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Abstract

Penicillin-non-susceptible Streptococcus pneumoniae (PNSP) were first detected in the 1960s, and are now common worldwide, 
predominantly through the international spread of a limited number of strains. Extant PNSP are characterized by mosaic pbp2x, 
pbp2b and pbp1a genes generated by interspecies recombinations, with the extent of these alterations determining the range 
and concentrations of β-lactams to which the genotype is non-susceptible. The complexity of the genetics underlying these 
phenotypes has been the subject of both molecular microbiology and genome-wide association and epistasis analyses. Such 
studies can aid our understanding of PNSP evolution and help improve the already highly-performing bioinformatic methods 
capable of identifying PNSP from genomic surveillance data.

Data Summary
The prevalences of penicillin-non-susceptible pneumococci 
across European countries were extracted from the European 
Centre for Disease Prevention and Control’s (ECDC) annual 
reports on Antimicrobial Resistance Surveillance in Europe. 
The data on consumption of penicillins across European 
countries were extracted from the ECDC’s annual reports on 
Surveillance of Antimicrobial Consumption in Europe. The 
editions used are specified in the Data bibliography.

The burden of penicillin-non-
susceptible pneumococcal disease
Streptococcus pneumoniae (the pneumococcus) is a common 
Gram-positive commensal of the human, typically infant, 
nasopharynx. Outpatient consumption of antibiotics, particu-
larly in children, is assumed to represent the main selection 
pressure driving the evolution of pneumococcal antibiotic 
resistance. Correspondingly, carriage surveys in infants often 
identify recent antibiotic consumption as a risk factor for 
carrying penicillin-non-susceptible pneumococci (PNSP) 
[1–5]. Transmission dynamic modelling suggests this is likely 
to reflect treatment clearing carriage of penicillin-susceptible 

pneumococci, reducing their ability to block the acquisition 
of PNSP through competition [6]. At both the regional [1] 
and continental [7] scales, this results in a linear relationship 
between outpatient use of penicillins and the proportion of S. 
pneumoniae isolates that are penicillin non-susceptible, which 
typically spans the range of ~1 % to over 40 % [7]. Analysis of 
recent data from the European Centre for Disease Preven-
tion and Control (ECDC; Fig.  1) shows this relationship 
across European countries. This trend has persisted despite 
the introduction of pneumococcal polysaccharide conjugate 
vaccines (PCVs) [8], which protect against a subset of strains 
[9], although the correlation appears to have weakened 
substantially relative to the pre-PCV period [7].

Pneumococci themselves drive substantial paediatric 
antibiotic consumption. S. pneumoniae is one of the two 
primary aetiological agents of acute otitis media (AOM) 
[10], which affects 80 % of children before the age of 3 years, 
and correspondingly represents one of the main reasons 
for prescribing antibiotics to children [11, 12]. Reducing 
incidence of this usually non-critical S. pneumoniae disease, 
or changing treatment recommendations, should substan-
tially reduce bystander selection on commensal bacteria to 
become more resistant to penicillin [13]. Yet efforts to reduce 
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Fig. 1. Correlation between outpatient consumption of penicillins and the proportion of invasive pneumococcal disease isolates that 
were non-susceptible to penicillin across European countries in 2010, when the 13-valent PCV superseded the 7-valent formulation 
in many countries, and 2015. The blue lines show the best-fitting linear relationships (Spearman correlations; N=25, ρ=0.32, P=0.12 
for 2010; N=28, ρ=0.42, P=0.027 for 2015), and the grey shaded areas show the corresponding 95 % confidence intervals. Each point is 
labelled with the two letter code of the corresponding country, as defined by Eurostat (https://ec.europa.eu/eurostat). There is notable 
variation in reporting practices between countries; additionally, in 2010, most reporting laboratories used CLSI (Clinical and Laboratory 
Standards Institute) guidelines, whereas in 2015 most used EUCAST (European Committee on Antimicrobial Susceptibility Testing) 
guidelines. Generally, meningitis isolates should be consistently reported as PNSP if their MIC is above 0.06 μg ml−1, and non-meningitis 
isolates should be consistently reported as PNSP if their MIC is above 2 μg ml−1. Reporting is less consistent regarding whether non-
meningitis isolates with an MIC above 0.06 μg ml−1, but equal to or below 2 μg ml−1, are defined as PNSP. National penicillin consumption 
was quantified as Defined Daily Doses (DDD). Data are from the ECDC (https://www.ecdc.europa.eu/).

