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Abstract: Although obesity is commonly associated with numerous cardiometabolic pathologies,
some people with obesity are resistant to detrimental effects of excess body fat, which constitutes a
condition called “metabolically healthy obesity” (MHO). Metabolic features of MHO that distinguish
it from metabolically unhealthy obesity (MUO) include differences in the fat distribution, adipokine
types, and levels of chronic inflammation. Murine models are available that mimic the phenotype
of human MHO, with increased adiposity but preserved insulin sensitivity. Clinically, there is no
established definition of MHO yet. Despite the lack of a uniform definition, most studies describe
MHO as a particular case of obesity with no or only one metabolic syndrome components and lower
levels of insulin resistance or inflammatory markers. Another clinical viewpoint is the dynamic
and changing nature of MHO, which substantially impacts the clinical outcome. In this review,
we explore the pathophysiology and some murine models of MHO. The definition, variability, and
clinical implications of the MHO phenotype are also discussed. Understanding the characteristics that
differentiate people with MHO from those with MUO can lead to new insights into the mechanisms
behind obesity-related metabolic derangements and diseases.

Keywords: cohort study; metabolic syndrome; murine models; obesity; pathophysiology

1. Introduction

Obesity is related to a decreased life expectancy, mostly because obese individuals have
a higher risk of developing type 2 diabetes, cardiovascular disease (CVD), and cancer [1,2].
It has become a major public health concern as its prevalence has been increasing globally.
In addition to the implications of obesity at the individual level, the obesity pandemic may
impose a substantial health burden on society.

However, not all obese people have an increased risk of mortality, suggesting that
there is a subpopulation of healthy obese individuals, i.e., those with so-called “metabol-
ically healthy obesity” (MHO) [3,4]. MHO is distinguished by the absence of metabolic
disturbances, including insulin resistance, type 2 diabetes, hypertension, and dyslipidemia,
commonly associated with a chronic inflammatory state [4,5]. In this paper, we compare
the pathophysiology of MHO with that of metabolically unhealthy obesity (MUO), and
then describe some animal models of MHO based on the physiology and features of this
phenotype. We will also address the concept of MHO and its clinical consequences given
the unstable nature of this phenotype.

2. Main Pathophysiology of MHO Versus MUO

The clinical and pathophysiologic aspects that have been associated with MHO and
MUO are depicted in Figure 1. Despite the fact that the precise mechanism behind the de-
velopment of MHO remains unknown, numerous plausible pathways have been proposed
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in both human and animal research. These include altered adipokine secretion, suppressed
inflammation and fibrosis, and a particular distribution pattern of fat tissue types, such as
the accumulation of more subcutaneous but less visceral and ectopic fat.
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unhealthy obesity.

2.1. Body Composition and Fat Distribution

In addition to functioning as an energy reservoir, adipose tissue is a hormonally
active organ with specific biochemical properties that influence metabolic pathways. White
adipose tissue (WAT) and brown adipose tissue (BAT) are the two primary forms of adipose
tissue (BAT). WAT is primarily responsible for energy storage, whereas BAT is primarily
responsible for energy expenditure via non-shivering thermogenesis in the mitochondria [6].
WAT depots can be divided into subcutaneous adipose tissue (SAT), which is the adipose
tissue beneath the skin, and visceral adipose tissue (VAT) lining internal organs [7]. The
accumulation of abdominal, visceral, and ectopic fat leads to insulin resistance and an
unfavorable cardiometabolic profile [8–12]. Individuals with MHO are distinguished by
higher levels of SAT and lower levels of VAT, and decreased fat deposition in liver and
skeletal muscle, compared with MUO subjects with comparable levels of total fat mass and
BMI [13]. In contrast, widespread VAT deposition, as measured by computed tomography,
is linked to MUO, which is characterized by hyperinsulinemia, glucose intolerance, and
atherogenic dyslipidemia [13].

