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Simple Summary: This review provides an overview of the effects of exercise training on the major
mechanisms related to cancer cachexia (CC). The review also discusses how cancer comorbidities
can influence the ability of patients/animals with cancer to perform exercise training and what
precautions should be taken when they exercise. The contribution of other factors, such as exercise
modality and biological sex, to exercise effectiveness in ameliorating CC are also elaborated in the
final sections. We provide meticulous evidence for how advantageous exercise training can be in
patients/animals with CC at molecular and cellular levels. Finally, we emphasise what factors should
be considered to optimise and personalise an exercise training program in CC.

Abstract: Cancer cachexia (CC) is a multifactorial syndrome characterised by unintentional loss
of body weight and muscle mass in patients with cancer. The major hallmarks associated with
CC development and progression include imbalanced protein turnover, inflammatory signalling,
mitochondrial dysfunction and satellite cell dysregulation. So far, there is no effective treatment to
counteract muscle wasting in patients with CC. Exercise training has been proposed as a potential
therapeutic approach for CC. This review provides an overview of the effects of exercise training
in CC-related mechanisms as well as how factors such as cancer comorbidities, exercise modality
and biological sex can influence exercise effectiveness in CC. Evidence in mice and humans suggests
exercise training combats all of the hallmarks of CC. Several exercise modalities induce beneficial
adaptations in patients/animals with CC, but concurrent resistance and endurance training is consid-
ered the optimal type of exercise. In the case of cancer patients presenting comorbidities, exercise
training should be performed only under specific guidelines and precautions to avoid adverse effects.
Observational comparison of studies in CC using different biological sex shows exercise-induced
adaptations are similar between male and female patients/animals with cancer, but further studies
are needed to confirm this.

Keywords: physical activity; protein turnover; inflammation; mitochondria; satellite cells; cancer
comorbidities; concurrent training

1. Introduction

Cancer cachexia (CC) is a devastating, multifactorial and so far irreversible syndrome
characterised mainly by loss of skeletal muscle mass and body fat [1]. CC affects up to 80%
of cancer patients and is responsible for 20–30% of cancer deaths [1,2]. The stages of CC
include: (i) precachexia, clinically defined as≤5% weight loss without lifestyle modification
over the past 6 months; (ii) cachexia, defined as >5% involuntary weight loss over the
past six months or a body mass index (BMI) < 20 kg/m2; and (iii) refractory cachexia,
characterised by an irreversible rapid weight loss accompanied by a life expectancy < three
months [3].
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The major known mechanisms contributing to the development and progression of CC
include imbalanced protein turnover, inflammatory signalling, mitochondrial degeneration
and muscle stem cell (satellite cell) dysregulation [4,5]. Specifically, CC is characterised by
increased muscle protein degradation combined with decreased muscle protein synthe-
sis [5]. Activation of protein degradation signalling through either the ubiquitin proteasome
system (UPS) or the lysosomal proteasome system (LPS) is well described in different pre-
clinical and clinical models [5–10]. Chronic inflammation characterised by increased levels
of inflammatory factors in skeletal muscle such as tumour necrosis factor α (TNF-α) and
IL-6 is also a major mechanism of CC in both patients and mouse models [11–13]. Fur-
thermore, mitochondrial degeneration including network degeneration, elevated levels
of reactive oxygen species (ROS) production/emission, decreased mitochondrial quality
and reduced aerobic metabolism [5,14,15] are considered hallmarks of CC. Finally, skeletal
muscle satellite cells, as well as their regulators known as myogenic regulatory factors, may
play a role in mechanisms that underlie CC [16]. Satellite cell differentiation is inhibited
in CC and muscle fibres that are damaged during CC may undergo degeneration [4]. The
contributions of dysregulated protein turnover, increased chronic inflammation, mitochon-
drial dysfunction and myogenic disruption to the development and progression of CC are
complex and intertwined. Future therapeutic interventions for CC should be focused on
combating this constellation of dysfunction.

Nutritional interventions are insufficient to fully reverse the loss of body weight
induced by CC [17,18]. To date, there is no effective treatment to counteract wasting
in patients with CC. Exercise training is considered a therapeutic approach for many
chronic diseases. Generally, exercise can improve cardiorespiratory and neuromuscular
systems and promote psychological wellbeing [19–21]. The positive effects of exercise are
accompanied by beneficial adaptations at a molecular level [22]. Specifically, exercise train-
ing increases the gene expression of skeletal muscle myogenic factors (e.g., Pax7, MyoD,
Myogenin etc.) [23] and activates molecular pathways that regulate skeletal muscle mito-
chondrial biogenesis (e.g., elevated levels of PGC1-α) [24]. Furthermore, systematic exercise
training reduces chronic circulating inflammatory IL-6 levels, especially in individuals with
a non-active lifestyle [25].

Exercise training has been proposed as a non-pharmacological therapeutic approach
for CC [26–28]. The potential of exercise training to decrease cancer-induced inflammation
and oxidative stress [29], as well as mitigate cancer-induced suppression of anabolic sig-
nalling and protein synthesis [30] can be considered an efficient “tool” to attenuate skeletal
muscle abnormalities observed in CC. Preclinical studies highlight the benefits of exercise
training in animals with different types of cancer (e.g., ApcMin/+ and C26 colorectal cancer
mice [31,32], breast cancer mice [33–36], SENCAR skin cancer mice [37]) and rat models
such as Walker 256 carcinosarcoma [38–40]). Irrespective of the model, exercise training
further reduces tumour incidence, tumour multiplicity and tumour growth [41], as well
as attenuates the progression of CC [31,32]. A major unavoidable limitation of pre-clinical
studies in CC mouse models is the short timeline (three to four weeks) the mice have after
the inoculation of cancer cells. For this reason, the majority of pre-clinical studies begin the
exercise intervention before or just after the inoculation of cancer cells to succeed exercise-
induced adaptations [42]. This timepoint is undoubtedly earlier than the development
and progression of CC (around three to four weeks after cancer cells inoculation). For this
reason, most pre-clinical studies are designed with prevention of cachexia as the primary
goal leaving a relative dearth in data regarding reversal of existent cachexia.

