pessimisticDHFmultigranulation
rough set over two universes with respect to the variety of
dual hesitant fuzzy target; (3) and (4) show themultiplication
and addition of pessimistic DHF multigranulation rough set
over two universes.

Theorem 20. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse and 𝑅

𝑖
, 𝑅
󸀠

𝑖
∈ DHFR(𝑈 × 𝑉) (𝑖 = 1, 2, . . . , 𝑚) are

two dual hesitant fuzzy relations over 𝑈×𝑉. If 𝑅
𝑖
⊆ 𝑅
󸀠

𝑖
, for any

𝐴 ∈ DHF(𝑉), one has the following properties:

(1) ∑
𝑚

𝑖=1
𝑅
󸀠

𝑖

𝑃

(𝐴) ⊆ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴), for all 𝐴 ∈ DHF(𝑉).

(2) ∑
𝑚

𝑖=1
𝑅󸀠
𝑖

𝑃

(𝐴) ⊇ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴), for all 𝐴 ∈ DHF(𝑉).

Theorem 20 indicates that the lower and upper approxi-
mations in pessimistic DHF multigranulation rough set over
two universes are monotonic with respect to the monotonic
forms of the multiple binary DHF relations.

3.4. The Relation between Optimistic and Pessimistic DHF
Multigranulation Rough Sets over Two Universes

Theorem 21. Let 𝑈, 𝑉 be two nonempty and finite universes
of discourse and 𝑅

𝑖
∈ DHFR(𝑈 × 𝑉) (𝑖 = 1, 2, . . . , 𝑚) are m

dual hesitant fuzzy relations over 𝑈×𝑉. For any 𝐴 ∈ DHF(𝑉),
the DHFmultigranulation rough set over two universes has the
following properties:

(1) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ⊆ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴).

(2) ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴) ⊇ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴).

Proof. For any 𝑥 ∈ 𝑈, {⟨𝑥, ⋁
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∨ ℎ

𝜎(𝑘)

𝐴
(𝑦)},

⋀
𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∧ 𝑔

𝜎(𝑘)

𝐴
(𝑦)}⟩ | 𝑥 ∈ 𝑈} ≥

{⟨𝑥, ⋀
𝑚

𝑖=1
⋀
𝑦∈𝑉

{𝑔
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∨ ℎ

𝜎(𝑘)

𝐴
(𝑦)}, ⋁𝑚

𝑖=1
⋁
𝑦∈𝑉

{ℎ
𝜎(𝑘)

𝑅𝑖
(𝑥, 𝑦) ∧

𝑔
𝜎(𝑘)

𝐴
(𝑦)}⟩ | 𝑥 ∈ 𝑈}. Hence, we have ℎ

∑
𝑚

𝑖=1
𝑅𝑖
𝑃
(𝐴)

(𝑥) ⪯

ℎ
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥) and 𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑃
(𝐴)

(𝑥) ⪰ 𝑔
∑
𝑚

𝑖=1
𝑅𝑖
𝑂
(𝐴)

(𝑥), which

means ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ⊆ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴). Similarly, it is not difficult

to prove that ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴) ⊇ ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴).

From Theorem 21, it is noted that the pessimistic
DHF multigranulation lower approximation is included into
the optimistic DHF multigranulation lower approximation,
while the optimistic DHF multigranulation upper approxi-
mation is included into the pessimistic DHF multigranula-
tion upper approximation.

4. The Approach of Medical Diagnoses

In this section, we introduce a new approach to the decision
making problem in medical diagnoses by utilizing the pro-
posed model based on DHF multigranulation rough set over
two universes. The main points of our model and decision
making methods can be summarized as the following steps.

