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Editorial

With a worldwide estimated prevalence of 8–16%, chronic 
kidney disease (CKD) is a major noncommunicable disease: 
it substantially contributes to premature mortality and loss 
of disability‑adjusted life years.[1,2] The variety in terms of 
causes, progression mechanisms, and histopathological 
manifestations creates challenges for early diagnosis and 
effective interventions with CKD.[3] In addition, CKD is a 
major drain on health resources: in 2015, CKD and end‑stage 
renal disease (ESRD) spend Medicare (the United States) 
over $98 billion.[4] China also faces a great financial burden 
owing to the increasing prevalence of CKD.

The definitions and boundaries of big data in health are 
still debatable.[5] However, the US National Institute of 
Standards and Technology defines big data as consisting 
of extensive datasets (in terms of volume, variety, velocity, 
or variability) that require a scalable architecture for 
efficient storage, manipulation, and analysis.[6] In addition 
to conventional data resources (e.g., electronic medical 
records, observational cohorts, and medical claims), 
environmental, behavioral, image, wearable device, social 
media, and multiomics data have been used for data‑driven 
research for CKD.

As well as actual physical data, big data refer to the 
techniques used for analyzing multidimensional data sets,[7] 
such as artificial intelligence (including machine learning 
for structured data and natural language processing (NLP) 
for unstructured data), to reveal clinically relevant 
information from massive amounts of data.[7,8] Progress in 
cross‑disciplinary collaborations of medicine, mathematical 
modeling, machine learning, and bioinformatics has led to 
novel mechanisms; it has helped in targeting intervention 
strategies for CKD that can facilitate precise risk predictions, 
early diagnosis, clinical decision analysis, and cost‑effective 
interventions.[9,10]

Growth of BiG Data anD innovative analytic 
MethoDs in chronic KiDney Disease research

One clear benchmark for big data is volume. In 2011, 
the data of US health‑care system alone amounted to 
150 exabytes (1018). Before long, the data will reach 
zettabyte and yottabyte levels worldwide.[11] Big data for 
medical research can be obtained from administrative and 
claims data, population statistics and disease surveillance 
data, real‑world data, research data, registries, mobile 
medical devices, and patient‑reported information. In 
addition, data that are not conventionally considered 
direct health‑care information may also be collected and 
incorporated into medical research and applications, 
such as search engine queries,[9] social media data,[12] and 
environmental data.[13]

Large‑volume databases for CKD research in the United States 
include the following: the National Health and Nutrition 
Examination Survey; United States Renal Data System; 
Kaiser Permanente; and Veterans Affairs Healthcare System. 
Those databases are widely used and support investigations 
into the disease burden, risk factors, outcomes, and medical 
resource consumption with CKD. In China, a national 
cross‑sectional study investigated the prevalence of CKD.[14] 
The study covered 47,204 participants from 13 provinces; it 
reported the prevalence as 10.8%, and it demonstrated that 
CKD is a major public health concern in China. Subsequently, 
according to data of China’s Hospital Quality Monitoring 
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System, the pattern for CKD has changed: diabetes has 
become the leading cause of CKD.[15] In addition, supported 
by the China‑WHO Biennial Collaborative Projects 
2014–2015, the China Kidney Disease Network (CK‑NET) 
was established under the leadership of Drs. Lu‑Xia Zhang 
and Hai‑Bo Wang, based on the efforts of Professor Hai‑Yan 
Wang.[16] CK‑NET covers over 19.5 million patients from 
China’s class 3 hospitals. CK‑NET summarizes patient‑level 
data from standardized discharge summaries; it highlights 
information that has not previously been reported, such as 
that related to epidemiology, treatment, costs, and other 
aspects pertinent to CKD.[16] Besides, large‑size biobanks 
also serve as basic information sources for CKD research. 
KADOORIE Biobank, which was launched in 2004, has 
recruited 500,000 people from 10 regions of China (five urban 
and five rural) to assess the effects of risk factors for common 
chronic diseases. Its resources range from questionnaires, 
physical measurements at baseline, and long‑term follow‑up 
survey data to laboratory assays (including genotyping, 
metabolomic, and blood biochemistry data).[17] The Chinese 
Cohort Study of CKD has enrolled and followed up on 
3000 predialysis CKD patients in Mainland China; that 
cohort study has also been used to explore the underlying 
mechanisms of CKD and adverse outcomes.[18] All these big 
data researches characterized CKD epidemiology in China, 
which is essential for health policymaking and health resource 
allocation planning.

