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Macrophages are important immune cells that participate in both innate and adaptive
immune responses, such as phagocytosis, recognition of molecular patterns, and
activation of the immune response. In this study, murine peritoneal macrophages were
isolated and then activated by LPS, HSV and VSV. Integrative proteomic and precision N-
glycoproteomic profiling were conducted to assess the underlying macrophage activation.
We identified a total of 587 glycoproteins, including 1239 glycopeptides, 526
monosaccharide components, and 8326 intact glycopeptides in glycoproteomics, as
well as a total of 4496 proteins identified in proteomic analysis. These glycoproteins are
widely involved in important biological processes, such as antigen presentation, cytokine
production and glycosylation progression. Under the stimulation of the different pathogens,
glycoproteins showed a dramatic change. We found that receptors in the Toll-like receptor
pathway, such as Tlr2 and CD14, were increased under LPS and HSV stimulation.
Glycosylation of those proteins was proven to influence their subcellular locations.

Keywords: macrophage, N-glycosylation, Toll-like receptors, glycoproteomics, inflammatory response
INTRODUCTION

Glycosylation is an important post-translational modification of proteins, and glycoproteins are
widely involved in various important cellular biological processes and diseases (1). Different glycans
of proteins can result in different immunogenicities and immune functions (2). Current research
shows that the glycan of a protein can directly affect its structure and can also maintain the stability
of the protein (3). The biosynthesis of N-glycans is a highly orderly process. A high-mannose
oligosaccharide precursor is synthesized and transferred to proteins in the endoplasmic reticulum
and then processed in the Golgi apparatus (4).

For better insight into the role of glycosylation in biological progress and diseases, glycosylation profiling
strategies are necessary for glycobiology studies. Large-scale analysis of glycosylation in organisms includes
glycomics (glycan profiling) and glycoproteomics (glycosylation site profiling) (5). Mass spectrometry and
lectin arrays are common technologies publicly adopted in glycosylation analysis. Lectin array technology is
based on the lectin-glycan affinity (6), which is not suitable for glycoproteomic analysis. Mass spectrum-
org August 2021 | Volume 12 | Article 7222931
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based high-throughput characterization of glycosylation as well as
proteomic analysis has been used for years (7–11). Currently, analysis
by liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS) of intact glycopeptides is often the method of choice in
site-specific glycoproteomic studies (12). Yang’s group developed a
fine-tuned MS/MS acquisition method and pGlyco 2.0 search engine
to perform confident intact glycopeptide characterization (13).

Macrophages are immune cells widely distributed throughout
the body and are components of innate immunity. These cells
participate in pathogen recognition, apoptotic cell clearance, and
antigen presentation (14). Macrophages have different activation
states in different microenvironments (15) and pathogenic
stimulation (16). Glycans are one of the four fundamental
macromolecular components of all cells and are highly
regulated in immune cells, including macrophages. New
technology for glycomic and glycoproteomic analysis has been
used in macrophage research. The N-glycome showed a dramatic
change during human monocyte-to-macrophage transition (17)
and murine macrophage polarization (18). Infection with
Mycobacterium dramatically altered the N-glycosylation of
macrophages (19, 20). Multiple studies have shown that
N-glycosylation of macrophages is changed in different
microenvironments and infection statuses. There is a lack of
studies that performed intact glycopeptide analysis of
macrophages under stimulation with different pathogens.

Our research applied high-throughputMS acquisition with the
pGlyco2.0 search engine to analyze the glycoprotein variation of
mouse peritoneal macrophages under LPS, HSV and VSV
stimulation. In this study, we acquired both proteomic and
intact N-glycoproteomic data and identified 8326 intact
glycopeptides among 587 glycoproteins. Under different stimuli,
glycoproteins showed significant changes. Through pathway
analysis of the changed glycoproteins, we observed significant
enrichment in the Toll-like receptor pathway. CD14, Tlr2, and
Tlr7 levels were upregulated in response to stimulation with
different pathogens. In addition, we proved that inhibiting
glycosylation may affect the expression and localization of these
proteins. By mutating glycosylation sites in a plasmid, we
confirmed that the mutation of N-glycosylation sites directly
affects Tlr2 subcellular localization.
MATERIAL AND METHODS