4.1. The Application Model. Suppose that 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑗
}

is a set of diagnoses and 𝑉 = {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘
} is a set of

symptoms. Let𝑅
𝑖
∈ DHFR(𝑈×𝑉) (𝑖 = 1, 2, . . . , 𝑚) be𝑚 dual

hesitant fuzzy relations over𝑈×𝑉, which reflects themedical
knowledge base with dual hesitant fuzzy elements data given
by𝑚 experts.We also let𝐴 ∈ DHF(𝑉) be the set of symptoms
characteristic for the considered patients. Then, we obtain a
dual hesitant fuzzy decision information system (𝑈, 𝑉, 𝑅

𝑖
, 𝐴)

in medical diagnoses.
In the following, we present an approach to the

decision making for the above-mentioned problem by
using DHF multigranulation rough set over two universes.
At first, according to Definitions 15 and 18, we determine
the lower and upper approximations of optimistic and
pessimistic DHF multigranulation rough set over two
universes of 𝐴 with respect to (𝑈, 𝑉, 𝑅

𝑖
), respectively.

That is, we obtain the set ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴), ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴),

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴), and ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴). Then, according to the
operational laws presented in [8], 𝑑

1
(𝑥) ⊕ 𝑑

2
(𝑥) =

∪
𝛾𝑑1(𝑥)
∈ℎ𝑑1(𝑥)
,𝜂𝑑1(𝑥)
∈𝑔𝑑1(𝑥)
,𝛾𝑑2(𝑥)
∈ℎ𝑑2(𝑥)
,𝜂𝑑2(𝑥)
∈𝑔𝑑2(𝑥)

{{𝛾
𝑑1(𝑥)

+ 𝛾
𝑑2(𝑥)

−

𝛾
𝑑1(𝑥)

𝛾
𝑑2(𝑥)

}, {𝜂
𝑑1(𝑥)

𝜂
𝑑2(𝑥)

}}, we further obtain the set of

∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ⊕ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) and ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ⊕ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴),
respectively. In what follows, based on the decision making
strategy developed in [23], we present the decision rules for
medical diagnoses by using DHF multigranulation rough set
over two universes. At first, we denote

𝑇
1

=
{

{

{

𝑙 | max
𝑥𝑙∈𝑈

{

{

{

𝑚

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) (𝑥
𝑙
) ⊕

𝑚

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) (𝑥
𝑙
)
}

}

}

}

}

}

,

𝑇
2

=
{

{

{

𝑗 | max
𝑥𝑗∈𝑈

{

{

{

𝑚

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) (𝑥
𝑗
) ⊕

𝑚

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) (𝑥
𝑗
)
}

}

}

}

}

}

,

𝑇
3

=
{

{

{

𝑘 | max
𝑥𝑘∈𝑈

{

{

{

(

𝑚

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) (𝑥
𝑘
) ⊕

𝑚

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) (𝑥
𝑘
))

⊕ (

𝑚

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) (𝑥
𝑘
) ⊕

𝑚

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) (𝑥
𝑘
))

}

}

}

}

}

}

.

(13)

It is noted that 𝑇
1
, 𝑇
2
, and 𝑇

3
indicate the decision

making index sets which are composed of the subscripts of
the largest dual hesitant fuzzy element in corresponding dual
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hesitant fuzzy sets ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ⊕ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴), ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ⊕

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴), and (∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴)⊕∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴))⊕(∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴)⊕

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴)), respectively. By virtue of the score function
introduced in Definition 7, we can obtain the ranking orders
of dual hesitant fuzzy elements in the above-mentioned
corresponding dual hesitant fuzzy sets. Thus, the index
sets 𝑇

1
, 𝑇
2
, and 𝑇

3
could be obtained. Moreover, based on

the risk decision making principle of classical operational
research, we could present the practical meaning for the
above three index sets according to their definitions. Since the
optimistic multigranulation rough set is based on “seeking
common ground while reserving differences” (SCRD) strat-
egy, which implies that one reserves both common decisions
and inconsistent decisions at the same time, thus, this opinion
can be seen as a risk-seeking decision making strategy.
While the pessimistic multigranulation rough set is based
on “seeking common ground while eliminating differences”
(SCED) strategy, this strategy indicates that one reserves
common decisions while deleting inconsistent decisions.
Hence, this opinion can be seen as a risk-averse decision
making strategy. According to the above different decision
making strategies, 𝑥

𝑖
(𝑖 ∈ 𝑇

1
) is the optimistic diagnostic

result for the considered patient, 𝑥
𝑖
(𝑖 ∈ 𝑇

2
) is the pessimistic

diagnostic result for the considered patient, and 𝑥
𝑖
(𝑖 ∈ 𝑇

3
)

is the weighted diagnostic result for the considered patient,
where 𝑇

3
is the weighted decision making index set of 𝑇

1
and

𝑇
2
with the weighted value 0.5. Based on the above definition,

the decision rules can be presented as follows:

(1) If 𝑇
1

∩ 𝑇
2

∩ 𝑇
3

̸= 0, then 𝑥
𝑖
(𝑖 ∈ 𝑇

1
∩ 𝑇
2

∩ 𝑇
3
) is the

determined diagnosis for the patient.

