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Abstract: To develop a daily monitoring system for early detection of fall risk of elderly people
during walking, this study presents a highly accurate micro-Doppler radar (MDR)-based gait clas-
sification method for the young and elderly adults. Our method utilizes a time-series of velocity
corresponding to leg motion during walking extracted from the MDR spectrogram (time-velocity
distribution) in an experimental study involving 300 participants. The extracted time-series was
inputted to a long short-term memory recurrent neural network to classify the gaits of young and
elderly participant groups. We achieved a classification accuracy of 94.9%, which is significantly
higher than that of a previously presented velocity-parameter-based classification method.

Keywords: Doppler radar; gait classification; machine learning; LSTM

1. Introduction

The ability of elderly people to maintain their balance during walking is related to
the risk of future falls and dementia [1,2]. Biomechanical studies have verified significant
gait differences between participant groups with different fall risks, such as young adults,
elderly adults, and elderly adults with a history of falls [3,4]. The use of daily gait measure-
ments to detect age-related gait changes is an effective way for the early detection of the
risks of dementia and falling accidents. Many techniques have been developed and widely
used to conduct gait analysis of walking people. These techniques use optical motion
capture, acceleration sensors, and a combination of a video camera and markers [3,5].
However, they require markers or devices to be attached to the subjects. Consequently, they
are not appropriate for daily measurements. Some researchers studied the suitability of
optical camera- and depth sensor-based techniques for daily measurements [6]. However,
the accuracy of such methods depends on the lighting and clothing conditions.

Radar-based gait measurement methods were proposed to address the drawbacks
of other sensor-based techniques [7–18]. Radar-based methods can remotely measure
the velocity of whole human body parts without placing any constraints on the par-
ticipant. In addition, they are unaffected by lighting or clothing conditions. Recently,
micro-Doppler radar (MDR) has achieved accurate motion recognition and classification
for various problems based on the deep-learning approach [7,8]. Because the MDR can
measure micro-motions of humans, it is used for the recognition of detailed motions such
as vital signs [9], gesture classification [10], and classifications of human gait types (e.g.,
classification with/without arm swinging [11] and slow/fast walking [12]). In addition,
MDR-based techniques have been applied to obtain detailed gait measurement data that
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are used for personal identification [13,14] and the identification of gait type for rehabil-
itation and hospital applications [15,16]. However, the above-mentioned conventional
studies have not focused on gait classification based on age-related gait changes, which
are investigated in the field of biomechanics. Therefore, to apply the findings in biome-
chanics to gait classification using the MDR technique, we propose a method that uses the
velocity parameters extracted from MDR measurement data obtained during walking in
a previous work to classify two subject groups (young and elderly adults) based on their
gait differences [17,18]. The support vector machine (SVM)-based results confirmed that
our method could classify the two subject groups with high accuracy using the extracted
velocity parameters. However, our previous method only utilized the velocity parame-
ters, which do not provide comprehensive information regarding the time-series velocity
fluctuations existing in the radar measurement data.

The proposed MDR measurement-based method considers the movement of body
parts during walking, reflecting balance ability and the classification of young and elderly
adult gait patterns. First, we extracted the time-series data that reveal how the velocities of
the body and legs vary with the measured radar signals, with reference to the previously
reported findings [17–19]. Subsequently, the extracted time-series data were inputted to
a long short-term memory (LSTM) recurrent neural network [20]. Here, the input data
were a combination of all three types of respective velocity time-series data. These velocity
time-series data corresponded to the velocity fluctuations of the stepping leg during the
stance phase, torso, and axis leg during the stance phase, respectively. The classification
accuracies of young and elderly people groups were compared using each velocity time-
series data. The results confirmed that our proposed method yields a classification accuracy
of 94.9%, which is significantly higher than that of our previous method. Furthermore, our
results significantly exceeded the accuracy achieved using combination technologies that
use a video camera and markers presented in [5], which reported a maximum classification
accuracy of 90%. To the best of our knowledge, this is the first study to yield a classification
accuracy of over 90% for the radar-based gait classification of young and elderly adults.