Previous clinical studies in patients with cancer from early to advanced stages of
disease have concluded that exercise training, independent of modality (i.e., resistance,
endurance or concurrent training), has beneficial effects on skeletal muscle health, physical
performance, quality of life and psychological health [27,28,43–46]. Exercise training can be
also advantageous as a pre-operative intervention in cancer patients [47–49]. Specifically,
exercise not only improves the physical capacity and function of cancer patients [47,48],
but also ameliorates postoperative recovery [47] and may have a protective direct effect on
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tumour growth through altering the gene expression of immunity and inflammation “key”
factors [49]. Given the heterogeneity observed in cancer patients (i.e., different cancer diag-
noses, cancer stages and symptoms) in exercise clinical trials, further works are necessary
to evaluate exercise training as a monotherapy or combinatorial therapy throughout all
phases of cancer, including the phases of CC development and progression [42,50,51]. To
this point, ongoing clinical trials with exercise-based interventions in cancer patients are
presented in the new Supplementary Table S1.

Unfortunately, exercise training is not always feasible in humans or animals with
cancer due to cancer- and chemotherapy-induced fatigue, anaemia, cardiac dysfunction
and other comorbidities [52–54]. For instance, mild endurance training in C26 colorectal
cancer mice, a CC mouse model that suffers additionally from anaemia, does not pre-
vent body weight and muscle loss, and even worsened their condition [53,55]. In cases
of comorbidities along with cancer, exercise training should be performed only under
specific guidelines, precautions and supervision by specialists. The exercise workload
including exercise intensity, duration, frequency and modality should be meticulously
assessed in each case individually. Further preclinical studies using a translatable exercise
framework that can account for the comorbidities accompanying cancer are needed to
optimise exercise training programs to avoid any potential exercise-induced adverse effect.
Although all forms of exercise (resistance, endurance and concurrent training) induce
beneficial adaptations in CC-induced skeletal muscle damage [30–32,56,57], concurrent
resistance and endurance training may surpass resistance training per se or endurance
training per se. Such an approach improves both anaerobic and aerobic skeletal muscle
metabolism simultaneously [58–60], both of which are compromised with CC.

Biological sex differences have been observed in CC development and progression,
with females more resistant to the cancer-induced skeletal muscle decline [15,61]. However,
no study has directly investigated if exercise-induced beneficial adaptations in skeletal
muscle of patients or mice with CC differ between females and males. Studies in healthy
individuals have shown females and males respond differently to exercise stimuli [62,63].
When observationally comparing studies using the same CC mouse model but different bi-
ological sex, exercise-induced adaptations are similar in females and males [57,64]. Further
investigation is needed to confirm these observations.

The primary purpose of this review is to highlight the effects of exercise training on
molecular and physiological mechanisms related to CC, namely protein turnover, inflam-
matory signalling, mitochondrial function and satellite cell-related process. Importantly, we
emphasise the contraindications of exercise in some cancer conditions with comorbidities.
Secondly, we describe the effects and importance of different exercise modalities. Based
on the current literature, we propose the most advantageous exercise modality for cancer
patients. Finally, we aim to specify the differences between females and males in response
to exercise training during CC development and progression.

2. Effects of Exercise Training on Cancer Cachexia (CC) Mechanisms
2.1. Protein Turnover in Response to Exercise

One of the major hallmark features of CC is the net loss of skeletal muscle protein
due to the imbalance between protein breakdown and protein synthesis [5]. Preclinical
studies in Lewis Lung Carcinoma (LLC) male [7] and female [15] mice, as well as in a
colon cancer cachectic mouse model, ApcMin/+ mice [6] revealed a combination of a loss
of protein synthesis and increased markers of protein breakdown. Specifically, protein
fractional synthesis rate (FSR) decreases around 40%, while muscle protein ubiquitination
and protein levels of ubiquitin-proteasome marker FOXO1 increase around 50% in male
LLC mice 4 weeks after tumour implantation [7]. Similar to males, cachectic female LLC
mice also present reduced muscle protein FSR in gastrocnemius, whereas the mRNA
levels of Ubiquitin C, Atrogin-1 and Murf-1 are elevated [15]. In accordance with the
results in LLC mice [7,15], myofibrillar protein synthesis as well as mRNA content of
IGF-1 and phosphorylation of the mTOR signalling cascade decrease during CC, while
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protein degradation (ATP dependent and independent) increases during CC progression
in ApcMin/+ mice [6]. For further information about the advantages and disadvantages of
preclinical CC mouse models, the reader is directed to a recent review highlighting this
topic [5].

Exercise training increases protein synthesis in both healthy and diseased popula-
tions [65–67], while decelerating the high protein degradation induced by chronic dis-
eases [68,69]. Improvements in protein synthesis have also been observed in different
cancer mouse models after performing exercise training [30,70,71]. Specifically, endurance-
type wheel running (60 min in 5–6.5 m/min, 5 days/week, 11 weeks) leads to enhanced
phosphorylation of mTOR, a critical regulator of skeletal muscle protein synthesis [72], in
female C26-bearing mice [71]. Repeated eccentric contractions (10 tetanic contractions in
100 Hz, 6–12 V × 6 sets, 4 times/week for 2 weeks) of the tibialis anterior (TA), considered
a representative model of resistance exercise training for animal studies, improves pro-
tein synthesis and mTORC1 signalling and attenuates atrophy of oxidative and glycolytic
muscle fibres in male ApcMin/+ mice [30]. Activation of protein synthesis and mTORC1
signalling is also induced by a single bout of eccentric contractions in male ApcMin/+ mice.
Acute activation of mTORC1 occurs on the condition that the electrical stimulation that
elicits the eccentric contractions is not low-frequency (i.e., 10 Hz, 5 V) [73] but is sufficient
to induce tetanic contractions (i.e., 100 Hz, 6–12 V) [70]. Performing either single [64] or
multiple bouts of tetanic eccentric contractions [57] in female [64] and male [57] ApcMin/+

mice not only activates protein synthesis signalling but also suppresses muscle catabolic
signalling. Protein synthetic responses occur by reducing the protein expression of cellular
energy-sensing enzyme 5′-adenosine monophosphate-activated protein kinase (AMPK),
which is an established mTOR inhibitor and chronically activated in severely cachectic
muscle [74].