Another feature of integrating big data in CKD could be 
the variety in data types. One example is the wide use of 
environmental data. In several studies, long‑term exposure 
to air pollutants was evaluated by means of land‑use 
regression and spatiotemporal models that utilized satellite 
remote‑sensing aerosol optical depth data.[13,19,20] The 
association between air pollution and incidence of CKD 
and declining glomerular filtration rate was investigated 
using a generalized additive logistic model, time‑varying 
linear mixed‑effects regression model, and Cox proportional 
hazard models. The results showed that air pollution could 
be a nonconventional risk factor in the incidence[13,20] and 
progression of CKD.[19,20]

With respect to the development of artificial intelligence 
techniques, clinical notes and images are also used in kidney 
research. Singh et al.[21] undertook a concept‑wide association 
study of clinical notes to determine new predictions of 
ESRD. The concepts were extracted from existing clinical 
notes using NLP tools; they were evaluated as predictors 
using proportional subdistribution hazards regression. Novel 
predictors were identified, such as high‑dose ascorbic acid 
and fast food. In another study about predicting the outcomes 
in kidney transplant patients,[22] Banff lesion scores from 
the pathology reports and vital signs were extracted from 
unstructured text fields using proprietary NLP solutions in 
IBM Watson Content Analytics. Structured data have also 
been obtained from electronic medical records, the United 
Network for Organ Sharing database, and hospitals’ own 
transplant databases. Predictive models for graft loss and 

mortality have been developed from both structured and 
unstructured data formats. The results demonstrate that the 
big data approach significantly adds efficacy in predicting 
adverse outcomes. By means of digital pathology applied to 
kidney tissue slides,  Pedraza A et al.[23] used convolutional 
neural network classification to identify glomerulus and 
nonglomerulus segments. On average, the accuracy with this 
approach attained 99.95%, which underlines the promising 
application of machine vision in kidney histopathology.

With regard to speed, practice and research have benefited 
from the real‑time collection of patient‑level data. The 
acute kidney injury (AKI) system is one example of such 
an application based on the clinical data collected in routine 
clinical practice: the use of real‑time data can improve 
the early detection of AKI and permit timely therapeutic 
interventions.[24] For advanced CKD, some researchers have 
developed a smartphone‑based self‑management system as 
an adjunct to the normal care. The system collects patients’ 
behavior elements in real time and generates personalized 
patient messages based on prebuilt algorithms. If predefined 
treatment thresholds are met or critical changes occur, 
alerts are sent to providers.[22] To identify CKD patients 
with uncontrolled blood pressure (BP), Greenberg et al.[25] 
proposed a measurement system that incorporates data from 
the billing system, structured fields in the electronic health 
records, and free‑text physician notes using NLP. To take 
action toward improving BP control and for completion of 
additional data, a point‑of‑care paper worksheet is given to 
the physician when such patients are presented. Using NLP 
in some systems has been found to produce benefits with 
regard to medication errors and control of BP.[22,25]

Multiomics technology enriches the data sources and helps 
improve analytic techniques with respect to data variety in 
CKD research. High‑resolution analytic omics platforms 
(such as genomics, proteomics, peptidomics, transcriptomics, 
and metabolomics) and machine learning methods have been 
of tremendous help in the following: elucidating the molecular 
map of diverse interactions, signaling and regulation, and 
identifying CKD‑related biomarkers and targeting different 
molecules with high precision.[3,9] For example, genome‑wide 
association studies (GWASs) based on big data have 
gradually appeared and been refined. Gene analysis and 
consequent single‑nucleotide polymorphism (SNP) analysis, 
adjusted for clinical characteristics from the data of 1293 
African Americans, have been used to examine the causal 
association between racial disparities and CKD.[26] A strong 
association between CKD and apolipoprotein L1 renal‑risk 
variants became evident. With a Chinese Han population 
of over 10,000 participants, GWAS identified TNFSF13 as 
a susceptible gene of IgA nephrology.[27] Subsequently, an 
advanced verification test of that association was conducted 
among 2000 participants using SNPs and the phenotype 
level of the TNFSF13 gene.[28] Studies have also focused on 
the association of renal function with the gut microbiome, 
amino acid metabolomic profiling, and renal microRNA and 
RNA profiles.
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value of BiG Data analytics in chronic KiDney 
Disease research

The aforementioned studies demonstrate the value of big data 
in CKD research. Big data can provide essential information 
about disease burden, molecular mechanisms, novel risk 
factors, and therapeutic targets. In this way, big data can 
help toward providing more effective prevention, earlier 
diagnosis, and more precise interventions.