2. Experimental Work

The study participants were 87 young (mean age: 22.0± 1.7 yr, mean height: 169.7± 8.7 cm)
and 213 elderly (mean age: 72.5 ± 4.8 yr, mean height: 156.3 ± 8.6 cm) adults. None of the
participants had any history of neurological, musculoskeletal, or other medical conditions,
and they could safely walk without assistance. The elderly adults that participated in this
study had a Mini-Mental State Examination score [21] of at least 24 points and a Timed Up
and Go test [22] score of 13.5 s or less.

Figure 1 shows our MDR experimental setup. The contentious-wave MDR (ILT Office
BSS-110) operated at a frequency of 24 GHz was used. The participants walked toward
the MDR along a 10 m walkway at self-selected comfortable speeds. No restrictions were
imposed on the subjects’ clothes. The fixed mono-static MDR was installed in front of the
participants at a height of 0.86 m. The radar specifications were as follows:

• Waveform of transmitting wave: Sinusoidal (24 GHz).
• Equivalent isotropically radiated power: 40 mW.
• −3 dB beamwidth in E-plane: 70°.
• −3 dB beamwidth in H-plane: 28°.
• Detection scheme of received signals: Coherent detection.
• Sampling frequency of received signals: 600 Hz.

The time-velocity distributions (spectrograms) of the MDR received signals were calcu-
lated. First, the received signals were obtained by the MDR system shown in Figure 2. The
MDR transmitted sinusoidal waves at a frequency of 24.0 GHz onto a pedestrian participant.
Then, the received signals after demodulation of the reflected waves were obtained.
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The details of the acquisition of the spectrogram are as follows [23]. First, the trans-
mitting signal of MDR is expressed as

sT(t) = Aej(2π f0t+φ0) (1)

where A is the amplitude, f0 is the frequency, and φ0 is the initial phase. The reflected echo
from a point scatterer has a time-varying phase and can be expressed as [23]

s′R(t) = ηAej[2π f0t+φ0+φ(t)], (2)

where η < 1 is the ratio of the received level to A. Consequently, the reflected signal after
demodulation from N multiple scatters is expressed as [7,23]

sR(t) =
N

∑
i=1

ηi Aejφi(t). (3)

Figure 1. MDR experimental site for gait measurements.

Figure 2. Block diagram of the MDR system.

The distance between the radar and the i-th scatterer is defined as Ri, and the radial
velocity of the scatterer is defined as vdi. With these parameters, φi(t) is expressed as

φi(t) = −2π(
2Ri
λ
− 2vdit

λ
), (4)
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where λ = c/ f0 is the wavelength and c is the speed of light. The Fourier transform of fR(t)
is expressed as [23]

sR( f ) =
N

∑
i=1

ηi Aδ( f − f di), (5)

where η( f ) is Dirac delta function and fd is called the Doppler frequency, which is expressed
as follows:

fdi =
2vdi

λ
(6)

Based on (5) and (6), the short-time Fourier transform (STFT) of sR(t) derives its
time-velocity distribution as [7]

SR(t, vd) =
∫

sR(t + τ)W(τ)dτ, (7)

where W(t) is the window function. Because the spectrograms |SR(t, vd)|2 represent
comprehensive gait characteristics corresponding to body parts, we extracted features to
classify gaits using SR(t, vd). For the STFT, we empirically used the Hamming window
function with the length of 128 samples for W(t) of (7). In this study, two walking cycles of
a participant’s gait in the steady state were set as an analysis interval for STFT. Therefore,
the data length varies with participants, and is in the range of 99–224 data points.

3. Gait Classification Method

This section presents our gait classification method based on the velocity time-series
extracted from the spectrograms obtained from the MDR gait measurements. The procedure
of our gait classification method is as follows.

1. Calculation of STFT of the received signal (Figure 3 shows an example).
2. Extraction of feature envelopes from the STFT spectrogram (vu(t), vm(t), and vl(t) in

Figure 3 ).
3. Inputting the feature envelopes to the LSTM network (Figure 4).