According to several studies, it is indisputable that increased visceral adiposity inde-
pendently correlates with a higher cardiometabolic risk [14–19]. In contrast, the metabolic
profile of subcutaneous fat is more favorable [14,20]. Using whole-body MRI and spec-
troscopy, the German Tübingen diabetes family study evaluated total, visceral, subcu-
taneous abdominal, gluteofemoral and leg fat mass, and liver fat content to distinguish
between individuals with healthy and unhealthy obesity [20]. In this study, a lower propor-
tion of gluteofemoral fat mass and leg fat mass was found to be the most reliable predictor of
a metabolically unhealthy condition. Increased gluteofemoral and leg fat mass and higher
insulin sensitivity and preserved insulin secretion determined a metabolically healthy
status while increased visceral fat mass, increased subcutaneous abdominal fat mass, and a
high liver fat content contributed to a metabolically unhealthy phenotype [20,21]. Another
German study with 314 white people found that the proportion of liver fat is a significant
predictor of metabolically benign obesity [20]. Non-alcoholic liver disease (NAFLD) is
strongly associated with the metabolically unhealthy obesity phenotype, although some
subtypes of NAFLD with a stronger hepatic genetic component are not associated with
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insulin resistance and cardiometabolic risk [22,23]. Collectively, assessment of body fat dis-
tribution may be the key to understanding the pathophysiology linking obesity, metabolic
health, and cardiometabolic risk.

2.2. Alterations in the Adipokine Phenotype

Adiponectin is the most extensively researched adipokine associated with MHO.
In both men and women, adiponectin, the most abundant protein released by adipose
tissue, is inversely correlated with percentage body fat and directly correlated with insulin
sensitivity [24]. Plasma adiponectin levels in patients with MHO are reported to be higher
than those in patients with MUO [25–28]. The reasons behind the lower adiponectin levels
in patients with MUO are unknown but may be related to the chronic hyperinsulinemia
observed in MUO, which suppresses adiponectin production in adipose tissue [29,30],
resulting in a positive feedback cycle where decreased adiponectin secretion causes insulin
resistance and increased insulin resistance, in turn, causes decreased adiponectin levels [3].
In addition to adiponectin, Sanidasa et al. investigated the cardioprotective (omentin-1) and
non-cardioprotective (visfatin, resistin, chemerin) hormones in MHO and MUO [31]. The
cardioprotective adipokines omentin-1 [32,33] and adiponectin were found to be higher in
cases of MHO, but the non-cardioprotective adipokines visfatin and resistin [32,34,35] were
found to be lower. Mateusz Lejawa et al. [36] recently observed some differences in the
adipokine profiles between MHO and MUO in the cohort from the Metabolic and Genetic
Profiling of Young Adults with and without a Family History of Premature Coronary Heart
Disease (MAGNETIC) study. According to their findings, adipsin is linked only to MHO
and not to MUO. Furthermore, markers such as ghrelin and PAI-1 are solely associated
with MUO not with MHO [36]. Further research is required to determine the precise
involvement of those adipokines in the cardiometabolic fates of MHO and MUO.

2.3. Adipose Tissue Inflammation and Fibrosis

Chronic inflammation, particularly in adipose tissue, has been recognized as the main
pathophysiology of obesity-related comorbidities, where insulin resistance has a crucial
role [3,37,38]. Previous research has shown that people with MUO exhibit higher levels
of circulating inflammation markers such as C-reactive protein, plasminogen activator
inhibitor-1 (PAI-1), IL-6, and TNF-α, compared with those with MHO [39–45]. However,
a few studies [46–48] provided contradictory results, with no difference between the two
groups. Such discrepancies can be attributed to inconsistencies in the definitions of MHO
and MUO, differences in the sets of markers studied, or the relatively small number of
participants. It has been reported that patients with MUO, compared with those with MHO,
have higher M1-like (proinflammatory) macrophages and proinflammatory CD4+ T cells
in adipose tissue [39,49–54]. In addition to inflammation, fibrosis in adipose tissue has also
been postulated as an obesity-linked pathology [3]. Obese patients exhibit higher expression
levels of collagen I, IV, V, and VI genes, and increased fibrosis, notably pericellular fibrosis
in adipose tissue [55–59]. Adipose tissue collagen gene expression and collagen levels
are also inversely correlated with insulin sensitivity in obese patients and decrease with
weight loss [60–63]. Recently, Jun Yoshino et al. showed that adipose tissue expression of
connective tissue growth factor is positively correlated with body fat mass and inversely
correlated with insulin sensitivity indices [64]. These findings corroborate the hypothesis
that adipose tissue fibrosis is linked to MUO, as observed in animal models [65].