Cells and Reagents
RAW264.7 cells were obtained from the Chinese Academy of
Sciences. NIH-3T3 was a gift from Wenbo’s laboratory, Fudan
University. DMEM and EDTA trypsin were purchased from
HyClone (USA). LPS (lipopolysaccharide) was purchased from
Sigma-Aldrich (USA). The HSV-1 and VSV strains were kindly
provided by Dr F. Qian, Fudan University, China and Dr FJ.
Hou, SIBCB, CAS, China. PNGase F was purchased from NEB
(England). Trypsin was purchased from Promega (Madison,
USA). A C18 column was purchased from Waters
(Massachusetts, USA). HILIC Amphion was purchased from
Welch (Shanghai, China). The iTRAQ label kit was purchased
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from AB SCIEX (Framingham, USA). The RT-RNA kit and
qPCR kit were purchased from TaKaRa (Japan). CD14, Tlr2,
Icam1, and Cox2 antibodies (rabbit) were purchased from
Abcam (Cambridge, England). Antibodies (rabbits) against
Tlr7 were purchased from Proteintech (Chicago, USA). Anti-
rabbit conjugated with 488 fluorescence was purchased from
Invitrogen (Waltham, USA).

Cell Culture
Mouse peritoneal macrophages, RAW264.7 cells and NIH-3T3
cells were cultured in DMEM (containing 10% FBS and
1% penicillin/streptomycin). To inhibit glycosylation of the cell
lines, we incubated these two cell lines with DMEM containing
tunicamycin (1 mg/ml), kifunensine (1 mg/ml) and swainsonine
(1 mg/ml) for 48 hours. Murine peritoneal macrophages were
obtained according to a previous study (21) and cultured in
DMEM for at least 2 hours at 37°C to make them adhere to
the substrate.

All experiments on mice were performed in accordance with
the Guiding Principles for Research Involving Animals and
Human Beings and approved by the ethics committee at
Fudan University.

Protein Extraction, Tryptic Digestion, and
Sample Preparation
Proteins were extracted from peritoneal macrophages using 4%
SDS denaturing buffer (Tris-HCl, pH=7.6). Lysis was performed
for 30 minutes. The protein concentration was quantified by a
BCA kit (Thermo). Before tryptic digestion, 5 volumes of
precooled acetone were added to the protein, and the sample
was incubated at -20°C. After centrifugation at 140000 rpm for
40 minutes, the supernatant was removed. The protein was
resuspended in 50 mM ABC, and trypsin was added at a
concentration of 1:50 (w/w) to the protein in the solution.
Proteins were digested for 18 hours at 37°C. A C18 desalting
column was used to desalt peptides according to the protocol.
Approximately 100 µg of desalted peptides from different groups
was labeled with iTRAQ 8-plex reagent according to previous
studies (22).

Glycopeptide Enrichment
Lyophilized peptides were reconstituted with loading buffer (80%
acetonitrile, 1% TFA). A 200 µL pipette tip was filled with
approximately 20 µg ZIC-HILIC to construct a ZIC-HILIC
column. Then, 100 µl of washing buffer (80% acetonitrile, 1%
TFA) was added to a ZIC-HILIC column and centrifuged at
10000 rpm for 2 minutes, and the eluate was discarded. The
column was washed three times. The peptides were loaded onto
the ZIC-HILIC column and centrifuged at 10000 rpm for
2 minutes, and the eluate was discarded. The glycopeptide was
eluted from peptide with 200 µL of elution buffer 1 (0.1% TFA),
20 µL of elution buffer 2 (50 mM ABC) and 20 µL of elution
buffer 3 (50% acetonitrile).

LC-MS/MS
In quantitative proteomics, prefractionated peptides were labeled
with iTRAQ 8-plex reagent and analyzed by LC-MS/MS.
August 2021 | Volume 12 | Article 722293

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Precision N-Glycoproteome of Murine Macrophage
Intact N-glycopeptides were quantified using a label-free
method. Details are provided in the Supporting Information.