PNSP prevalence through lowering antibiotic consumption 
have had limited impact. In Iceland, reduced carriage of a 
multidrug-resistant S. pneumoniae strain was observed over 
a decade in which there was a one-third reduction in paedi-
atric antimicrobial consumption, but there was no overall 
fall in PNSP carriage over this period [14]. Similarly, a 20 % 
reduction in outpatient antibiotic consumption over a decade 
in Sweden was contemporaneous with the curtailing of a 
multidrug-resistant outbreak, but did not result in a decrease 
in PNSP carriage [15]. A community intervention trial in 
the USA achieved a similar decrease in antibiotic consump-
tion, but did not show a decrease in PNSP carriage in the 6 
month post-intervention period relative to control regions 
[16]. Furthermore, there was no decline in the proportion of 
PNSP isolated from AOM cases over a 5 year period in Israel, 
despite an almost one-third decline in antibiotic prescribing 
to children under the age of 5 years, mainly driven by lowered 
penicillin dispensing [17]. Therefore, it seems PNSP persist 
among circulating strains at their established prevalences for 
years after changes in antibiotic consumption.

In 2013, the Centers for Disease Control and Prevention 
(CDC) estimated antibiotic-resistant S. pneumoniae were 
causing 1.2 million infections in the USA annually, resulting 
in 7000 deaths [18]. Mortality typically results from PNSP 
infections that are rarer and more invasive than AOM, such as 
pneumonia, bacteraemia and meningitis. These diseases have 
high case fatality rates even when pneumococci are antibiotic 
susceptible [19]; hence, meta-analyses have sought to identify 
the increase in mortality attributable to PNSP. Such a study of 
pneumococcal pneumonia found PNSP were associated with 

a relative risk of death of around 1.3 [20], although it can be 
difficult to adjust for the confounding associations between 
resistance and differences in pneumococcal pathogenicity [8]. 
A similar analysis of invasive pneumococcal disease across 
Europe found patients had a relative risk of death of 1.91 
if the pathogen were a PNSP, although meningitis was the 
only clinical presentation that was individually significantly 
associated with worse outcomes when caused by PNSP [21]. 
Combining such information with continent-wide surveil-
lance data estimated PNSP (including those resistant to addi-
tional antibiotics) caused over 5000 bloodstream infections 

Impact Statement

Streptococcus pneumoniae, or the pneumococcus, causes 
a variety of diseases that have been routinely treated with 
penicillins since the 1940s. Penicillin-non-susceptible 
pneumococci (PNSP) were first detected in the 1960s, 
and multiple PNSP strains have since spread worldwide. 
PNSP continue to co-circulate with penicillin-susceptible 
pneumococci, despite changes in prescribing practices 
and vaccine introductions hoped to reduce the preva-
lence of resistant bacteria. This review highlights the 
role of genomics in improving our understanding of how 
PNSP evolved, enhancing our ability to trace their trans-
mission, and developing new methods of predicting how 
pneumococci will respond to treatment with different 
penicillins.

https://ec.europa.eu/eurostat
https://www.ecdc.europa.eu/
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Fig. 2. Summary of the genetic determinants of pneumococcal β-lactam-non-susceptibility, and their relative positioning in the 
bacterium’s chromosome.

across Europe annually, with an attributable mortality of 316 
in 2015 [22].

Population genomic analyses of 
penicillin-non-susceptibility
There is extensive variation in isolates’ levels of penicillin 
non-susceptibility, which reflects the complex genetics of 
S. pneumoniae resistance to β-lactams. For most clinical 
presentations, only minimum inhibitory concentrations 
(MICs) above 2 μg ml−1 cause difficulties for treatment, and 
this breakpoint was adopted in 2008 [23]. However, the poor 
penetration of penicillin through the blood–brain barrier [22] 
means isolates with an MIC above 0.06 μg ml−1 are classed as 
resistant in cases of meningitis.