3. Animal Models of MHO

Obesity models using mice have provided invaluable insights into obesity in hu-
mans and associated metabolic consequences, such as metabolically protected obesity. In
this section, we introduce genetic mouse models harboring some characteristics of MHO
(Table 1).
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Table 1. Murine models representing the human metabolically healthy obesity phenotype.

Molecule Background Phenotype Reference

Adiponectin transgenic mouse

Adiponectin is an anti-inflammatory,
insulin-sensitizing adipokine expressed by

adipocytes that improves lipid and
glucose metabolism

Increased level of plasma adiponectin, lower
inflammation, andbetter insulin sensitivity

than ob/ob littermates
[66]

Txnip knockout mice
Thioredoxin-interacting protein (Txnip) is a

cellular oxidative stress regulator, which
limits glucose absorption into fat and muscle

Increased adipogenesis, preserved insulin
sensitivity, increased glucose transport to

adipose tissue and muscle
[67]

TPL2 knockout mice

Tumor progression locus 2 (TPL2) is a
serine/threonine kinase that functions
downstream of IKK-β and integrates

inflammatory signaling pathways

Reduced inflammation and hepatic steatosis,
improved insulin resistance [68]

COL6 knockout mice
Collagen VI is a highly enriched

extracellular matrix component of
adipose tissue

Increased amount of adipose tissue, lower
fasting glucose and improved

glucose tolerance
[69]

Adipose-specific GLUT4
over-expression mice

GLUT4, the major insulin-responsive
glucose transporter, plays a key role in

systemic glucose metabolism in
adipose tissue

More obese and insulin-sensitive than
wild-type mice [70]

MitoNEET overexpression mice
MitoNEET has been identified as a distinct

dimeric mitochondrial membrane target that
is crosslinked to pioglitazone

Extremely obese but improved insulin
sensitivity during high caloric intake [71]

3.1. Adiponectin Transgenic Mouse

Adiponectin is an anti-inflammatory, insulin-sensitizing adipokine expressed by
adipocytes that improves lipid and glucose metabolism via several mechanisms. Kim
et al. overexpressed adiponectin in transgenic ob/ob mice, resulting in a 2–3 fold increase
in steady-state levels of adiponectin complexes in plasma [66]. These animals exhibit higher
levels of PPAR-gamma target gene expression and lower levels of macrophage infiltration in
adipose tissue and suppressed systemic inflammation [66]. As a result, the transgenic mice
were morbidly obese, with considerably more adipose tissue than their ob/ob littermates,
resulting in an intriguing paradox of increased fat mass paired with improved insulin
sensitivity [66]. Overexpression of adiponectin results in the development of hyper-obese
animals that exhibit subcutaneous fat as the most abundant type of adipose tissue, a larger
number of adipocytes with a much smaller average cell size, reduced inflammation, and
metabolic fitness, all of which are specific features of MHO [66].

3.2. Txnip Knockout Mice

Thioredoxin-interacting protein (Txnip), a cellular oxidative stress regulator, is acti-
vated by hyperglycemia and limits glucose absorption into fat and muscle tissues. Txnip
knockout mice acquire considerably greater adipose mass, according to Chutkow et al.,
due to elevated levels of calorie intake and adipogenesis [67]. Despite having more fat,
compared with the controls, Txnip knockout mice are significantly more insulin sensitive
and exhibit enhanced glucose transport in both adipose and skeletal muscle tissues [67].
Txnip deficiency also directly affects PPAR expression and activity, implying Txnip is a
novel mediator of insulin resistance and a regulator of adipogenesis. Txnip knockout mice
are, thus, a promising mouse model for human MHO.

3.3. Tumor Progression Locus 2 (TPL2) Knockout Mice

Tumor progression locus 2 (TPL2) has been identified as an important modulator of
immune responses that transmits inflammatory signals to downstream effectors, thereby
modulating the generation and function of inflammatory cells [72]. TPL2 is activated by
Toll-like receptor (TLR) ligands; cytokines, including tumor necrosis factor (TNF) family
and interleukin (IL)-1β; and several chemokines [73,74]. Thus, knocking out TPL2 prevents
cytokines (TNF- and IL-1) and proinflammatory stimuli (via lipopolysaccharide) from
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activating ERK and JNK [75,76]. In this context, TPL2 is in a unique position to integrate
various inflammatory signaling pathways involved in the development and progression
of obesity-related complications [68]. A study using a diet-induced obesity model with or
without TPL2 knockout demonstrated that TPL2 deletion reduces peripheral inflammation
and hepatic steatosis, and improves whole-body insulin resistance in obese mice, mimicking
MHO observed in humans [68].