Release N-Glycan on Protein
by PNGase F Enzyme
Approximately 20 µg of protein was diluted to a 9 µl volume,
1 µl of 10× protein denaturant was added, and the mixture was
boiled in boiling water for 10 minutes and placed on ice. Then,
2 µl of 10× glycoprotein buffer, 2 µl of 10×NPC, and 7 µL of water
were added. Finally, 1 µl of PNGase F enzyme was added. The
sample was reacted at 37°C for 18 hours.

Western Blot
The protein was separated by 10% SDS-PAGE at 30 mA for
2 hours in running buffer and then transferred onto a nitrocellulose
membrane at 300 mA for 1.5 hours. Then, the cells were blocked in
blocking buffer (5% BSA in TBST) for at least 1 hour. The
membrane was incubated with a 1:500 to 1:2000 dilution of
primary antibody in blocking buffer overnight. The membrane
was washed with TBST 3 times. The membrane was incubated
with a 1:5000 dilution of HRP-conjugated anti-rabbit secondary
antibody in blocking buffer for 1 hour. The membrane was washed
three times. Proteins were detected by chemiluminescence
and autoradiography.

Cell Immunofluorescence Assay
The cells were fixed on glass coverslips with 4% formaldehyde for
10 minutes and washed with PBS for 3 minutes, and this
procedure was repeated three times. Cells were blocked for
1 hour in 4% BSA dilution in PBS. After blocking, the cells
were incubated in a 1:500 dilution of primary antibody
overnight. The coverslips were washed 3 times with PBS. The
secondary antibody (anti-rabbit-488, anti-rat-Cy3) was diluted
1:2000 and incubated with the cells for 1 hour. The slides were
washed with PBS three times. The coverslips were sealed on a
glass slide with DAPI Antifade Solution. The samples were
stored at 4°C after mounting on the slides for anti-fluorescence
quenching (485 nm, 566 nm detection signal).

Plasmid Constitution and Transfection
The Tlr2 and Tlr2 (N414Q/N442Q) gene sequences were
inserted into the GV141 plasmid. The Tlr2 sequences were
chemically synthesized (GeneChem, Shanghai, China), and
sequencing analysis is shown in Supporting Information.
Competent bacteria and plasmids were incubated on ice, and
50 ng reconstituted plasmid was added to 5×105 cells, placed on
ice for 20 minutes, placed in a 42°C water bath for 90 seconds,
and cooled on ice for 2 minutes. Then, the sample was inoculated
on solid medium containing 10 mg/ml ampicillin and cultured
overnight. Single colonies were selected and inoculated in 20 ml
(10 mg/ml ampicillin) of LB medium. The bacteria were shaken
and cultivated overnight. After centrifugation at 4000 rpm for 20
minutes, amplified colonies were obtained, and plasmids were
extracted from the bacteria via a Plasmid Mini Preparation Kit.

Then, 1.5 ml of serum-free medium was added to each well of
a six-well plate and incubated for at least 2 hours. Next, 4.5 ml of
Lipo3000 reagent was diluted in 120.5 ml of serum-free medium
Frontiers in Immunology | www.frontiersin.org 3
and incubated for 5 minutes. Three micrograms of plasmid and
P3000 to 125 ml were diluted with serum-free medium. Then, the
plasmid solution was added to the Lipo3000 dilution, slowly
mixed by pipetting, and incubated for 25 minutes. The mixed
solution containing the plasmid and Lipo3000 was added
dropwise to the six-well plate. After incubation for 6 hours, the
medium was changed. Samples were collected after 48 hours
of incubation.