Beyond anabolic signalling, AMPK is known to activate catabolic signalling, in addi-
tion to its canonical functions in promoting energy metabolism and mitochondrial adap-
tation [75]. Herein, inhibition of AMPK is also observed after 8-week moderate-intensity
treadmill running (1 h at 18 m/min, 5% grade, 6 days/week) in male ApcMin/+ mice [31].
Furthermore, voluntary wheel running (for ~2.5 weeks) counteracts cancer-induced pro-
tein degradation through suppressing both the induction of ubiquitin ligases (Atrogin1,
also known as Fbxo32; and Murf1, also known as Trim63) and the protein expression of
autophagic markers (LC3bII/LC3bI ratio and p62/Gapdh ratio) in female C26 tumour-
bearing mice [32]. Similarly, decreased LC3bII/LC3bI ratio is also observed by either en-
durance training (15–45 min wheel running at 5–11 m/minor, 3 days/week, 2.5 weeks) [76]
or concurrent resistance (inclined ladder climbing with gradually increased resistance
load) and aerobic (25-min wheel running in 5–9 m/min speed) training (4 days/week,
5.5 weeks) [58] in male C26 tumour-bearing mice. Interestingly, similar exercise adaptations
in skeletal muscle protein turnover are observed when tumour-bearing mice are treated
with chemotherapy agents [77]. Specifically, moderate exercise training on a treadmill
(40–60 min at 60% of maximum speed, 5 days/week, 3 weeks) reduces the gene expression
of catabolic markers (Fbxo32, Trim63 and Myostatin) related to atrophy and increases it in
LLC mice treated with doxorubicin chemotherapy drug [77].

Similarly, a clinical trial reports that 10-week concurrent resistance (knee extension, leg
press, lateral pull-down, chest-press, back extension and sit-ups) and endurance (ergometer
cycling) training in cancer patients treated with chemotherapy can prevent cancer- and
chemotherapy-induced disruptions in molecular signalling cascades associated with the
ubiquitin proteasome system (e.g., Atrogin-1 and Murf-1) and protein synthesis (e.g.,
mTOR) [78]. As a result, exercise training seems to be a good strategy to combat unbalanced
protein turnover induced by cancer and chemotherapy in preclinical models and clinical
applications (Figure 1 and Table 1); however, further clinical trials are needed to establish
this empirically.



Cancers 2022, 14, 2512 5 of 23

2.2. Inflammatory Signaling in Response to Exercise

Chronic inflammation accompanied by elevated circulating inflammatory cytokines is
another major hallmark mechanism of CC pathogenesis [11]. Physical activity is associated
with lower odds of having elevated inflammation levels (e.g., elevated levels of C-reactive
protein—CRP) [79–81]. In preclinical studies, there is evidence that exercise has an anti-
inflammatory effect by reducing TNF-α expression [82–84]. The mechanism underlying
the anti-inflammatory response after performing exercise training is related to the major
role of the cytokine IL-6 [81]. Acute exercise can increase circulating levels of IL-6 [85],
which induces the production of the anti-inflammatory cytokines IL-1ra and IL-10 [85,86].
Exercise also inhibits the production of the inflammatory cytokine, TNF-α [81,87,88]. Acute
elevation of IL-6 after exercise stimulus is therefore considered a beneficial response that
could promote protein synthesis and advantageous skeletal muscle adaptations [89]. On
the other hand, long-lasting elevated systemic IL-6 levels activate catabolic signalling
pathways associated with muscle wasting [89]. Long-term exercise training decreases
circulating IL-6 levels, especially in individuals following a sedentary lifestyle [25]. Also,
an inverse correlation between the amount of weekly physical activity and the level of
plasma IL-6 in the resting state occurs in healthy males [90]. In addition, aged lifelong
exercisers with an aerobic training history of ~50 years not only present with lower serum
IL-6 levels compared to old healthy non-exercisers in the resting state, but also have similar
post-exercise (4 h after an acute resistance training session) gene expression of skeletal
muscle anti-inflammatory markers compared to young exercisers [91].

The anti-inflammatory benefits of exercise training have been described in preclinical
and clinical cancer studies [33,92–95]. Specifically, exercise training by treadmill (60 min
at 20 m/min, 5% grade, 6 days/week, 20 weeks) reduces the plasma concentration of
two major inflammatory markers, MCP-1 and IL-6, in female breast-tumour bearing mice
(C3(1)SV40Tag mouse model) [33]. This inflammatory reduction is associated with the
deceleration of breast tumour progression observed in C3(1)SV40Tag mice after the 20-week
exercise training program [33]. Treadmill running (15–30 min at 15–20 m/min, 3 days/week,
6 weeks) also reduces TNF-α concentration in the plasma and TNF-α gene expression in the
colon of mice with azoxymethane (AOM)-induced colon cancer [92]. Similarly, voluntary
wheel running for 4 weeks in breast cancer mice (PyMT) decreases not only circulating
but intramuscular levels of TNF-α protein, as well as reduces the intramuscular mRNA
content of several TNF-α target genes (Traf2, IκB-α, Ank1 and NFκB1) [36]. Furthermore,
a treadmill running program (25–40 min at 14–20 m/min, 5 days/week, 8–14 weeks),
starting either before or after injecting estrogen-dependent MC4L2 cancer cells in female
mice, reduces breast tumour volume and the levels of IL-6 in the tumour, on condition
that the mice continue exercising after the onset of tumorigenesis [93]. In addition, the
increased protein concentration of IL-6 observed in tumour of LLC mice treated with
doxorubicin chemotherapy is mitigated by 3-weeks of moderate exercise training on a
treadmill (40–60 min at 60% of maximum speed, 5 days/week) [77].