According to McKinsey’s report, big data – if used 
creatively and effectively – may lead to annual reductions 
of over $300 billion in the US health‑care sector; most 
of that would be in the form of decreased health‑care 
expenditure.[29] Another field where the value of big data 
has been demonstrated with regard to health policymaking 
is modeling and health economic evaluation using real‑world 
data. That has been found to be time‑saving, and it has 
potential to optimize clinical pathways and improve hospital 
management and the medical insurance system. Decision 
modeling combined with real‑world data and medical 
knowledge can be used to predict the future prevalence 
of CKD in a given population.[30] That method can also be 
applied in health economic analysis. The American Diabetes 
Association and American College of Cardiology/American 
Heart Association Task Force recommend testing urinalysis 
and creatinine in patients with diabetes[31] or hypertension.[32] 
These recommendations are supported by modeling analysis, 
which has shown these tests to be cost‑effective in high‑risk 
populations, including tests for diabetes and hypertension.[33] 
Data science is widely used in medical insurance. One 
example of the application in nephrology is the ESRD 
prospective payment system (PPS) project. Following the 
report “End‑stage Renal Disease Payment System: Results 
of Research on Case‑Mix Adjustment for an Expanded 
Bundle” (submitted by the University of Michigan Kidney 
Epidemiology and Cost Center), Centers for Medicare 
and Medicaid Services (CMS) finalized the case‑mix and 
facility‑level adjustments for the ESRD PPS in the CY2011. 
Further data were collected and analyzed to support later 
refinement of the CMS ESRD payment system.

opportunities anD challenGes for BiG Data in 
chronic KiDney Disease

We have now entered the era of big data. Policies and 
initiatives have been announced to advance biomedical 
big data research and application in both developed and 
developing countries.[34] Quite a few instances of this kind 
of development can be cited, such as the Federal Big Data 
Research and Development Strategic Plan in the United 
States and Guidelines for Promoting and Standardizing 
the Healthcare Big Data Application and Development in 
China. The situation of CKD in China is characterized by 
a heavy disease burden in a large developing country; it is 
one of the most suitable places where biomedical big data 
should be applied.

However, fully utilizing the value of big data to support CKD 
research presents challenges. First, efforts have been made 
to encourage data sharing and accessibility to some national 
health databases, such as the National Scientific Data Sharing 
Platform for Population and Health; however, platforms where 
individual‑level information is updated in a timely manner and 
can be freely accessed by scholars need to be constructed or 
improved. Second, health information is individual sensitive 
information according to China’s “Information Security 
Technology – Personal Information Security Specification”. 
Thus, when collecting, transferring, analyzing, sharing, and 
reporting health‑related data, it is necessary to carefully 
balance the benefit of gains and risk to security and privacy. 
In China, there are national‑level regulations that provide 
detailed guidance about medical data disclosure. However, 
data sharing could be more secure, and medical institutions 
need to be more willing to collaborate with outside partners 
in performing productive multidisciplinary research. The third 
challenge lies in the quality of data and techniques of data 
analysis. For example, Cisek et al.[3] concluded that there is 
a lack of satisfactory algorithms for multidimensional data 
modeling in clinically relevant predictive models for accurate 
elucidation of kidney disease. Fragmentary, diverse, and 
uncategorized data in mass information storage can result in 
difficulties when processing and analyzing information islands 
with complex and heterogeneous structures.

Despite all the above challenges, big data for CKD is in 
an era of opportunity, and it needs mature technology and 
policy supports. To provide better care and better health 
through cross‑disciplinary efforts, building a database for 
CKD research is a top priority in addition to collecting and 
analyzing health‑care information from a multidimensional 
perspective.
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