Data Analysis
The intact glycopeptides were identified by the pGlyco2.0 search
engine. The intact glycopeptides were quantified by iBAQ.
Proteomic data were obtained and quantified by PEAKS.
Statistical analysis was performed with R-software. Differential
analysis was applied by the limma package (23). A heat map with
a clustering tree was generated by the pheatmap package, and
hierarchical clustering was performed according to the Euclidean
distance measure. Gene Ontology analyses were performed
according to the R packages clusterProfiler (24) and the
org.Mm.eg.db package. The network diagram was generated by
using Cytoscape. Colocalization was analyzed using ImageJ and
Fuji software.
RESULTS

Quantitative Proteome and
N-Glycoproteome in Murine
Peritoneal Macrophages Under
Different Pathogenic Stimuli
We integrated multiple technologies to quantify the
N-glycoproteome and proteome and to study the changes in
macrophages in response to different stimuli (LPS, HSV, VSV) at
different times (0 hours, 4 hours, 6 hours) (Figure 1A).
In quantitative proteomic analyses, peptides were labeled with
iTRAQ 8-plex reagent and analyzed by LC-MS/MS. Intact
N-glycopeptides were quantified using a label-free method and
were directly identified with pGlyco 2.0. A total of 4497 proteins
were identified by proteomic analysis (Table S1), and 587
glycoproteins were identified by glycoproteomic analysis. Three
hundred thirty-two glycoproteins were identified in both
proteomic and glycoproteomic analyses (Figure 1B). In three
biological replicates, we identified 8326 intact N-glycopeptides
and 526 N-glycan components from 1239 peptides on 587
glycoproteins (Figure S1A and Table S2). The correlation
coefficient of biological replicates in the same group was above
0.85 (Figure S1B).

Among the N-glycosylation sites identified in our study, 822
sites were recorded in the UNIPROT database, and 241 were
uniquely identified in this study (Figure 1C). SAP, CATD, and
CD68 had relatively higher abundances in both the proteomic
and glycoproteomic analyses (Figure 1D). Gene Ontology
analysis displayed a remarkable enrichment in immunity-
related pathways (such as antigen processing and presentation)
in the both glycoproteomics and proteomics (Figure S2).
The gene sets from the proteomic analysis with strong
August 2021 | Volume 12 | Article 722293
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enrichment in RNA splicing and ribosome biogenesis were
eliminated in the glycoproteomic analysis (Figure 1E). Next,
we grouped the GO terms of the identified glycoproteins into a
correlation network by calculating common genes. The GO
terms were cytokine secretion, antigen presentation,
phagocytosis and other immune processes (Figure S3). In
summary, these results indicated that glycoproteins were
focused on immune function.

Global Analysis of Intact N-Glycopeptides
in Murine Macrophages
Approximately 63.77% of glycoproteins have one glycosylation
site, and 3 glycoproteins have over 10 glycosylation sites. MPR1
and TLR13 were found to have 12 glycosylation sites in this study
Frontiers in Immunology | www.frontiersin.org 4
(Figure 2A). LRP1, an endocytosis receptor mainly involved in
endocytosis and phagocytosis of apoptotic cells (25), was shown
to have 30 glycosylation sites. MPRI and TLR13 had 13
glycosylation sites. MPRI (known as cation-independent
mannose-6-phosphate receptor) mediates the transport of
phosphorylated lysosomal enzymes from the Golgi apparatus
and cell surface to lysosomes. TLR13 is a member of the Toll-like
receptor family, is mainly found in lysosomes, and recognizes
bacterial S23 ribosomes (26). Over 100 different glycans were
identified on the glycosylation sites of GPNMB (N249), SAP
(N80), CATD (N261), and CD68 (N169) (Figure 2B).
The distribution of the glycosites and site-specific glycans
showed the microheterogeneity of protein N-glycosites. The
high mannose N-glycan monosaccharide was the most popular
A

B

C

D E

FIGURE 1 | A brief summary of proteomic and glycoproteomic analyses. Experimental workflow: Peritoneal macrophages were extracted from mice and stimulated
with LPS, HSV or VSV. Lysates were collected from macrophages at 4 hours and 6 hours after stimulation (A). The Venn plot shows the proteins identified by
proteomics and glycoproteomics (B). The Venn plot of glycosylation sites that were identified in this study and recorded in the UNIPROT database (C). Abundance
distribution of the proteins and glycoproteins identified by the proteomic and glycoproteomic analyses (the relative intensity of the proteins was calculated by the
maximum intensity in either the proteome or glycoproteome) (D). Gene Ontology analysis of the proteomic and glycoproteomic data (E).
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N-glycan attached to the glycopeptides (Figure 2C). KEGG
enrichment analysis on proteins modified with both sialic acid
and fucose demonstrated that lysosome and phagosome related
processes are shown significantly enriched in sialylated and
fucosylated glycoproteins. (Figure S4). The distribution of
glycoproteins in different subcellular locations demonstrated
that proteins on the cell membrane were widely glycosylated,
Frontiers in Immunology | www.frontiersin.org 5
lysosomal glycoproteins tended to have multiple glycosites, and
most of these proteins had more than 2 sites (Figure 2D).