Figure 3. Example of the MDR spectrogram and extraction of envelopes.



Sensors 2021, 21, 3643 5 of 11

Figure 4. Outline of the proposed method. The extracted envelope(s) shown in Table 1 is inputted to
the LSTM layer, and the general structure of the LSTM is used. The output is the classification result
(Young or Elderly labels).

Table 1. Combinations of velocity time-series data inputted to the LSTM.

Condition Input Velocity Time-Series Data for CNN

Condition 1 vu(t)
Condition 2 vm(t)
Condition 3 vl(t)
Condition 4 vu(t), vm(t)
Condition 5 vu(t), vl(t)
Condition 6 vm(t), vl(t)
Condition 7 vu(t), vm(t), vl(t)

Figure 3 presents an example of a gait spectrogram and extraction of the feature
envelopes. The upper envelope vu(t) corresponding to the maximum velocity, the lower
envelope vl(t) corresponding to the minimum velocity, and the power-weighted mean
velocity (mean envelope) vm(t) are extracted using a similar technique as that used in
previous studies [17–19]. First, the mean envelope is obtained with the power-weighted
mean velocity for each time t, expressed as [24]

vm(t) =
∫

vd|SR(t, vd)|2dvd∫
|SR(t, vd)|2dvd

. (8)

Then, significant peaks of the spectrogram are extracted. The significant peaks at time
t are defined as peaks with relatively large received power, and they satisfy the following
conditions [25]:

d|SR(t, vd)|
dvd

= 0, (9)

|SR(t, vd)| > ρ max |SR(t, vd)|, (10)

where 1 > ρ > 0 is the ratio of the peak extraction threshold amplitude to the maximum
amplitude at each time t. We empirically set ρ = 0.2. The extracted m-th significant peak
velocity at time t is defined as vdp,m(t). Then, the upper and lower envelopes are extracted
as the maximum and minimum velocities, respectively, in vdp,m(t) [19]:

vu(t) = max
m

vdp,m(t), (11)
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vl(t) = min
m

vdp,m(t). (12)

The upper envelope, lower envelope, and power-weighted mean velocity mainly
correspond to the swing phase, stance phase, and torso velocity, respectively.

In our proposed method, the velocity time-series of vu(t), vl(t), and vm(t) were
inputted to the LSTM network, and the classification label (young or elderly) was output by
the LSTM network. We consider combinations of these velocity time-series data inputted to
the LSTM (Table 1), to clarify the efficient input time series for the gait classification. Note
that, in our previous study [17], we derived simple parameters (e.g., mean and standard
deviation) from the extracted time-series, and the obtained parameters were used for
SVM-based discriminant analysis. Rather than using several parameters, our proposed
method in this study uses time-series data as the input for the LSTM network.

The implantation of the LSTM is presented here. We employed a sequence-to-label
classification scheme that uses one-label information with respect to time-series data for
machine learning. Figure 4 illustrates the outline of the proposed classification method
using the LSTM. The LSTM structure includes a sequence input layer, an LSTM layer,
a fully connected layer, and a Softmax layer. In the sequence input layer, three types
of velocity time-series data were inputted to the LSTM as one dataset. As mentioned
previously, the data length inputted to the LSTM varies with participants. During the
training process, the software performed zero-padding so that datasets have the same
length (corresponding to the maximum length) for each divided batch. The LSTM layer
learns the long-term dependencies between the time steps of the time-series data from the
input dataset [26]. In addition, we employed the Adam optimization function. The hyper-
parameters of the number of hidden cells, batch size, and initial learning rate were set
to 400, 128, and 0.0001, respectively. The learning rate was attenuated every 30 epochs,
with an attenuation multiplier of 0.9. These hyper-parameters were tuned empirically.