Surprisingly, a preclinical study in ApcMin/+ colorectal cancer mice showed that tread-
mill running (1 h at 18 m/min speed and 5% grade, 6 days/week, 8 weeks) does not
suppress systemic IL-6 overexpression induced by electroporating IL-6 plasmid in quadri-
ceps. This result is surprising since an exercise training program effectively prevents
the IL-6-induced decrease in body weight of male ApcMin/+ mice [31]. Although exercise
training improves phenotypic characteristics in male ApcMin/+ mice, such as lean mass and
motor function, 5-week voluntary wheel running does not decrease either tumour burden
or the elevated circulating IL-6 levels [96].

When data from two randomised controlled exercise training trials in breast cancer
patients were pooled and analysed together, the findings showed that exercise
training (12–18 weeks of resistance or concurrent training) does not decrease the
cancer/chemotherapy-induced levels of the inflammatory markers IL-6 and IL-6/IL-1ra
ratio [97]. However, it seems that exercise intensity plays a crucial role on the inflammatory
profile of patients with cancer during and after cancer treatment (chemotherapy and/or
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radiotherapy and/or endocrine therapy) [98]. Specifically, performing high-intensity con-
current resistance and aerobic training during cancer treatment results in a lesser increase
of the plasma inflammatory markers CRP and TNF-α immediately after completion of
cancer treatment, compared to performing low-intensity concurrent resistance and aerobic
training [98]. Also, many clinical trials have concluded that exercise training promotes an
anti-inflammatory profile in cancer patients undergoing chemotherapy or radiation ther-
apy [94,99,100]. Specifically, combination of resistance training with high-intensity aerobic
training (60-min sessions, 2 days/week for 16 weeks) [100] or resistance training per se
(60-min sessions, 2 days/week, 12 weeks) [99] mitigates [100] and even counteracts [99]
cancer-mediated increased levels of IL-6. In conclusion, exercise training suppresses the
CC-induced elevation of inflammatory markers in different CC mouse models except
for ApcMin/+ mice, as well as in humans, but only on condition that exercise intensity is
sufficient (Figure 1 and Table 1). Although concurrent resistance and endurance training
is considered the optimal exercise mode in cancer populations, further investigation is
needed to understand what intensity and duration of exercise training are ideal to promote
an anti-inflammatory profile in cancer patients.

2.3. Mitochondrial Function and Health in Response to Exercise

As observed in many pathologies, mitochondrial function and health declines with
CC. Mitochondrial dysfunction includes signalling pathways and mechanisms of mito-
chondrial biogenesis, fusion and fission [14,101,102], production of reactive oxygen species
(ROS) [14,103,104], as well as respiratory function [14,105], all of which influence CC de-
velopment and progression [5]. Results from our laboratory show that mitochondrial
degeneration precedes muscle wasting in tumour-bearing mice [14]. Specifically, increased
mitochondrial ROS production (one week after cancer cell implantation), degeneration
of the mitochondrial network (two weeks after implantation) and impaired respiratory
function (three weeks after implantation) were observed prior to muscle mass loss (4 weeks
after implantation) in LLC male mice [14]. These results accompanied by previous find-
ings [101,102] suggest mitochondrial degeneration as a potential key promoter of CC and,
as such, mitochondrial quality as a potential therapeutic target for the treatment of CC.

It is well-established that exercise training improves mitochondrial health inducing
robust adaptations in both mitochondrial content and quality [106,107]. Specifically, ex-
ercise training promotes oxidative phosphorylation and respiratory capacity, promotes
mitochondrial biogenesis and decreases ROS emission [106–108]. Mitochondrial function
and health are also improved with exercise training in patients and rodents with can-
cer [55,56,58,109,110]. Specifically, concurrent resistance (inclined ladder climbing with
gradually increased resistance load) and aerobic (25-min wheel running in 5–9 m/min
speed) training (4 days/week, 5.5 weeks) in male C26 tumour-bearing mice may preserve
mitochondrial function as indicated by preventing the reduction in muscle succinate dehy-
drogenase (SDH) activity induced by tumour growth [58]. Although it was not statistically
significant, a trend toward increased PGC-1α levels was also observed in the C26 mice that
performed concurrent training [58]. Interestingly, significant increases in the protein and
gene expression levels of PGC-1α, the master regulator of mitochondrial biogenesis [111],
have been noted in C26 and LLC tumour-bearing mice when the exercise intervention
(45 min running on treadmill at 14 m/min, 5 days/week for 2–8 weeks) is combined with
erythropoietin (EPO) treatment for preventing anaemia [55]. Anaemia is identified in 40%
to 80% of patients who have cancer [112] as well as in different cancer mouse models [113]
and impairs oxidative metabolism due to hypoxia [114]. A recent study found that 4-week
voluntary wheel running effectively counteracted mitochondrial dysfunction preventing
muscle mass loss in C26 mice, without compromising running activity [109]; this occurred
even though an EPO treatment was not administered. Specifically, the voluntary wheel
running attenuated CC-induced mitochondrial abnormalities in tumour-bearing C26 mice
attenuating: (i) decreased expression levels of mitochondrial-related proteins (OXPHOS
subunit proteins and PGC-1α); (ii) decreased mitochondrial enzyme activity (citrate syn-
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thase and cytochrome c oxidase); (iii) decreased expression levels of mitochondrial fusion
and fission proteins (Mfn2 and Drp1); (iv) increased mitochondrial oxidative stress; and
(v) increased appearance of damaged mitochondria with disrupted cristae structure [109].
In addition, five-week voluntary wheel running increases the protein expression of mito-
chondrial complex II and IV in male ApcMin/+ mice [96].

The beneficial effect of exercise training on mitochondrial health and function in CC
mice has been confirmed by a clinical trial in women with breast cancer during chemother-
apy [56]. A 16-week training program (2 days/week), including either resistance training
combined with high-intensity interval training or aerobic training combined with high-
intensity interval training, increased mitochondrial content in the skeletal muscle of cancer
patients, as indicated by the elevated levels of citrate synthase activity [56]. However,
compared to controls (cancer patients treated with usual care), increased levels of the
electron transport chain proteins (complex I, II and IV) were observed only in patients
that performed concurrent aerobic training and high-intensity interval training, but not
in patients that performed concurrent resistance and high-intensity interval training [56].
Therefore, the training volume as well as the aerobic nature of the exercise stimulus are two
major factors to successfully preserve mitochondrial function in cancer patients undergoing
chemotherapy. In conclusion, exercise training improves mitochondrial health and function
in skeletal muscle of mice and patients with cancer (Figure 1 and Table 1), with aerobic
training being the optimal exercise stimulus that favours mitochondrial adaptations.