(2) If𝑇
1
∩𝑇
2
∩𝑇
3

= 0 and𝑇
1
∩𝑇
2

̸= 0, then𝑥
𝑖
(𝑖 ∈ 𝑇

1
∩𝑇
2
) is

the determined diagnosis for the patient. Otherwise,
if 𝑇
1

∩ 𝑇
2

∩ 𝑇
3

= 0 and 𝑇
1

∩ 𝑇
2

= 0, then 𝑥
𝑖
(𝑖 ∈ 𝑇

3
) is

the determined diagnosis for the patient.

In light of the above decision rules in medical diagnoses,
by virtue of the decision making index sets 𝑇

1
, 𝑇
2
, and 𝑇

3

which come from optimistic and pessimistic information
fusion strategies based on medical expert’s risk preference,
the proposed decision rules could be regarded as a mul-
tifaceted diagnostic scheme through considering multiple
situations. Moreover, by utilizing the multifaceted diagnostic
scheme, medical experts could obtain more reasonable and
accurate diagnostic results than other approaches. Hence, the
decision rules provide medical experts with a more flexible
access to determine the diagnostic results for the patients.

4.2. Algorithm for Medical Diagnoses Using DHF Multigran-
ulation Rough Set over Two Universes. In what follows, we
present an algorithm for the medical diagnoses model based
on DHF multigranulation rough set over two universes as
follows.

Algorithm 1 (themedical diagnoses based onDHFmultigran-
ulation rough set over two universes).

Require. The relation between the universes 𝑈 and 𝑉 is
provided by an expert (𝑈, 𝑉, 𝑅

𝑖
) and a set of symptoms

characteristic for the considered patients 𝐴.

Ensure. The determined diagnosis for the patient:

(1) calculate ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴), ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴), ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴), and

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴), respectively;

(2) calculate∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴)⊕∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) and∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴)⊕

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴), respectively;

(3) determine the score function values for the sets
∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ⊕ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) and ∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ⊕

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴), respectively;

(4) compute 𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
1

∩ 𝑇
2

∩ 𝑇
3
, and 𝑇

1
∩ 𝑇
2
, and

confirm the determined diagnosis for the patient.

5. Case Study

In this section, to illustrate the efficiency of the proposed
algorithm, we use a medical diagnosis problem with DHFS
information which was previously studied and modeled by
Farhadinia [9]. Farhadinia proposed an approach for deriving
the correlation coefficient of DHFS and further researched
a medical diagnosis problem by using correlation coefficient
formulas. In order to enhance the accuracy and reliability
of medical diagnoses, we aim to solve the problem under
the background of group decision making. In group decision
making, each doctor might have their own thought about
the medical knowledge base which slightly differs from other
medical experts, but they should have a common goal to
reach the diagnoses results for the patients by consensus
and unanimity. Therefore, after a detailed discussion about
several aspects of fever with some related medical experts,
we obtained the required medical dataset with respect to
this paper from a local provincial hospital. The medical
experts not only explained the relationship about various
diagnoses with a set of symptoms, but also had a conversation
with some patients who are suffering from the related
diseases.

Let 𝑈 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
} be a set of diagnoses,

where 𝑥
𝑖
stands for viral fever, malaria, typhoid, stomach

problem, and chest problem, respectively. A patient
with the given values of symptoms is denoted by
𝑉 = {𝑦

1
, 𝑦
2
, 𝑦
3
, 𝑦
4
, 𝑦
5
}, where 𝑦

𝑖
stands for temperature,

headache, cough, stomach pain, and chest pain, respectively.
The medical knowledge base with DHFS data is presented
in Tables 1, 2, and 3 [9]. The symptoms characteristic
for the considered patient are given. We aim to seek
a diagnosis for the patient by utilizing the proposed
model.
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Table 1: Symptoms characteristic for the considered diagnoses given by expert 1.