The first reported PNSPs, exhibiting MICs up to 0.2 μg ml−1, 
were from Massachusetts (USA) in the 1960s [24]. Higher-level 
resistance was detected in Australia and Papua New Guinea 
later the same decade (maximum MIC of 2 μg ml−1), and in 
Minnesota (USA; maximum MIC of 4 μg ml−1) and South 
Africa (maximum MIC of 12 μg ml−1) in the 1970s [25]. Radi-
olabelling experiments demonstrated the non-susceptibility 
of these South African isolates resulted from alteration to 
as many as five of the six pneumococcal penicillin-binding 
proteins [26]. These changes enabled the proteins to main-
tain their physiological role in cell wall metabolism, while 
having lowered affinity for penicillin. Their coding sequences 
were found to have a mosaic structure, with short segments 
exhibiting high (>10 %) divergence relative to the orthologous 
sequences in penicillin-susceptible pneumococci [27, 28]. 
This was the consequence of recombination with closely 
related species that also inhabit the human oronasopharynx, 
such as Streptococcus oralis and Streptococcus mitis [28, 29]. 
The alterations conferring penicillin-non-susceptibility 

seem likely to have either arisen as neutral variation [30], or 
emerged under selection as resistance-conferring mutations 
[31], in these donor species prior to being imported into S. 
pneumoniae through transformation.

Further molecular microbiology work elucidated the relation-
ships between non-susceptibility phenotypes and particular 
penicillin-binding proteins (Fig. 2). Some penicillins (e.g. 
amoxicillin) and third-generation cephalosporins are highly 
effective at inhibiting Pbp2x and, therefore, changes to pbp2x 
alone confer low-level non-susceptibility [32, 33]. Although 
piperacillin (commonly prescribed in combination with 
tazobactam) is also most active against Pbp2x [34], altera-
tions to pbp2b are the first step mutations for low-level non-
susceptibility to this drug [35]. Alterations to both pbp2x 
and pbp2b are required for elevated MICs to all penicillins 
[32]. Additional changes to Pbp1a are necessary to confer 
high-level resistance to both penicillins and cephalosporins 
[32, 33]. Further increases in MICs to both classes of β-lactam 
can be achieved through modification of the murMN genes, 
which alters the structure of the cell wall [36, 37]. Only a few 
years after the first PNSP were identified, a wide variety of 
pbp2x, pbp2b and pbp1a alleles were observed throughout the 
species, with extensive exchange between genotypes through 
transformation [38].

Such recombination means there is limited linkage disequi-
librium across genetically diverse S. pneumoniae populations, 
increasing the resolution of genome-wide association analyses 
in the species. Consequently, an analysis of β-lactam non-
susceptibility across two independent population samples 
was able to confirm the dominant contribution of the 
three frequently-altered penicillin-binding protein genes 
(pbp2x/2b/1a) with sufficient precision to indicate the most 
strongly associated gene segments [39]. These encoded the 
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Table 1. Association of Pbp2x/2b/1a polymorphisms with penicillin-
non-susceptibility

Li and colleagues found 27 positions within the Pbp2x/2b/1a 
transpeptidase domains that were consistently altered in highly PNSP 
isolates from the USA (MIC of at least 4 μg ml−1) relative to penicillin-
susceptible S. pneumoniae [40]. These have a relatively low overlap with 
the set of sites correlated with penicillin-non-susceptibility across two 
independent populations in a genome-wide association study [39]. This 
highlights the difficulty of identifying the causative changes underlying 
the penicillin-non-susceptibility phenotype in global collections of 
isolates.

Penicillin-binding 
protein

Amino acid position Co-detected by 
GWAS

1a T371 No

1a E397 No

1a N405 No

1a T540 No

1a N546 Yes

1a A550 No

1a T574 No

1a S575 Yes

1a Q576 Yes

1a F577 Yes

1a L583 Yes

1a A585 Yes

2b Q427 No

2b T446 No

2b E476 No

2b T489 No

2x R254 Yes

2x M256 Yes

2x T338 Yes

2x I371 No

2x G382 No

2x R384 No

2x T401 No

2x N444 No

2x S531 No

2x L565 No

2x S576 No

GWAS, genome-wide association study.

transpeptidase domain of Pbp2x, the transglycosylase domain 
of Pbp1a and the dimerization domain of Pbp2b. Loci within 
Pbp1a showed the strongest differential association with 
penicillin and cephalosporin resistance, suggesting different 
mechanisms of high-level resistance to these β-lactam classes. 
Few other loci were found to contribute to non-susceptibility 
in these populations, with almost all of the PNSP phenotypes 
explicable via SNPs co-detected as contributing to resistance 
in both populations. However, the low overlap of these SNPs 
with the set of polymorphisms consistently identified in 
highly resistant S. pneumoniae from the USA [40] gives an 
indication of the challenge of specifying the causative changes 
that underlie the PNSP phenotype (Table 1).