3.4. COL6 Knockout Mice

As previously noted, recent research suggests that excessive collagen and fibrosis
exacerbate inflammatory and metabolic pathologies in obese patients. Particularly, collagen
VI (COL6) is a highly enriched extracellular matrix component in adipose tissue [69].
Tayeba Khan et al. showed that obese (ob/ob) mice with COL6 knockdown, compared
with ob/ob mice with intact COL6 expression, resulted in the uninhibited expansion of
individual adipocytes but was paradoxically associated with substantial improvements
in energy homeostasis such as better glucose tolerance and lower levels of circulating
triacylglycerol after lipid challenge [69]. These findings indicate a possible role of COL6 in
modulating adipocyte physiology and suggest COL6-KO mice as a potential murine model
of human MHO.

3.5. Adipose-Specific GLUT4 Overexpression (AG4OX) Mice

GLUT4, the major insulin-responsive glucose transporter, plays a key role in systemic
glucose metabolism in adipose tissue [77–79]. In insulin-resistant conditions, GLUT4 is
downregulated in adipose tissue but not in muscle, the primary site of insulin-stimulated
glucose uptake [77]. Moreover, mice with adipose-specific GLUT4 overexpression (AG4OX)
have improved glucose homeostasis [79] while mice with adipose-specific GLUT4 knock-
out (AG4KO) have insulin resistance and type 2 diabetes [78]. Herman et al. revealed
that AG4OX animals are more obese and insulin-sensitive than wild-type mice, which is
consistent with the MHO phenotype [70]. In their study, the authors further showed that
ChREBP, a glucose-responsive transcription factor that regulates fatty acid synthesis and
glycolysis [80], is highly regulated by GLUT4 in adipose tissue and is a key determinant of
systemic insulin sensitivity and glucose homeostasis, indicating that adipose ChREBP may
be a novel strategy for preventing and treating obesity-related metabolic dysfunction [70].

3.6. MitoNEET Overexpression Mice

MitoNEET has been identified as a distinct dimeric mitochondrial membrane target
that is crosslinked to pioglitazone [81,82]. MitoNEET was named based on its C-terminal
amino acid sequence, AsnGluGluThr (NEET), which is found in the outer mitochondrial
membrane [81]. MitoNEET achieves its effects on cellular and systemic metabolic home-
ostasis by acting as a potent iron content regulator in mitochondria. Kusminski et al. [71]
created an adipose-specific transgenic model, an inducible tissue-specific overexpression
system, and an inducible constitutive mitoNEET knockdown. The overexpression of mi-
toNEET disrupted the cellular energy balance by impairing mitochondrial activity, resulting
in a decrease in oxidation and a compensatory increase in the cellular energy balance. This
resulted in persistent adipose tissue development, and the mice in this model became
extremely obese. Despite their obesity, mitoNEET overexpression during high caloric
intake resulted in system-wide improvements in insulin sensitivity, providing a model of a
metabolically healthy, obese state that minimizes lipotoxicity in tissues that are prone to
storing lipids during excess caloric intake [71].

4. Definition and Concept of MHO
4.1. Clinical Definition of MHO

Currently, there is no internationally adopted standard for identifying MHO, and
more than 30 distinct criteria have been employed to operationalize the symptoms in
research [3,83]. Some criteria used to define metabolically healthy obesity are shown
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in Table 2. This may explain why the prevalence, stability, and clinical effects of MHO
differ from study to study, contributing to an ongoing unresolved dispute [83]. Despite
differences in definitions, some common elements of MHO are repeatedly empathized:
healthy obesity denotes an absence of metabolic abnormalities in obese individuals, such
as type 2 diabetes, dyslipidemia, and hypertension. When more data is available, measures
of insulin resistance, such as homeostasis model assessment (HOMA) and inflammatory
markers, are also utilized [4].

Table 2. Various criteria used to define metabolically healthy obesity in clinical investigations.