Glycosylation enzymes operate predominantly in the endoplasmic
reticulum (ER) and Golgi, a highly compartmentalized membrane-
bound environment (27). Figures 2E and S5 shows the different
subcellular locations of these glycoproteins; in other words,
the glycans on diverse proteins tended to be different.
A B

D

E F

C

FIGURE 2 | Analysis of the precise N-glycoproteome. Bar plot of the top 15 glycoproteins with most glycosylation sites (A), the glycosylation sites with the top 15
monosaccharide constructs (B), and the monosaccharide construction (the ‘9 2 0 0 0’ in the figures represent glycans constituted by 9 Hex, 2 HexNAc, 0 NeuAc, 0
NeuGc, and 0 fucose. The remaining molecules were similarly described) on most glycopeptides (C). The distribution of glycoproteins in different subcellular locations
(D). Glycan distribution of the glycoproteins. The size and color of the dot represent the total intensity of the intact glycopeptides (E). Diagram of the glycosylation
progress in different subcellular organelles (F).
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Glycan processing from the ER to the Golgi gives rise to three main
classes of glycans: high-mannose, hybrid and complex
glycans (Figure 2F).
Variated Processes of the
N-Glycoproteome in Activated Murine
Peritoneal Macrophages
Proteins and glycoproteins with consistently upregulated and
downregulated expression under stimulation with LPS, HSV and
VSV were clustered using fuzzy C-means clustering (Figures 3A,
C). Then, they were clustered in a heatmap (Figures 3B, D).
Frontiers in Immunology | www.frontiersin.org 6
In the proteome, the expression levels of proteins in the ‘TGF-
beta signaling pathway’ and ‘signaling pathways regulating
pluripotency of stem cells’ categories were downregulated, and
those in ‘NOD-like receptor signaling pathway’ and ‘necroptosis’
were upregulated under stimulation with LPS, HSV or VSV
(Figure 3B). In the glycoproteome, the levels of glycoproteins in
the ‘complement and coagulation cascades’, ‘glycosphingolipid
biosynthesis – ganglio series’ and ‘lysosome’ pathways were
upregulated under LPS stimulation. The categories ‘Toll-like
receptor signaling’ and ‘phagosome’ were enriched under
stimulation with LPS, HSV or VSV (Figure 3D). In brief, the
variation in the proteins in macrophages under LPS stimulation
A B

C D

FIGURE 3 | Regulatory groups and functional differences. Proteins with consistently upregulated and downregulated expression in proteomic (A) and glycoproteomic
profiling (C) under these three different stimulations. These continuously changed proteomes were further clustered in a heatmap and are presented with related GO
terms (B, D).
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was different from that under stimulation with HSV and VSV in
both the proteome and glycoproteome. The proteomic
alterations under HSV and VSV stimulation showed a similar
pattern (Figure 3B), while the glycoproteome changes under
HSV stimulation shared a similar pattern with those under LPS
stimulation (Figure 3D). The N-glycoproteomic analysis also
indicated that the Toll-like receptor pathway changed during
these three conditions.