2.4. Satellite Cells and Myogenic Regulatory Factors in Response to Exercise

Skeletal muscle satellite cells, as well as their regulators known as myogenic regulatory
factors (MRFs; e.g., Myf5, MyoD, myogenin and MRF4) and Pax7 play a role in mecha-
nisms underlying CC [16]. Satellite cells (SC), along with other progenitor populations,
become activated and enter a regenerative program in response to cancer-induced skeletal
muscle membrane damage in both cancer patients and tumour-bearing mouse models [4].
Muscle membrane damage is reportedly mediated by excessive systemic inflammation
from tumours. Due to Pax7 overexpression, myogenic cells are unable to fuse and help
alleviate muscle fibre damage [4]. Inaba et al. [115] concluded that the proliferation and
differentiation abilities of muscle stem cells derived from the C26 tumour-bearing mice
are sustained in vitro. However, inefficient regeneration process in skeletal muscle in
C26 tumour-bearing mice, as determined by immunohistological analysis (eMyHC stain-
ing), is observed in vivo, potentially due to the cancer-induced decrease of neutrophils,
macrophages, and mesenchymal progenitors [115]. While speculative, impaired satellite
cell function during CC could also potentially mediate muscle atrophy due to dysregulation
of fusion-independent communication to muscle fibres and/or interstitial cells [116–119]. In
addition, chronic doxorubicin (DOX) administration, a highly effective chemotherapeutic
agent for treating various types of cancer, reduces SC density in the soleus of ovariec-
tomised female rats [120]. Considering that cancer per se affects satellite cell behaviour,
the combination of both the disease and chemotherapies may induce SC dysfunction and
exacerbate CC [121].

Exercise training can promote hypertrophy and satellite cell contribution to muscle
fibres through SC activation, proliferation and differentiation [122], as well as fusion-
independent mechanisms [116–119]. Long-term [123] or short-term [124,125] exercise
training increases the number of SCs in both healthy and diseased populations. Preclinical
studies in CC mice also confirm the beneficial effects of exercise training on SC func-
tion [126]. Specifically, voluntary wheel running for 19 days normalises cancer-induced
dysregulated protein expression of Pax7 to control levels, as well as restores muscle mass
by increasing the size of glycolytic muscle fibres in C26 mice [126]. Resistance exercise
(ladder climbing with resistance loading increased 10% bi-weekly, 3 repetitions × 5 sets,
3 days/week, 11 weeks) potentially activates myogenic cell activity in C26 mice, as indi-
cated by increased mRNA levels of myogenin [71]. Conversely, aerobic training (60 min
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wheel running at 5–7 m/min speed, 5 days/week, 11 weeks) does not significantly increase
the levels of any myogenic regulatory factor [71].

A clinical trial in female cancer patients treated with chemotherapy concluded the
number of SCs does not change in either Type I or Type II muscle fibres after a 10-week
concurrent resistance and aerobic training program [78]. However, cautious interpreta-
tion of these findings is needed since methodological limitations, including the small
heterogeneous sample size of cancer patients, the different chemotherapies used for each
patient and the lack of non-exercise control group, are present in this study [78]. Specif-
ically, as a non-exercise control group is not included in this study [78], no change in
SC content after exercise training could be potentially interpreted as preservation of SCs,
which is a beneficial response. In agreement with the aforementioned results, resistance
training (3 days/week for 9–16 weeks) does not change the SC content in either Type I or
Type II muscle fibres in patients with prostate cancer undergoing androgen deprivation
therapy [127] or in patients with germ cell cancer undergoing cisplatin-based chemother-
apy [128]. Similarly to the exercised cancer patients, the SC content in either Type I or
Type II muscle fibres does not change in the non-exercise cancer patients (control group) of
both clinical trials [127,128]. However, it is worth mentioning that even if the SC content is
unchanged, that does not mean the function of the SCs is unchanged as well. Nevertheless,
the function of SCs, including SC activation, proliferation and differentiation, was not as-
sessed in the aforementioned studies. In addition, to interpret exercise-induced responses,
exercise workload including intensity, duration and frequency, should be considered. It
is conceivable the exercise training programs of published trials [78,127,128] may not be
sufficiently rigorous to induce significant changes at least at a cellular level.

In contrast to single exercise mode studies, concurrent resistance and high-intensity
interval training by cycle ergometry (2 days/week for 16 weeks) increases the SC number
per fibre in women with breast cancer during chemotherapy [56]. Also, the increase in
SC number is significantly associated with the increase in muscle fibre CSA and muscle
strength [56]. Surprisingly, in the same clinical trial no improvement of SC content was
found in breast cancer patients either in the group performing 16-week concurrent aer-
obic and high-intensity interval training or in the usual care group (control group) [56].
Therefore, the improvement of SC content after concurrent resistance and high-intensity
interval training in the presence of cancer may reflect an activation of the skeletal muscle
repair process to counteract CC [56]. Exercise modality seems to play a critical role on
triggering skeletal muscle SC activation. In conclusion, exercise may improve SC function
in mice with cancer, but there is no clinical trial which has assessed intrinsic SC function in
patients with cancer after performing exercise training. Clinical trials report an increase in
the number of SCs only when patients with cancer follow concurrent resistance and high-
intensity interval training by cycle ergometry (Figure 1 and Table 1). To better understand
if exercise training can ameliorate satellite cell dysfunction in cancer, future studies are
needed to assess SC content and SC function, as two distinct factors, that both contribute to
the CC development and progression. Further attention should also be paid to the muscle
microenvironment (e.g., extracellular matrix composition, inflammatory milieu, behaviour
of the muscle fibre, etc.) during CC, as the satellite cell niche strongly influences satellite
cell behaviour [129]. In addition, given that SCs not only contribute to muscle repair and
growth but also communicate throughout muscle and specifically fibrogenic cells [116–119],
it would be interesting for future studies to investigate if exercise training could decrease
cancer-induced fibrosis [130] through SC-mediated mechanisms.
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3. Contraindications to Exercise in Cancer