4. Result Evaluation and Discussion
4.1. Accuracy Evaluation and a Comparison between All Input Conditions

We employed the hold-out validation, which randomly divides the input dataset into
training and testing datasets, to evaluate the results. Three velocity time-series datasets
extracted from the spectrogram (vu(t), vm(t), and vl(t)) of all the young and elderly people
were randomly divided to realize a training-to-test data ratio of 7:3 (i.e., the number of
training and test data were 210 and 90, respectively). After training the LSTM model,
the test data were applied to the trained LSTM model to evaluate the classification accuracy.
The average classification accuracy was calculated after performing 30 trials on the test
data. We compared the classification accuracies using the input conditions of Table 1.

Table 2 shows the results of the classification accuracy corresponding to the combina-
tion for each velocity time-series data. Each classification accuracy represents the average
of 30 training trials. As shown in this table, Condition 3 that inputs only vu(t) exhibited the
highest classification accuracy of 94.9%; Conditions 6 and 7 that consider the combination
of extracted velocity time series also exhibited accuracies of over 90%. Table 3 shows the
confusion matrices for Conditions 3, 4, and 7 calculated using 30 test trials. Under all
conditions, the error rates corresponding to the misclassified elderly participants to that of
young participants were relatively large. However, correct classifications with accuracies
over 80% were confirmed for both classes in all conditions. In particular, Condition 3
achieved an accuracy of over 90% for both classes.

The above classification results indicate that age-related gait changes can be accurately
detected based on the velocity time series of the legs’ motion extracted from the MDR. In
biomechanics studies, age-related gait changes are important to evaluate fall risks during
walking because aging is associated with gait slowing [27,28]. Thus, our method can
be applied to monitoring systems for the early detection of individuals with high risks
of falling.

Furthermore, our results demonstrate that the velocity time series extracted as the
lower envelope of the spectrogram is more effective than those extracted as the upper and
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mean envelopes. Similar to our previous study [17], the upper and mean envelopes also can
classify the young and elderly adults with sufficiently high accuracies of over 80%. We now
discuss the reasons for these results. The young and elderly adults were classified based
on the differences in their legs’ motions that are reflected in the gait acceleration, which
were discussed in our previous studies [3,17]. Ref. [3] reported that a significant difference
between young and elderly adults in gait was detected in the acceleration compared with
the gait speed. Based on this, we can predict that vm(t) is relatively inefficient for their
classification because vm(t) corresponds to body motion and reflects gait speed. In contrast,
vu(t) and vl(t) include information to achieve classification accuracy because the gait
acceleration is closely related to the legs’ motions [17]. Thus, the classification accuracy
obtained using only vm(t) (Condition 2) is relatively lower than that using vu(t) and/or
vl(t) (other conditions). However, this study revealed the highest effectiveness of the lower
envelope when we used the information of the entire time series of envelopes for the LSTM-
based classification. This may be because the significant differences in the gait parameters
in the stance phase between the young and elderly adults [28] were efficiently extracted in
the lower envelope. However, further studies are required to clarify its mechanism.

Table 2. Classification results for all combinations of velocity time-series data.

Condition Classification Accuracy

Condition 1 84.9%
Condition 2 83.3%
Condition 3 94.9%
Condition 4 87.0%
Condition 5 88.6%
Condition 6 92.0%
Condition 7 92.7%

Table 3. Confusion matrices for tests in Conditions 3, 4, and 7. x/y/z in each element denotes the
results of Condition 3/4/7 (%).

Predicted Class\True Class Young Elderly

Young 91.7/84.4/85.1 8.3/15.6/14.9

Elderly 2.2/11.4/4.8 97.8/88.6/95.2

4.2. Comparison with the Previous Method Results

First, we evaluated the accuracy of the previous method presented in [17] (SVM-
based classification using the velocity parameters) in the same manner to compare with
the proposed method. The proposed method used Condition 3, which inputted only the
lower envelope vl(t) to the LSTM and achieved superior accuracy, as shown in Table 2.
Figure 5 summarizes a comparison of the results of the previous and proposed methods.
The average classification accuracies, achieved by the proposed and previous methods,
were 94.9% (for Condition 3) and 85.7%, respectively. These results confirmed that the
classification accuracy of the proposed method was significantly higher than that of the
previous method.