𝑅
1

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

𝑥
1

⟨{0.3, 0.4}, {0.0, 0.1}⟩ ⟨{0.3, 0.4}, {0.4, 0.5}⟩ ⟨{0.1, 0.3}, {0.6, 0.7}⟩ ⟨{0.4, 0.5}, {0.1, 0.2}⟩ ⟨{0.1, 0.2}, {0.5, 0.7}⟩

𝑥
2

⟨{0.6, 0.7}, {0.0, 0.1}⟩ ⟨{0.2, 0.3}, {0.4, 0.6}⟩ ⟨{0.0, 0.1}, {0.8, 0.9}⟩ ⟨{0.7, 0.8}, {0.0, 0.2}⟩ ⟨{0.1, 0.2}, {0.7, 0.8}⟩

𝑥
3

⟨{0.3, 0.4}, {0.4, 0.5}⟩ ⟨{0.5, 0.6}, {0.1, 0.3}⟩ ⟨{0.1, 0.2}, {0.7, 0.8}⟩ ⟨{0.2, 0.4}, {0.3, 0.6}⟩ ⟨{0.1, 0.3}, {0.6, 0.7}⟩

𝑥
4

⟨{0.1, 0.3}, {0.6, 0.7}⟩ ⟨{0.2, 0.3}, {0.3, 0.4}⟩ ⟨{0.6, 0.8}, {0.0, 0.2}⟩ ⟨{0.6, 0.7}, {0.2, 0.3}⟩ ⟨{0.2, 0.3}, {0.6, 0.7}⟩

𝑥
5

⟨{0.1, 0.2}, {0.7, 0.8}⟩ ⟨{0.0, 0.2}, {0.6, 0.8}⟩ ⟨{0.0, 0.1}, {0.8, 0.9}⟩ ⟨{0.2, 0.3}, {0.6, 0.7}⟩ ⟨{0.6, 0.8}, {0.1, 0.2}⟩

Table 2: Symptoms characteristic for the considered diagnoses given by expert 2.

𝑅
2

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

𝑥
1

⟨{0.5, 0.6}, {0.1, 0.2}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩ ⟨{0.2, 0.3}, {0.6, 0.7}⟩ ⟨{0.2, 0.4}, {0.4, 0.5}⟩ ⟨{0.1, 0.2}, {0.4, 0.5}⟩

𝑥
2

⟨{0.6, 0.7}, {0.1, 0.2}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩ ⟨{0.2, 0.3}, {0.6, 0.7}⟩ ⟨{0.5, 0.6}, {0.1, 0.2}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩

𝑥
3

⟨{0.2, 0.3}, {0.5, 0.6}⟩ ⟨{0.6, 0.7}, {0.1, 0.3}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩ ⟨{0.2, 0.3}, {0.6, 0.7}⟩

𝑥
4

⟨{0.2, 0.3}, {0.5, 0.6}⟩ ⟨{0.2, 0.3}, {0.4, 0.5}⟩ ⟨{0.5, 0.6}, {0.1, 0.2}⟩ ⟨{0.7, 0.8}, {0.1, 0.2}⟩ ⟨{0.1, 0.2}, {0.6, 0.7}⟩

𝑥
5

⟨{0.0, 0.2}, {0.6, 0.8}⟩ ⟨{0.1, 0.2}, {0.6, 0.7}⟩ ⟨{0.2, 0.3}, {0.7, 0.8}⟩ ⟨{0.4, 0.5}, {0.5, 0.6}⟩ ⟨{0.7, 0.8}, {0.1, 0.2}⟩

In medical diagnoses, assume that we take a sample from
a patient 𝐴 with all the symptoms, which is represented by
the following dual hesitant fuzzy set information:

𝐴 = {⟨𝑦
1
, {0.6} , {0.2}⟩ , ⟨𝑦

2
, {0.3} , {0.5}⟩ ,

⟨𝑦
3
, {0.4} , {0.5}⟩ , ⟨𝑦

4
, {0.8} , {0.1}⟩ ,

⟨𝑦
5
, {0.3} , {0.6}⟩} .