The gene-concept network showed the enriched GO terms of
glycoproteins with consistently upregulated expression and their
relationship with Toll-like receptors (Figure 4 and Table S3).
TLR7 and TLR9 were related to VSV stimulation, while TLR2
and CD14 were related to LPS and HSV treatment (Figure 4).
TLR7, TLR9, TLR2 and CD14 were related to the NF-kB
pathway and IL-8 production. IFNB (interferon beta) was
induced under HSV and VSV stimulation, which was related
to virus infection. The enrichment networks showed that Toll-
like receptors (TLR2, CD14, TLR7) were important in these
different stimulations. These glycoproteins are pattern
recognition proteins that trigger the innate immune response.
Frontiers in Immunology | www.frontiersin.org 7
Glycosylation Regulates the Subcellular
Localization of Glycoproteins and the
Expression of Cytokines
To confirmed the expression of the glycoproteins, we performed
western blot of Cd14, Tlr2, Tlr7, Icam1, and Cox2 (Figure 5A).
These results showed that Tlr2, Cox2 and Icam1 display
upregulated expression under LPS, HSV and VSV stimulation.
Tlr7 and Cd14 had no significant change under the stimulation
(Figure 5A). Therefore, we checked the co-location of the Tlr7
and Lamp1 (lysosomal membrane markers) (Figures S6A–D).
The results of the confocal image showed that co-location of the
Tlr7 with Lamp1 was significant raised under the stimulation of
the VSV (Figure S6E).

To explore the effect of glycosylation on the subcellular
location of glycoproteins, we applied an N-glycosylation
inhibitor to the RAW264.7 macrophagic cell line. Tunicamycin
is a UDP-GlcNAc analog that can inhibit the transfer of
precursor oligosaccharides to the nascent polypeptide chain.
Kifunensine and swainsonine are alkaloids that inhibit
endoplasmic reticulum mannose I and Golgi alpha mannose II,
FIGURE 4 | Gene-concept networks of glycoproteomics. Gene-concept network of significant GO terms enriched by consistently upregulated glycoproteins
(grouped in Figure 3C) and their associations with top-related glycoproteins. The glycoproteins are represented by colored rectangles with the protein names in the
center. Enriched GO terms are represented by colored circles. Colors illustrates changed glycoproteins under different stimulations (single or combinational).
The size of each circle is proportional to the number of belonging to multiple annotation categories.
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respectively. The response to ConA lectin in RAW264.7 lysates
was lower after treatment with tunicamycin but higher after
treatment with kifunensine and swainsonine. PHA-E lectin
resulted in a higher response after treatment with tunicamycin
and a higher response after treatment with kifunensine and
swainsonine (Figure S7). The cell membrane localization of
Tlr2 was decreased after treatment with tunicamycin, while
that in the cytoplasm was also increased after treatment with
kifunensine and swainsonine (Figure 5C). The cell membrane
localization of Cd14 was also decreased in the tunicamycin
treatment group, while the fluorescence and cytoplasmic
location of Cd14 was increased in the kifunensine and
swainsonine treatment groups (Figure 5D).

Since the subcellular localization of Toll-like receptors was
significantly changed after treatment with different glycosylation
inhibitors, we explored the cytokine expression of RAW264.7
cells under stimulation with different pathogens (LPS, HSV,
VSV) and different glycosylation inhibitors. Under LPS, HSV
and VSV stimulation, the expression of IL-1b was suppressed by
tunicamycin treatment (Figure 5B). Under VSV stimulation, the
expression of IFN-g was significantly upregulated after
tunicamycin treatment. Expression of TNFa demonstrates no
Frontiers in Immunology | www.frontiersin.org 8
significant changes under the treatment of different glycosylation
inhibitors (Figure S8).

Previous analysis indicated that the glycosylation of Toll-like
receptors is important in the response to pathogen stimulation.
Alignment of the Tlr2 amino acid sequence of different species
showed that the glycosylation site identified in this study was
conserved in the species listed below (Figure 6A). The glycan on
the two-glycosylation site was a high-mannose and complex
N-glycan with terminal modification of sialic acid (Figure 6B).
According to a previous study, glycosyltransferase is present in
the ER and Golgi apparatus. High mannose N-glycan types are
transferred to nascent peptides in the ER, and complex
N-glycans progress to the Golgi apparatus. This result
indicated that Tlr2 was present not only on the cell membrane
but also on some part of the receptor stored in the ER. To
confirm the effect of glycosylation on subcellular location, we
reconstituted two plasmids expressing wild-type Tlr2-Flag and
N-glycosylation site-mutated Tlr2 (N414Q/N442Q)-Flag
(Supporting information). The Flag tag from the NIH-3T3
cells transfected with the wild-type Tlr2 displayed predominant
membrane localization (Figure 6C). The N-glycosylation site
mutation significantly reduced membrane localization. This
A B