The previous method only uses the representative parameters of the extracted en-
velopes, such as mean and standard deviation. Thus, this approach could not sufficiently
extract the essential information on the gait differences in the young and elderly adults. In
contrast, the proposed method efficiently uses the comprehensive information of the time
series using the LSTM and, thus, achieved highly accurate classification.
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Figure 5. Classification accuracies using the conventional and the proposed methods.

4.3. Application of the Convolutional Neural Network-Based Method

Finally, we investigated the application of convolutional neural network (CNN)-based
classification method [7,14], which is the state-of-the-art method of motion classification
using MDR data, to the gait classification of young and elderly adults. In this method,
the spectrograms are converted to images, and these images are inputted to the CNN for
classifying the participants. We used the AlexNet architecture [29] for the CNN, which is
one of the representative networks of CNN, and its hyper-parameters were empirically
optimized similar to the LSTM. Additionally, we investigated the efficiency of areas in the
input spectrogram images using a gradient-weighted class activation mapping (Grad-CAM)
visualization [30]. Grad-CAM visualizes critical regions in input images by producing a
heat map showing the importance of classification. Similar to the LSTM, the classification
accuracy was evaluated using 30 trials of hold-out validations with a training-to-test data
ratio of 7:3.

The classification accuracy was 97.8%, which is higher than that of the proposed
LSTM-based method. However, in assessing the results of the Grad-CAM visualization,
this high accuracy is not necessarily reliable (examples of obtained heat maps are shown
in Figure 6). Although the Grad-CAM visualization for elderly adults indicated that the
components corresponding to gait movement were efficiently used, that for the young
adults indicated that the background components were judged as the important area. In
our data collection, the MDR experiments for the young and elderly adults were performed
in different places, and their characteristics of measurement noises varied. The elderly data
included a relatively large number of components corresponding to noise. Thus, the CNN
positively used this difference of background noises for classification. Note that the Grad-
CAM visualization results of many other participants indicated a comparable tendency.

In contrast to the CNN, the LSTM-based approach was relatively unaffected by such
background noises because the components corresponding to the background noises were
cancelled in the peak extraction process for the extractions of envelopes ((11), (12), and (10)).
Therefore, the results of the LSTM used the envelopes (time series of velocities) corre-
sponding to the main components of walking motion and our method efficiently classified
the gaits.
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(a) Elderly

(b) Young

Figure 6. Grad-CAM visualization results for the elderly (a) and young (b) adults. Left: original
input spectrogram image; Right: Grad-CAM heat map (red color indicates a high score of importance
in the classification).

5. Conclusions

In this study, we presented an LSTM-based method using the MDR signals for the
classification of young and elderly adult gaits. The velocity time-series data reflecting
each body part (the stepping leg in the stance phase, torso, and leg in the stance phase)
were extracted as the envelopes of the MDR spectrograms and inputted to the LSTM for
classification. The experimental results confirmed a classification accuracy of 94.9% with
the use of velocity time-series corresponding to the motions of legs contacted to the ground
in the stance phase. This study is the first to achieve a classification accuracy of over 90% for
a radar-based method for the gait classification of young and elderly adults. The achieved
accuracy is approximately 9% higher than that of our previous method, which utilized the
velocity parameters extracted from the spectrograms and SVM.

In the future, we plan to analyze the gait characteristics of participants, including a
middle-aged participant group, and evaluate the network performance with a larger dataset.
Furthermore, the application of the fuzzy time-series approach [31] to our proposed method
can be considered as efficient because the extracted envelopes include the uncertainty
and/or imprecision, which can be efficiently dealt with using fuzzy modeling. In particular,
recently proposed fuzzy time-series models [32,33] could possibly improve the robustness
and accuracy of the proposed method; therefore, investigating their applicability is an
important direction of future study.
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