The pbp2x/2b/1a genes were also highlighted by phenotype-
blind genome-wide epistasis analyses. Studies employing 
direct coupling analysis [41, 42] and pairwise mutual infor-
mation [42, 43] methods identified the links between these 
genes as by far the strongest signals of co-evolution between 
spatially separate loci in the S. pneumoniae chromosome. This 
likely represents the fitness advantage of alterations at pbp1a, 
and often pbp2b, typically being contingent upon corre-
sponding alterations at pbp2x. Alternatively, it may represent 
the importance of compensatory mutations, not directly 
involved in causing resistance, but instead maintaining the 
routine physiological functioning of the altered proteins 
[44]. Genes determining resistance to the components of 
co-trimoxazole were among the few other loci highlighted by 
both the association and epistasis analyses, likely representing 
co-selection for resistance to both classes of antibiotic [39, 41].

Genomic epidemiology of penicillin-
non-susceptible strains
The co-evolution of these resistance loci means pbp2x/2b/1a 
alleles associated with non-susceptibility accumulate in indi-
vidual genotypes, and consequently these alleles’ frequencies 
are similar within a population, representing their underlying 
correlation with the prevalence of circulating PNSP (Fig. 3). 
The most successful PNSP clones, or strains [45], were origi-
nally defined by the Pneumococcal Molecular Epidemiology 
Network (PMEN) [46], which identified over 20 strains with 
penicillin MICs above 0.06 μg ml−1 by 2006. Many of these 
PNSP PMEN clones were associated with resistance to other 
classes of antibiotics, and were the vector by which the loci 
causing multidrug-resistance in pneumococci spread glob-
ally [47]. The evolutionary epidemiology of these strains has 
recently been described in detail using an international collec-
tion of pneumococcal genomic data [48, 49].

Phylodynamic analyses of PNSP PMEN strains confirms 
that they have rapidly transmitted worldwide [50], with 
strains common in a particular region typically having been 
imported multiple times, even within isolated locations 
[51, 52]. Reconstructing these genotypes’ evolutionary history 
reveals they appear to have acquired non-susceptibility 
alleles of the pbp2x/2b/1a genes over a short timeframe, and 
possibly simultaneously [38, 53]. Such emergence of the 

PNSP phenotype may occur sporadically within an otherwise 
susceptible lineage [45], or occur multiple times in parallel 
in a closely related set of isolates [51, 52], else a single acqui-
sition of resistance may give rise to a widely disseminated 
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Fig. 3. Distribution of penicillin-binding protein alleles associated with penicillin-non-susceptibility in four systematically sampled 
populations: carriage isolates from Maela (Thailand), Massachusetts (USA) and Southampton (UK), and disease isolates from Nijmegen 
(Netherlands). The sequence data are the set described by Corander and colleagues [74], in which alleles of penicillin-binding protein 
transpeptidase domains associated with non-susceptibility were identified through their deviation from a reference set of sequences 
from a susceptible isolate. The proportions of PNSP were reported for Maela and Massachusetts samples [39], assumed to be the same 
as for a similar carriage study from the UK for the Southampton samples [75], or estimated from national-level 2010 ECDC data (Fig. 1) 
for the Nijmegen samples.

lineage [50]. As yet, there is little evidence of intermediate 
genotypes that would suggest stepwise emergence of PNSP. 
This apparent saltational evolution could represent limited 
sampling of historical events, or the heterogeneous nature of 
S. pneumoniae transformation, which typically only imports 
a short segment of sequence from a divergent strain once 
every few years, but intermittently facilitates multiple large 
recombinations [54].