(14)

Following the steps of Algorithm 1, we calculate the lower
and upper approximations of optimistic and pessimistic DHF
multigranulation rough sets over two universes of 𝐴 with
respect to (𝑈, 𝑉, 𝑅

𝑖
), respectively:

3

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) = {⟨𝑥
1
, {0.4, 0.5} , {0.3, 0.4}⟩ ,

⟨𝑥
2
, {0.6} , {0.2, 0.3}⟩ , ⟨𝑥

3
, {0.3} , {0.5}⟩ ,

⟨𝑥
4
, {0.4} , {0.4, 0.5}⟩ , ⟨𝑥

5
, {0.3} , {0.6}⟩} ,

3

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) = {⟨𝑥
1
, {0.4, 0.5} , {0.2}⟩ ,

⟨𝑥
2
, {0.6} , {0.1, 0.2}⟩ , ⟨𝑥

3
, {0.3, 0.4} , {0.5}⟩ ,

⟨𝑥
4
, {0.5, 0.6, 0.7} , {0.2, 0.3}⟩ , ⟨𝑥

5
, {0.3} , {0.6}⟩} ,

3

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) = {⟨𝑥
1
, {0.4, 0.5} , {0.3, 0.4}⟩ ,

⟨𝑥
2
, {0.4, 0.5, 0.6} , {0.3, 0.4}⟩ , ⟨𝑥

3
, {0.3} , {0.5}⟩ ,

⟨𝑥
4
, {0.3, 0.4} , {0.5}⟩ , ⟨𝑥

5
, {0.3} , {0.6}⟩} ,

3

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) = {⟨𝑥
1
, {0.5, 0.6} , {0.1, 0.2}⟩ ,

⟨𝑥
2
, {0.7, 0.8} , {0.1, 0.2}⟩ , ⟨𝑥

3
, {0.4, 0.5} , {0.3, 0.4}⟩ ,

⟨𝑥
4
, {0.7, 0.8} , {0.1, 0.2}⟩ ,

⟨𝑥
5
, {0.4, 0.5} , {0.5, 0.6}⟩} .

(15)

Then, we further obtain ∑
𝑚

𝑖=1
𝑅
𝑖

𝑂
(𝐴) ⊕ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑂

(𝐴) and

∑
𝑚

𝑖=1
𝑅
𝑖

𝑃
(𝐴) ⊕ ∑

𝑚

𝑖=1
𝑅
𝑖

𝑃

(𝐴) as follows:

3

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) ⊕

3

∑
𝑖=1

𝑅
𝑖

𝑂

(𝐴) = {⟨𝑥
1
, {0.64, 0.7, 0.75} ,

{0.06, 0.08}⟩ , ⟨𝑥
2
, {0.84} , {0.02, 0.03, 0.04}⟩ , ⟨𝑥

3
,

{0.51, 0.58} , {0.25}⟩ , ⟨𝑥
4
, {0.7, 0.76, 0.82} ,

{0.08, 0.1, 0.12, 0.15}⟩ , ⟨𝑥
5
, {0.51} , {0.36}⟩} ;

3

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) ⊕

3

∑
𝑖=1

𝑅
𝑖

𝑃

(𝐴) = {⟨𝑥
1
, {0.7, 0.75, 0.76, 0.8} ,

{0.03, 0.04, 0.06, 0.08}⟩ , ⟨𝑥
2
,

{0.82, 0.85, 0.88, 0.9, 0.92} , {0.03, 0.04, 0.06, 0.08}⟩ ,

⟨𝑥
3
, {0.58, 0.65} , {0.15, 0.2}⟩ , ⟨𝑥

4
,

{0.79, 0.82, 0.86, 0.88} , {0.05, 0.1}⟩ , ⟨𝑥
5
, {0.58, 0.65} ,

{0.3, 0.36}⟩} .