Co-existent health problems usually accompany cancer, complicating the way exercise
prescription should be applied to cancer patients. Comorbidities are present in around 70%
of cancer patients and 35% of these individuals have more than two comorbid conditions.
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The frequency of comorbidities may decrease or increase based on the type of cancer,
age, gender, lifestyle and socioeconomic status of cancer patients [131,132]. The most
common comorbidities associated with cancer are anaemia, cardiac dysfunction, chronic
fatigue, hypertension, diabetes, asthma and arthritis [53,133,134]. Exercise is considered
an unquestionably beneficial intervention to mitigate not only CC but also impairments
caused by different comorbidities. However, in case of cancer being accompanied by a
comorbidity, components of exercise training workload (i.e., duration, intensity, weekly
frequency, rest between sets) should be carefully selected and adjusted based on every
individual’s condition, so that any potential exercise-induced adverse effect can be avoided.
If a comorbidity compromises the health condition of cancer patient, exercise training
should not be performed until addressing the symptoms and/or causes of comorbidity.

As an example, avoidance of exercise should be recommended in anaemic cancer
patients until their haemoglobin reaches normal levels [53,135]. Anaemia (haemoglobin
level < 12 g/dL) occurs in approximately 40–80% of cancer patients depending on cancer
stage and type [112] and may contribute to muscle wasting of cachectic cancer patients [136].
Anaemia is also a major side effect of chemotherapy [137], which may further worsen the
already low haemoglobin levels induced by cancer. As mentioned before, in C26 tumour-
bearing mice, in which CC is associated with anaemia, treadmill running (45 min at
14 m/min speed, 5 days/week, 8 weeks) does not improve skeletal muscle wasting, but
even worsens it when the exercise training is performed for only 2 weeks [55]. However,
when haemoglobin levels are corrected through EPO administration, treadmill running
(45 min at 14 m/min speed, 5 days/week, 2 weeks) is able to counteract both the oxidative
myofiber atrophy and the shift from oxidative to glycolytic fibre type, potentially through
stimulating PGC-1α expression [55]. Moreover, in LLC mice where anaemia is more severe
compared to C26 mice, exercise training per se (45 min treadmill running at 14 m/min
speed, 5 days/week, 4 weeks) can prevent muscle strength loss. A combination of exercise
training with EPO administration can additionally promote muscle oxidative capacity and
intracellular ATP content, alleviate muscle wasting, and prevent the onset of mitochondrial
ultrastructural alterations [55]. These results [55] are meaningful to highlight the major role
of preserving haemoglobin concentration close to normal levels to prevent CC through
exercise training.

The administration of EPO in cancer patients with anaemia revolutionised the treat-
ment of this complication around 20 years ago with impressive results from a haematologi-
cal perspective while simultaneously avoiding the adverse effects of blood transfusions in
anaemic patients with cancer [138,139]. However, later scientific evidence shows that EPO
treatment in cancer patients mediates a variety of serious adverse effects, including survival
decrease [140], acceleration of tumour progression [141] and an increase in the incidence of
thromboembolic events [142]. For this reason, utilisation of EPO in cancer patients has been
restricted, especially among patients treated with a curative intent and in patients with
advanced tumours but long-term survival expectations [143]. Iron administration (oral or
intravenous) is now considered a promising alternative to normalise haemoglobin levels in
anaemic cancer patients [144,145].

Heart function is also impaired in tumour-bearing mice and rats (C26 carcinoma
tumour-bearing mice [146–148], LLC tumour-bearing mice [149], breast tumour-bearing
mice [150] and liver tumour-bearing rats [151]). Also, a series of epidemiological studies
conclude that there is a comorbidity of cancer and cardiovascular diseases [152,153]. Many
cancer therapies (e.g., anthracyclines, HER-2-targeted agents, mitotic inhibitors, immune
modulators, radiation etc.) induce cardiac toxicity and lead to long-term and most likely
permanent myocardial injury [154,155]. Considering that a remarkable percentage of cancer
patients additionally suffer from heart failure [156,157], further precautions should be taken
when exercise is performed in these populations. Any potential adverse effect of exercise
in cancer patients with a comorbidity of heart failure could be prevented by following the
exercise training guidelines specific to patients with heart failure [158]. Also, in case of
immunosuppressed or bone marrow transplanted cancer patients, exercise training should
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be avoided in public gyms until their white blood cell count returns to normal levels [135].
In addition, due to the additional energetic demands caused by the tumour, especially
when cachexia has developed, appropriate nutritional support is required for patients with
cancer perform exercise training [159].

Exercise training, even if it is high intensity, is considered safe and effective in cancer
patients either shortly after completion of primary cancer treatment [160] or during cancer
treatment [161], but on condition that no medical contraindications are present [161]. In
case of cancer patients presenting comorbidities, exercise training should be performed
only under specific guidelines, precautions and supervision by specialists. Future preclin-
ical exercise studies should consider the limitations of human exercise oncology studies
related to cancer- and treatment-induced complications; and design exercise experiments in
preclinical models addressing simultaneously other comorbidities which may present [162].

4. Effects of Different Exercise Modalities (Resistance, Endurance and Concurrent
Training) in Cancer Cachexia (CC)

Even though exercise training is considered a therapeutic and preventive approach
for many diseases, special attention should be paid to exercise modality based on the
clinical goal of the exercise intervention. Exercise modality plays a major role on specifying
exercise-induced physiological adaptations and stimulating particular biological systems
(e.g., cardiorespiratory, neuromuscular). Specifically, in healthy populations resistance train-
ing promotes muscle hypertrophy and muscle strength/power increase [20]. Endurance
training mainly induces cardiovascular and respiratory adaptations improving respiratory
and heart function [19], but also increases skeletal muscle capillary density [163,164], ox-
idative capacity [165,166] and mitochondria content and function [164,166]. Paradoxically,
endurance training can also produce skeletal muscle hypertrophy but mainly in sedentary
individuals or populations with muscle wasting, such as the elderly [167]. Concurrent
training can stimulate both aerobic and anaerobic metabolic pathways, combining the ben-
eficial adaptations induced by both resistance and endurance training [168]. Interestingly,
concurrent training can be also more hypertrophic in untrained/sedentary populations
compared to athletes or well-trained populations [169].