Variable/Study NECP-ATP III
(2001) [84]

Karelis et al.
(2004) [85]

Wildman et al.
(2008) [86]

Stefan et al.
(2008) [20]

Aguilar-Salinas
et al. (2008) [25]

Zembic et al.
(2021) [87]

Metabolic
components

BP, mmHg ≥130/85 or
treatment

≥130/85 or
treatment

<140/90 and no
treatment

Systolic BP ≥130
or treatment

FPG, mg/dL ≥100 or treatment ≥100 or treatment <126 and no
treatment

Prevalent
diabetes

TG, mg/dL ≥150 <150 ≥150

HDL, mg/dL <40 (men)
<50 (women) ≥50 <40 (men)

<50 (women) ≥40

HOMA-IR <1.95 >90th
percentile

WC, cm ≥102 (men)≥88
(women)

Others TC <200 mg/dL
LDL <100 mg/dL

hsCRP >90th
percentile

WBISI >75th
percentile

WHR
≥1.03 (men)

≥0.95 (women)

Metabolic health
criteria <3 of the above ≥4 of the above <2 of the

above All of the above All of the above None of the
above

Obesity
components

BMI, kg/m2 ≥25 ≥30 ≥30 ≥30 ≥25 ≥30

NECP-ATP III, National Cholesterol Education Program Adult Treatment Panel III; WC, waist circumference;
BP, blood pressure; FPG, fasting plasma glucose; TG, triglyceride; HDL, high density lipoprotein; HOMA-IR,
homeostasis model assessment of insulin resistance; TC, total cholesterol; LDL, low density lipoprotein; hsCRP,
high-sensitivity C-reactive protein; WBISI, whole body insulin sensitivity index; WHR; waist-to-hip ratio; BMI,
body mass index.

4.2. Dynamic Nature of MHO

Another barrier to determining the outcome of the MHO phenotype is its dynamic
and changing nature. The health condition of a subject may change from metabolically
healthy to metabolically unhealthy and vice versa. As a result, the clinical implications
of MHO should be examined from the perspective of metabolic health being a transitory
rather than permanent state. Approximately one-third to one-half of people with MHO
progress to a metabolically unhealthy condition over time [88–92]. A healthier lifestyle;
stronger incretin response to meals; less abdominal, visceral, and ectopic fat deposition;
lower levels of inflammation; and insulin sensitivity are postulated attributes that help
preserve a metabolically healthy state in individuals with MHO [4]. Maintaining these
characteristics may therefore avoid the transition from MHO to MUO. These findings also
imply that MHO is a dynamic condition that should be examined across time.

5. Clinical Outcomes of MHO and Possible Mechanisms

The predictive significance of MHO is a hotly debated topic that confronts significant
challenges due to its varied definitions across studies and dynamic nature, as discussed
above. In this context, our research team has investigated the effects of MHO, taking into
account its phenotypic shift throughout time. In this section, we describe reported findings
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regarding the role of MHO in several outcomes, including mortality, cardiovascular risk,
chronic kidney disease (CKD), dementia, and colorectal cancer. We also discuss some
potential pathways for explaining the observed outcomes in patients with MHO (Table 3).

Table 3. Clinical outcomes of metabolically healthy obesity versus unhealthy obesity.

Outcome HR (95% CI) for MHO
(with MHNO as the Reference)

HR (95% CI) for MUO
(with MHNO as the Reference) Reference

Mortality 1.81 (1.16–2.84) 2.01 (1.43–2.83) [93]
0.86 (0.79–0.93) 0.96 (0.91–1.01) [94]
0.98 (0.87–1.10) 1.24 (1.16–1.32) [87]

Cardiovascular events 1.45 (1.20–1.70) 2.31 (1.99–2.69) [95]

1.49 (1.45–1.54)
2.05 (1.94–2.16) 1

2.41 (2.25–2.58) 2

2.91 (2.68–3.18) 3
[96]

1.14 (1.05–1.24) 1.55 (1.47–1.63) [94]

Chronic kidney disease 0.83 (0.36–1.70) 2.80 (1.45–5.35) [97]
1.23 (1.12–1.36) 1.98 (1.85–2.10) [83]
1.17 (0.89–1.53)
2.21 (1.59–3.08)
2.20 (1.55–3.11)