(16)

In what follows, according to Definition 7, we calculate
the score function values of dual hesitant fuzzy elements

∑
3

𝑖=1
𝑅
𝑖

𝑂

(𝐴) ⊕ ∑
3

𝑖=1
𝑅
𝑖

𝑂

(𝐴), ∑
3

𝑖=1
𝑅
𝑖

𝑃

(𝐴) ⊕ ∑
3

𝑖=1
𝑅
𝑖

𝑃

(𝐴), and

(∑
3

𝑖=1
𝑅
𝑖

𝑂

(𝐴) ⊕ ∑
3

𝑖=1
𝑅
𝑖

𝑂

(𝐴)) ⊕ (∑
3

𝑖=1
𝑅
𝑖

𝑃

(𝐴) ⊕ ∑
3

𝑖=1
𝑅
𝑖

𝑃

(𝐴)),
respectively.The ranking results of the above-mentioned dual
hesitant fuzzy sets are the same. That is, 𝑥

2
> 𝑥
4

> 𝑥
1

> 𝑥
3

>

𝑥
5
.Therefore, it is not difficult to obtain𝑇

1
∩𝑇
2
∩𝑇
3

= {2} ̸= 0,
which means 𝑥

2
is the determined diagnosis for the patient.

From the arguments of the above results, we can find that the
considered patient is suffering from malaria.

In the following, in order to validate the effectiveness of
the proposed model based on DHF multigranulation rough
set over two universes, a comparison analysis is conducted
by utilizing the most commonly used aggregation operators
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Table 3: Symptoms characteristic for the considered diagnoses given by expert 3.

𝑅
3

𝑦
1

𝑦
2

𝑦
3

𝑦
4

𝑦
5

𝑥
1

⟨{0.4, 0.5}, {0.1, 0.2}⟩ ⟨{0.2, 0.3}, {0.4, 0.5}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩ ⟨{0.3, 0.4}, {0.2, 0.3}⟩ ⟨{0.2, 0.3}, {0.5, 0.6}⟩

𝑥
2

⟨{0.7, 0.8}, {0.1, 0.2}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩ ⟨{0.1, 0.2}, {0.7, 0.8}⟩ ⟨{0.4, 0.5}, {0.0, 0.2}⟩ ⟨{0.1, 0.2}, {0.7, 0.8}⟩

𝑥
3

⟨{0.3, 0.4}, {0.5, 0.6}⟩ ⟨{0.7, 0.8}, {0.1, 0.2}⟩ ⟨{0.2, 0.3}, {0.5, 0.6}⟩ ⟨{0.4, 0.5}, {0.3, 0.4}⟩ ⟨{0.3, 0.4}, {0.5, 0.6}⟩

𝑥
4

⟨{0.3, 0.4}, {0.4, 0.6}⟩ ⟨{0.1, 0.3}, {0.4, 0.5}⟩ ⟨{0.4, 0.5}, {0.1, 0.2}⟩ ⟨{0.5, 0.7}, {0.2, 0.3}⟩ ⟨{0.2, 0.3}, {0.5, 0.7}⟩

𝑥
5

⟨{0.2, 0.3}, {0.6, 0.7}⟩ ⟨{0.2, 0.3}, {0.6, 0.7}⟩ ⟨{0.2, 0.3}, {0.6, 0.7}⟩ ⟨{0.2, 0.3}, {0.5, 0.6}⟩ ⟨{0.8, 0.9}, {0.0, 0.1}⟩

for dual hesitant fuzzy information. As presented in [11],
we let 𝑑

𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of DHFEs

and we let 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇 be the weight vector

of 𝑑
𝑗
with the equal weight. Then we have the following

aggregation operators:

(1) The dual hesitant fuzzy averaging (DHFA) operator:

DHFA (𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) =

𝑛

⨁
𝑗=1

(
1

𝑛
𝑑
𝑗
)

= ⋃
𝛾𝑗∈ℎ𝑗,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

1 −

𝑛

∏
𝑗=1

(1 − 𝛾
𝑗
)
1/𝑛}

}

}

,

{

{

{

𝑛

∏
𝑗=1

(𝜂
𝑗
)
1/𝑛}

}

}

}

}

}

.