In preclinical cancer studies, as elaborated in aforementioned sections, exercise
training protocols consisting of resistance training per se [30,57,71], endurance training
per se [31–33,71,76,77,92,96,109,126] or concurrent resistance and aerobic training [58] in-
duce beneficial adaptations in tumour-bearing mice (C26, LLC, ApcMin/+, AOM, breast-
tumour bearing mice). In addition, regardless of modality, exercise training positively
affects the quality of life of cancer patients [170,171]. Resistance training improves muscle
strength of the upper and lower body, increases lean body mass, decreases percentage of
body fat and counteracts cancer-induced increases in inflammatory factors without eliciting
adverse effects in cancer patients [99,172,173]. Endurance training is also a safe and efficient
method to improve aerobic capacity in cancer patients through preserving skeletal muscle
mitochondrial function [56], promoting antioxidant defence system [174] and reducing
fatigue symptomatology [175]. Although the majority of clinical trials emphasise the bene-
ficial role of exercise training in cancer patients, given that specific precautions are taken
(e.g., addressing comorbidities [161], individualising exercise programs [159], covering
additional energetic demands [159]); a recent meta-analysis highlighted the inconsistency
of data in clinical trials about the effectiveness of exercise in patients with cancer [50]. These
inconsistencies can be explained by limitations (i.e., heterogeneity of participants in cancer
diagnosis, cancer stages and symptoms) of the clinical trials [50].

A great number of clinical trials, as well as the guidelines by American College of
Sports Medicine [59], propose a combination of both resistance and endurance training
in cancer patients, since concurrent training can induce wide-ranging physical adapta-
tions promoting both aerobic (VO2max and resistance to fatigue) and anaerobic (muscle
strength and function) components simultaneously without any adverse effect in cancer
patients [60,176–178]. The phenotypic improvements of concurrent training in patients
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with cancer have been confirmed at the molecular level as well. Based on previous human
studies, concurrent resistance and endurance training prevents cancer- and chemotherapy-
induced disruptions in protein degradation and protein synthesis [78], decreases circulating
inflammatory markers [98,100] and increases mitochondrial and SC content [56]. From
a molecular perspective, the advantage of concurrent training in cancer patients may be
related to the determinant role of mitochondria in CC. Specifically, given that cancer-
induced mitochondrial impairments may lead to decrements in protein synthesis and
elevated protein degradation [179], then endurance training may maximise the effects of
resistance training by normalising the cancer-induced unbalanced protein turnover through
improving mitochondrial health and function.

Considering the findings of exercise studies in both animals and humans with can-
cer, concurrent resistance and endurance training could be considered an optimal exercise
modality to successfully elicit improvements in total muscle health/quality. The characteris-
tics of concurrent training may be also crucial to produce the intended results in improving
or preserving skeletal muscle mass in patients with CC. Based on literature in healthy
populations, to maximise the hypertrophic effects of concurrent training, endurance and
resistance elements should be separated 6–24 h [169] and if this is not feasible, the resistance
exercise bout should precede the endurance exercise bout within the same session [180,181].
The endurance element should have an interval form including high-intensity bouts, ideally
cycling [168,169,180,181]. More preclinical studies in tumour-bearing mice are needed to
clarify the molecular and physiological mechanisms contributing to the anaerobic and aero-
bic improvements induced by concurrent resistance and endurance training in patients and
animals with cancer. A novel, very promising and well representative model of human con-
current training, called “PoWeR”, has been recently introduced to mouse studies [182–184].
Briefly, “PoWeR” training consists of voluntary wheel running with progressively increased
loading (from 2 g to 6 g of weight) and induces robust cardiac adaptations and skeletal
muscle hypertrophy [182–184]. Generally, voluntary wheel running is considered a viable
preclinical exercise framework that can account for the fatiguing aspects of cancer and/or
chemotherapy, closing the gap between preclinical and clinical oncology studies [162].
Therefore, future preclinical studies could use the PoWeR training as a translatable murine
model of concurrent training in tumour-bearing mice. An alternative to concurrent training
for preclinical studies with vulnerable tumour-bearing mice could be the combination of
voluntary wheel running with a novel voluntary weightlifting model for mice, which elicits
squat-like activities against adjustable load during feeding [185].

To conclude, concurrent resistance and endurance training is suggested as the most
beneficial modality of exercise for patients with cancer. Nevertheless, further investigation
using a translatable concurrent exercise training in cancer mouse models is needed to better
understand the physiological and molecular responses in cancer cachectic skeletal muscle
after performing concurrent training.

5. Biological Sex Differences in Response to Exercise in Cancer Cachexia (CC)

Both clinical and preclinical studies in the CC field suggest biological sex differences
affect muscle wasting development and progression in cancer patients and cancer mouse
models [5,61,186]. Specifically, it is well established that male cancer patients present
a higher prevalence of cachexia, more severe muscle mass and weight loss and greater
reduction of muscle strength compared to female cancer patients [61]. In addition, animal
studies have suggested the cellular and molecular mechanisms contributing to CC, as well
as the pace of CC development and progression, are different between male and female
cachectic mice [15,61,187]. Specifically, male ApcMin/+ mice are sensitive to inflammation
(IL-6)-mediated cachexia [6], while female ApcMin/+ mice undergo cachexia progression
IL-6-independently [187]. Similarly, female LLC tumour-bearing mice present multiple
protections in both metabolic and contractile skeletal muscle function in the early stages of
tumour development [15], while male LLC tumour-bearing mice present many metabolic
perturbations before the onset of cachexia [7,14]. Therefore, female tumour-bearing mice
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may have a stronger defence system protecting them from tumour-induced muscle degen-
eration [15].