DC

FIGURE 5 | Glycosylation inhibitors altered the membrane location. Western blots of Tlr7, Cd14, Tlr2, Icam1, Cox2, and tubulin with or without PNGase F treatment
(A). The mRNA expression of IL-1b (B) in RAW264.7 cells under different stimulations after treatment with different glycosylation inhibitors (ns, no significant vs the
control group, **p value < 0.01, ***p value < 0.001). Confocal images of Tlr2 (C) and Cd14 (D) after treatment with different glycosylation inhibitors. Scale bar 10µm.
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finding indicated that the N-glycan on Tlr2 is important in its
transport to the cell membrane.
DISCUSSION

Exploration of the function of glycosylation in the immune
response has indicated the urgent need for high-throughput
intact glycopeptide characterization. In this study, large-scale
intact glycopeptide characterization was performed using the
pGlyco 2.0 workflow. We identified 8236 intact glycopeptides in
587 glycoproteins. GO analysis showed that glycoproteins
identified in macrophages are related to many important
immune processes. Integrated proteome and glycoproteome
analysis demonstrated that the Toll-like receptor pathway was
dramatically changed under LPS, HSV and VSV stimulation.
SAP, CATD, and CD68 had relatively higher abundances in both
Frontiers in Immunology | www.frontiersin.org 9
the proteomic and glycoproteomic analyses (Figure 1D). SAP is
also called prosaposin, a kind of lysosomal component that
participates in and stimulates the hydrolysis of glucosylceramide
(28). CATD (29) and CD68 (30) endoproteases are ubiquitously
distributed in lysosomes. Moreover, aberrant glycosylation of Tlr2
and CD14 abolishes its cell membrane location (Figures 5C, D).

Global profiling of the precision N-glycoproteomics in
macrophages revealed a process with high control and
precision during protein transport. N-glycosylation is initiated
in the endothelial apparatus, and the nascent peptides are
attached to high-mannose glycans. High mannose types are
attached to all N-glycopeptides at the beginning of this
process. The counts of the peptides that were observed to be
modified with high mannose-type N-glycans are shown
(Figure 2C). The subsequent processing of glycans occurs in
the Golgi. The glycan types on the proteins were related to their
transport progress and subcellular location. Glycans from
A

B D

C

FIGURE 6 | Mutation of the glycosylation sites in Tlr2 altered its membrane location. Multiple sequence alignment of Tlr2 (N-glycosites) with other species (A).
Diagram of the Tlr2 sequence and the identified glycosylation sites and glycans (B). Confocal image of 3T3 cells transfected with wild-type Tlr2 and glycosylation
mutant Tlr2. Scale bar 25µm (C). A schematic diagram of the subcellular location of the Toll-like pathway and vesicular transport; Aberrant glycosylation lead to
misfolding of glycoprotein and ER associated degradation (I); ERGIC-53 bound to oligomannose oligosaccharide promote ER-Golgi apparatus COP II trafficking
vesicle formation (II) (D).
August 2021 | Volume 12 | Article 722293