2.25 (1.91–2.65) 4

2.75 (2.32–3.25) 5

4.02 (3.40–4.75) 6
[98] 7

1.52 (0.93–2.49) 2.20 (1.44–3.38) [99]
0.95 (0.49–1.83) (men)

0.95 (0.74–1.20) (women)
2.22 (1.44–3.41) (men)

1.23 (1.01–1.54) (women) [100]

Alzheimer’s disease 0.73 (0.54–0.97) 0.93 (0.70–1.24) [101]
0.73 (0.65-0.81) 0.96 (0.90-1.03) [96]

Colorectal cancer 1.14 (1.04–1.26) 1.21 (1.13–1.29) [102]
1.10 (0.92–1.33) 1.29 (1.14–1.47) [103]

1.21 (1.06–1.39) (men)
1.10 (0.94–1.28) (women)

1.32 (1.19–1.48) (men)
1.08 (0.95–1.23) (women) [104]

CI, confidence interval; HR, hazard ratio; MHNO, metabolically healthy nonobesity; MHO, metabolically healthy
obesity; MUO, metabolically unhealthy obesity. 1 Obesity with 1 metabolic risk factor; 2 Obesity with 2 metabolic
risk factors; 3 Obesity with 3 metabolic risk factors; 4 class I obesity, body mass index (BMI) 30–34.9 kg/m2; 5 class
II obesity, BMI 35–39.9 kg/m2; 6 class III obesity, BMI ≥40 kg/m2; 7 HR for kidney function decline defined as
eGFR decline ≥ 30%.

5.1. Mortality and Cardiovascular Event Risk

Obesity is a well-known risk factor for cardiovascular events (CVEs) and mortality. Al-
though CVE risk is higher in patients with MHO than in metabolically healthy individuals
with normal body weight, the risk is substantially lower in individuals with MHO, com-
pared to those with MUO [95,96,102]. We analyzed the mortality and cardiovascular event
rates in 514,866 participants from the Korean National Health Insurance Service–Health
Examination Cohort [94] and found that the risk of CVE in the baseline MHO group was
higher than that in the metabolically healthy nonobesity (MHNO) group (hazard ratio (HR),
1.14; 95% confidence interval (CI), 1.05–1.24). However, the all-cause mortality in the MHO
group was lower than that in the MHNO group (HR, 0.86; 95% CI, 0.79–0.93). Among
baseline MHO subjects, the risk of CVE was significantly higher in those who transitioned
from MHO to MUO with a multivariate-adjusted HR of 1.24 (95% CI, 1.00–1.54), suggesting
that weight loss and progression to a metabolically unhealthy state are the reasons behind
the significant increase in mortality.

The concept of the “obesity paradox” is rooted in the fact a higher BMI is associated
with high incidence of type 2 diabetes, hypertension, dyslipidemia, and cardiovascular
disease (CVD), obese individuals with these conditions may survive longer than leaner
individuals [105,106]. Similarly, individuals classified as normal weight or underweight
may have a poorer prognosis than overweight persons with respect to CVD, a condition
termed the “lean paradox” [107]. Although the mechanism has not been fully elucidated, a
progressive catabolic state and loss of lean muscle mass may result in improved outcomes
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for obese people and poorer ones for lean individuals [107]. Moreover, because obesity is a
well-known cardiometabolic risk factor, more vigorous diagnostic testing and therapeutic
interventions in the obese population may result in earlier testing and diagnosis, which
may lead to better survival [107,108].

5.2. Chronic Kidney Disease

Obesity is a known risk factor for CKD and a serious public health issue globally [97,109,110].
Since obesity-induced metabolic disturbances, such as hypertension, insulin resistance,
hyperglycemia, and dyslipidemia, are well-known factors in the development of CKD [111],
the direct link between CKD and obesity or obesity-induced metabolic disturbances is
unknown [4]. With regard to the risk of CKD in MHO subjects, prior studies have reported
contradictory results [98–101]. In our longitudinal cohort study [112], the probability of inci-
dent CKD in the baseline MHO group was greater than that in the MHNO group (HR, 1.23;
95% CI, 1.12–1.36). Patients who converted to MHNO did not have an elevated risk (HR,
0.98; 95% CI, 0.72–1.32), whereas the stable MHO group and the groups that progressed to
a metabolically unhealthy condition had a higher risk of incident CKD compared with the
stable MHNO group. Although the processes by which obesity contributes to CKD are un-
known, several possible explanations tying obesity to kidney disease that are independent
of metabolic risk factors can be considered, including hemodynamic alterations, oxidative
stress, and hormonal variables [113–116]. Obesity-induced renal impairment has been
linked to changes in renal hemodynamics such as hyperfiltration, increased glomerular
capillary wall tension, and podocyte stress [97,114]. Several adipokines, including leptin
and adiponectin, and other adipose tissue-derived molecules, including TNF-α, IL-6, and
plasminogen activator inhibitor-1, have been shown to impair renal function [115,117].
Although it is unclear whether these molecules have altered expression levels in MHO
patients, these pathways may contribute to the development of incident CKD in obese
individuals, particularly in those with MHO.