Generally speaking, female muscles are more fatigue-resistant and appear to exhibit
enhanced mitochondrial quality compared to male muscles [61,62]. However, males exhibit
greater SC content [188] and increased mRNA expression of MyoD and myogenin [189],
two factors associated with SC proliferation and differentiation and potentially skeletal
muscle hypertrophic and regenerative potential. Considering the biological sex dissimi-
larities observed in the skeletal muscle, different skeletal muscle adaptations in response
to a metabolic stimulus, such as exercise training, may be induced in males and females.
Indeed, a previous human study based on young and healthy adults concluded that males
present greater muscle protein synthesis and mitochondrial biogenesis than females in
response to 3-weeks of sprint interval training [190]. However, when low-to-moderate
continuous endurance training (cycling at 60% of VO2max, 5 days/week, 7 weeks) is per-
formed, no difference is observed in skeletal muscle enzyme oxidative potential between
males and females [191]. Furthermore, acute high-intensity resistance training combined
with post-exercise whey protein ingestion increases myofibrillar protein synthesis and
p70S6K1 phosphorylation similarly in males and females, although the postexercise testos-
terone responses in females are 45-fold lower than males [192]. Conversely, compared to
male, female skeletal muscle is more resistant to fatigue for a task of the same relative
intensity [62,193,194]. Females present a lower degree of contractile impairment and faster
rate of recovery following exercise with intermittent isometric knee extensions [194].

To our knowledge, no study has directly investigated biological sex differences in
response to exercise in cancer patients or tumour-bearing mice. However, an indirect
and observational comparison between preclinical studies with different biological sex
suggests exercise-induced adaptations in skeletal muscle are similar in female and male
tumour-bearing mice [57,64]. Specifically, a representative resistance training for animals
involving lower limb contractions through high-frequency electric stimulation for 2-weeks,
increases weight and size of Type IIa and IIb fibres in the TA muscle, improves myofibrillar
protein synthesis, as well as attenuates cachexia-induced AMPK activity and reduction
of skeletal muscle oxidative capacity similarly in ApcMin/+ female [64] and male ApcMin/+

mice [57]. In addition, 2-week resistance training in the form of high-frequency electric
stimulation increases EDL weight and protein content in female C26 mice [195]. Although
no study has investigated the effects of resistance training per se in male C26 mice, previous
studies have shown that even endurance training per se or concurrent endurance and
resistance training can induce beneficial skeletal muscle adaptations in male C26 mice
preventing cancer-induced muscle wasting and loss of muscle strength [58,76]. Also, in
both male [76] and female [32] C26 mice physical activity via wheel running suppresses the
protein expression of the autophagic markers LC3B and p62.

The beneficial effects of exercise training in cancer patients appear similar between
males and females [196]. Specifically, clinical studies that recruited either female [197,198]
or male [199,200] cancer patients suggest exercise is an efficient therapeutic intervention for
preserving muscle wasting and muscle strength loss. However, similarly with preclinical
cancer studies, no clinical study has directly investigated biological sex differences in
exercise-induced adaptations in cancer patients. Future preclinical exercise studies in CC
mouse models should be focused on assessing potential biological sex differences in skeletal
muscle adaptations in response to exercise training. Discovering potential differences in
exercise-induced skeletal muscle adaptations between male and female tumour-bearing
mice could guide personalised exercise training protocols based on biological sex, thereby
optimising the effects of exercise training in both male and female cancer patients.

6. Conclusions

There is now a large body of evidence suggesting exercise training as a beneficial
therapeutic approach for decelerating the development and progression of cancer-induced
atrophy. Preclinical and clinical studies have shown that exercise training, regardless of
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modality, beneficially regulates the molecular and cellular mechanisms that contribute
to CC pathology. Protein turnover, inflammatory signalling, mitochondrial function and
satellite cell number can be advantageously controlled by exercise training in animals and
patients with cancer. Given the majority of cancer patients present at least one comor-
bidity, exercise training could elicit adverse events in these vulnerable individuals. For
this reason, meticulous precautions (e.g., low-intensity exercise training protocols under
constant supervision by specialists) should be taken while exercise is performed. In many
instances, a complete address of comorbidities (e.g., haemoglobin back or close to the
normal levels) may be essential before cancer patients begin an exercise training program.
Fatigue of cancer patients related to either comorbidities (e.g., anaemia) or radiation thera-
pies/chemotherapies should be also taken into account for the exercise training program
prescription to avoid exercise adverse effects in these vulnerable patients.

Based on findings from preclinical and clinicals studies, as well as the guidelines of
American College of Sports Medicine for cancer patients, concurrent resistance and en-
durance training is considered the most advantageous exercise modality for cancer patients.
Concurrent training simultaneously improves elements of both aerobic and anaerobic
metabolism. Nevertheless, further investigation is needed to understand the molecular
mechanisms activated through concurrent training and contributing to improving skeletal
muscle health of patients with CC. A novel voluntary wheel running protocol for mice,
called PoWeR training [182–184], could be a representative exercise mode of concurrent
resistance and endurance training. Generally, voluntary wheel running in cancer mice is
considered a translatable exercise mode since it accounts for the fatiguing aspects induced
by comorbidities or side effects of cancer treatments. Consequently, future preclinical stud-
ies using the PoWeR exercise training protocol in cancer mice could explain many aspects
of mechanisms underlying the deceleration of cancer-induced atrophy after performing
a concurrent training protocol, which is appropriate even if comorbidities are presented
along with cancer.

Finally, when comparing observationally the beneficial exercise-induced adaptations
between male and female patients or mice with cancer, both biological sexes seem to
respond similarly to exercise stimuli. However, neither preclinical nor clinical studies in
the cancer field have investigated directly the potential biological sex differences on the
skeletal muscle in response to exercise training in the tumour-bearing state. Given that
dissimilarities are observed in CC development and progression between females and
males, future investigation is needed to understand if the biological sex in cancer patients
plays a crucial role on the exercise-induced adaptations. The Figure 2 summarises all of the
aforementioned conclusions of this review.
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cancer cachexia (protein turnover, inflammation, mitochondrial function and satellite cell regulation);
and the influence of cancer comorbidities, exercise modality and biological sex in the effectiveness of
exercise training in cancer cachexia.
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