(17)

(2) The dual hesitant fuzzy geometric (DHFG) operator:

DHFG (𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) =

𝑛

⨂
𝑗=1

(𝑑
𝑗
)
1/𝑛

= ⋃
𝛾𝑗∈ℎ𝑗 ,𝜂𝑗∈𝑔𝑗

{

{

{

{

{

{

𝑛

∏
𝑗=1

(𝛾
𝑗
)
1/𝑛}

}

}

,

{

{

{

1 −

𝑛

∏
𝑗=1

(1 − 𝜂
𝑗
)
1/𝑛}

}

}

}

}

}

.

(18)

Through utilizing the above two aggregation operators,
we can aggregate the DHF relation 𝑅

1
, 𝑅
2
, and 𝑅

3
in Tables

1, 2, and 3 to a single DHF relation 𝑅 for DHFA operator and
DHFGoperator, respectively.Then, within the background of
dual hesitant fuzzy rough set over two universes introduced
inDefinition 14, we calculate the score function values of dual
hesitant fuzzy elements in 𝑅(𝐴) ⊕ 𝑅(𝐴). The ranking results
for DHFA and DHFG operators are the same: 𝑥

2
> 𝑥
4

>

𝑥
1

> 𝑥
3

> 𝑥
5
, which is consistent with the ranking results of

DHF multigranulation rough sets over two universes. Thus,
the diagnostic result also shows the considered patient is
suffering from malaria. In light of the above comparison
analysis, though the diagnostic outcomes for the two types
of information fusion strategies are indistinguishable. It is
noted that the information fusion strategies for DHFA and
DHFG operators are onefold. By utilizing the optimistic
and pessimistic DHF multigranulation rough sets over two
universes, the proposed decision rules provide a multifaceted

diagnostic scheme for medical experts, which enable them to
obtain more reasonable and accurate diagnostic results than
DHFA and DHFG operators.

From the above analysis, the DHF multigranulation
rough set over two-universe model takes full advantage
of dual hesitant fuzzy set and multigranulation rough set
in medical diagnoses. On one hand, compared with other
generalizations of fuzzy sets, the dual hesitant fuzzy set
takes into account much more information given by medical
experts. That is, the nonmembership hesitancy function
enables medical experts to express his or her opinions from
the viewpoint of whether a patient is not suffering from a
certain disease, and the hesitant information enables medical
experts to hesitate among several numerical numbers when
evaluating whether a patient is suffering from a certain
disease or not. Thus, the dual hesitant fuzzy set provides
medical experts with a more exemplary and flexible access
to convey their understandings about the medical knowledge
base. On the other hand, the method of multigranulation
rough set is an ideal information fusion strategy which could
synthesize each medical expert’s view to form a final con-
clusion by providing optimistic and pessimistic information
fusion strategies. In light of the above, the superiorities of
DHF multigranulation rough set over two-universe model
could decline the uncertainty to a great extent and enhance
the accuracy and reliability of medical diagnoses effectively.

6. Conclusion

In this paper, we have proposed a new rough set model
through combining multigranulation rough set and the dual
hesitant fuzzy set, called a DHF multigranulation rough set
over two-universe model. In this framework, the definition
and some properties of optimistic and pessimistic DHF
multigranulation rough sets over two universes have been
studied. Finally, we have established a general approach to
the decision making problem in medical diagnoses. The
outcomes of the example show that the approach proposed
in this paper could deal with group decision making prob-
lems effectively. Furthermore, comparing to those theoretical
results in the existing literature, the main contribution of
the proposed decision making model consists in taking into
account three decisionmaking index sets based on optimistic
and pessimistic information fusion strategies. By virtue of the
decision making index sets, the proposed decision making
model provides a multifaceted diagnostic scheme for med-
ical experts. And with the aid of multifaceted diagnostic
scheme, it is convenient for medical experts to obtain more
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reasonable and accurate diagnostic outcomes than other
methods.

This study develops a framework of DHF multigranula-
tion rough set over two universes, in which there are still
many interesting issues to be explored. In the future, we can
discuss various uncertainty measures and attribute reduction
approaches. It is also desirable to further apply our proposed
model to other practical applications.
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