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Precision N-Glycoproteome of Murine Macrophage
different proteins located in different subcellular organelles tend
to be modified by different glycosyltransferases and
glycohydrolases (31). In this research, the glycans on different
glycoproteins (reported in different subcellular locations) tended
to be modified with related types of N-glycans (Figure 2E).
For example, HYOU1 (hypoxia upregulated protein 1), located
in the ER and participating in protein folding, was found to have
a large number of high mannose-type N-glycans. MPRI
(mannose-6-phosphate receptors), which mediates the M6PR-
dependent transport pathway (Golgi to endosome) (32),
preferred hybrid-type N-glycans. LAMP1 and LAMP2, known
as lysosomal membranes, were shown to have complex-type
N-glycans with more oligosaccharides (7 5 1 0 0, 6 5 1 0 1 and so
on). LRP1 and ITAM, located on the cell membrane, were
identified with hybrid-type N-glycans and complex-type
N-glycans (Hex = 5 or 6, HexNAc = 3 or 4). SAP is a secreted
protein. This protein was shown to be modified with hybrid-type
N-glycans and complex-type N-glycans. The glycome profiling
of different glycoproteins showed that glycans were regulated by
the progress of trafficking. Notably, the distribution of
glycoproteins in different subcellular locations indicated that
proteins in the lysosomal and cell membrane showed heavy
glycosylation (Figure 2D). Some proteins on the cell membrane
and lysosomes have transmembrane structures (such as LRP1,
LAMP1, and LAMP2). Glycosylation sites mostly exist on the
outer membrane motif (33). Lysosomal membrane proteins
(LMPs) are usually highly glycosylated, probably forming a
continuous glycoprotein layer at the luminal side of the
lysosomal membrane (34).

To further explore the changes after stimulation with different
pathogens (LPS, HSV, VSV), we quantified the intact
glycopeptides in a label-free manner. Glycoproteins were
significantly changed under pathogenic stimulation (LPS, HSV,
VSV). The Toll-like receptor pathway was significantly changed
under all three conditions (Figure 3D). Toll-like receptors are
important PRRs (pattern recognition receptors) located at the
cell membrane or lysosome. These molecules mainly participate
in PAMP (pathogen-associated molecular pattern) recognition
and activation of the immune pathway. The receptors (Tlr2, Tlr7,
Cd14, Tlr8, Tlr9, and Tlr13) in the Toll-like receptor pathway are
glycoproteins. The activation of innate immune receptors by
PAMPs is central to host defense against infection. Significantly,
the expression of these receptors (Cd14, Tlr2, Tlr7, and Tlr9) was
upregulated under the different stimulations (Figure 4). This
result indicated that these glycoproteins are regulated by
pathogenic stimuli. Previous studies have shown that Cd14 is
responsible for LPS recognition (35) and that Tlr2 is responsible
for HSV recognition (36, 37). Tlr7 is the lysosomal receptor and
recognizes single-stranded RNA (38), and VSV is an ssRNA
virus (39). All of the above results indicated that glycosylation of
these proteins is important for the macrophage response to
pathogens and that glycosylation may affect the stability and
localization of these proteins.

According to our data, the biosynthesis of N-glycans on
glycoproteins was highly ordered and related to their stability
and location. We hypothesize that glycosylation on Toll-like
Frontiers in Immunology | www.frontiersin.org 10
receptors influences their location. Inhibitors of N-glycan
(tunicamycin, kifunensine, swainsonine) altered cytokine
induction and the membrane location of Tlr2 and Cd14.
Tunicamycin reduced the cell surface location of both Cd14
and Tlr2, while kifunensine and swainsonine increased the
expression of Cd14 and Tlr2 in the cytoplasm. A reconstitution
plasmid with wild-type Tlr2 and mutated Tlr2 (N414Q/N442Q)
genes was transfected into the NIH-3T3 cell line. Confocal
imaging showed that the N-glycosylation site mutation of Tlr2
reduced its membrane expression (Figure 6C). The result
indicated that the stability and trafficking of Tlr2 was
dependent of N-glycan synthesis in ER, independent of
complex type N-glycan processing in Golgi apparatus. Previous
studies showed that N-glycosylation is necessary for proper
folding of proteins for them to exit the ER, the lack of N-
glycans could result in ER retention, which of course would
prevent trafficking to any membrane (40). Some intracellular
lectins were essential for the formation of COPII-coated transport
vesicles, like ERGIC-53 (recognize oligomannose type glycan),
bound the glycan on the protein (41) (Figure 6D). Subcellular
localization determines the environments in which proteins
operate. As pattern recognition receptors, Toll-like receptors
can bind to conserved pathogen-associated molecular patterns
(PAMPs) and trigger the immune response. Different PAMPs will
appear at different subcellular locations, and changes in these
receptors will increase the distance between receptors and
PAMPs. Thus, we provided a valuable study of glycosylation on
glycoproteins in macrophages.
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