PNSP evolution during their global spread typically involves 
an accumulation of variation through further recombi-
nation, which is generally concentrated at ‘hotspots’ of 
transformation events [50]. The pbp2x, pbp2b and pbp1a 
genes are frequently modified by such sequence exchange 
[45, 51, 52, 55], suggesting they may be adapting to changing 
β-lactam prescribing practices. Additionally, pbp2x and pbp1a 
closely flank the capsule polysaccharide synthesis (cps) locus 
(Fig. 2), which determines the pneumococcal serotype and, 
therefore, whether the bacterium is targeted by immunity 
induced by the PCVs [8]. ‘Serotype switching’ recombina-
tions that enable vaccine escape can, therefore, also affect 
pbp2x and pbp1a. Laboratory experiments have demon-
strated a single large transformation-mediated homologous 
recombination can both decrease susceptibility to penicillin 
and change an isolate’s serotype [56]. Conversely, serotype 
switches in a PNSP strain can cause pbp2x and pbp1a to revert 
to susceptibility-associated alleles [51].

Genomic surveillance in the post-
vaccine era
S. pneumoniae surveillance is critical for understanding the 
impact of PCVs. As these vaccines targeted many serotypes 
expressed by PNSP strains, it was hoped they would cause a 
sustained reduction in S. pneumoniae antibiotic resistance 
[57]. However, following the first introduction of the 7-valent 
PCV in the USA, the inital observed reduction in the fraction 
of invasive pneumococcal disease caused by PNSP proved 
only temporary, and ‘bounced back’ to its original propor-
tion a few years later [58]. This mirrored the typically stable 
frequency of PNSP in S. pneumoniae carriage populations 
[59, 60]. In the USA, these changes largely reflected the 
elimination of multiple vaccine-targeted lineages with high 
penicillin MICs, and the contemporaneous emergence of 
PNSP not targeted by the 7-valent PCV [61]. These PNSP 
increasing post-PCV comprised a few highly-resistant strains, 
typically of serotype 19A, as well as diverse PNSP with lower 
penicillin MICs [61, 62]. Consequently, the updated 13-valent 
PCV now includes the 19A capsule as an antigen [8], although 
vaccine-induced immunity has yet to completely eliminate 
this serotype [63, 64]. Worldwide genomic epidemiology has, 
nevertheless, identified a general decrease in the prevalence 
of PNSP in the initial years following the introduction of the 
13-valent PCV, albeit with multiple PNSP strains not targeted 
by the vaccine increasing in frequency [65]. These include 
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a lineage of serotype 11A in Spain [66], multiple genotypes 
expressing serotype 35B in the USA [67], and isolates of 
serotype 24F emerging as a major cause of infant meningitis 
in France [68].

Some countries are now switching to routine whole-genome 
sequencing for the surveillance of PCV impact on pneu-
mococcal disease. This can be a cost-effective approach, as 
both population structure and serotypes can be efficiently 
inferred from these genetic data [48, 49, 69, 70], in addition 
to most antibiotic-resistance phenotypes [71]. However, the 
diversity of pbp2x/2b/1a alleles makes predicting penicillin-
non-susceptibility from the genome challenging, particularly 
considering the importance of accurately ascertaining the 
MICs for multiple classes of β-lactams for informing treat-
ment strategies [23]. Two approaches have proved effective 
at addressing this challenge using a database of Pbp2x/2b/1a 
transpeptidase domain sequences and MICs maintained by 
the CDC [71, 72]. The ‘mode MIC’ method uses a typing 
scheme created from these domain sequences, and predicts 
new isolates to have the MIC most commonly observed 
in the set of isolates in the database with the most similar 
Pbp2x/2b/1a profile [40]. The ‘random forest’ approach 
employs a machine learning method trained on existing 
data to predict the MICs directly from the transpeptidase 
domain amino acid sequences [40, 71]. Both methods have 
demonstrated very high (>98 %) correspondence with micro-
biological susceptibility typing when providing information 
relevant for treatment, with retesting of discrepant examples 
often concurring with the genomic prediction [40, 71]. While 
both are most effective when applied to already-characterised 
proteins, the random forest method is the more effective tech-
nique when applied to previously unobserved Pbp2x/2b/1a 
sequences [40, 73]. Consequently, genomics promises to 
play an increasingly prominent role in the evaluation of new 
vaccines and treatment practices that may be employed to 
reduce PNSP disease.
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