5.3. Dementia

Studies on the association between obesity and the development of Alzheimer’s disease
(AD) indicate that midlife obesity is associated with a 1.7–2.0-fold increase in the risk of devel-
oping dementia and AD [118,119]. On the contrary, more recent publications report that being
overweight or obese at old age protects against Alzheimer’s disease [120–124]. According
to our nationwide population-based cohort study, the risk of AD is considerably reduced
among people with MHO [125], which is consistent with some earlier findings [126,127].
In addition, we analyzed the risk of developing AD based on the changes in metabolic
phenotype. Importantly, switching from MUO to MHO reduces the risk of AD develop-
ment relative to maintaining a stable MHNO status (multivariable-adjusted HR, 0.62; 95%
CI, 0.50–0.78), indicating a protective effect of MHO against AD. Several pathways are
proposed to have a role in this protective effect. Insulin-like growth factor I, which has neu-
rotrophic effects in the hippocampus [128–131], may play at least a partial role. Furthermore,
adipokines released by adipose tissue, such as leptin, may also be involved [132]. Higher
circulating leptin levels have been linked to a lower risk of dementia and Alzheimer’s
disease, and increased brain volume [133–135]. As a result, altered levels of hormones and
adipokines in patients with MHO may increase dementia risk, albeit further research is
needed to better understand the underlying mechanisms.

5.4. Colorectal Cancer

Obesity is a well-known risk factor for CRC; however, only a few studies have investi-
gated whether obese patients without metabolic abnormalities are at increased risk of CRC.
A prospective cohort study in Korea showed that the MHO phenotype is a risk factor for
CRC in men [104]. However, recently, Cao et al. used data derived from 390,575 adults
from the UK Biobank and reported that even in metabolically healthy individuals, obesity
was associated with increased risks of colorectal cancers [103]. Our study on a nationwide
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population-based cohort suggested that metabolic unhealthiness significantly contributes
to incident CRC in the obese population [136]. The stable MHO group showed no increased
risk of incident CRC (HR, 0.97; 95% CI, 0.83–1.14). However, the group transitioning from
MHO to MUO had a higher risk of incident CRC compared with the stable MHNO group
(HR, 1.34; 95% CI, 1.15–1.57). Among the patients with baseline MUO, those transitioning
into MHO were not at increased risk of CRC (HR, 1.06; 95% CI, 0.91–1.25), whereas those
who remained in the stable MUO group had a higher risk of incident CRC compared with
those in the stable MHNO group (HR, 1.29; 95% CI, 1.19–1.41). Previously, Ko et al. reported
that for advanced CRN, metabolically unhealthy status (i.e., MUNO or MUO) increased
the risk but MHO did not [137]. However, MHO subjects were at an increased risk of CRN
in general; based on these findings, the authors proposed that metabolically unhealthy
status may be the step after simple obesity in the process of colorectal carcinogenesis via
increased levels of growth factors (e.g., insulin-like growth factor or epidermal growth
factor receptor) by insulin resistance, which leads to advanced cancer [137]. Therefore,
chronic inflammation and disturbance of adipokines or growth factors in obesity could be
potential mechanisms linking obesity and cancer, which was proposed from the studies on
MHO subjects [136–138].

6. Summary and Conclusions

MHO is not an entirely new concept. Numerous possible mechanisms underlying
MHO have been suggested, including adipose tissue distribution, inflammation and fi-
brosis in adipose tissue, and altered adipokine secretion. Murine models of metabolically
protected obesity, with a salutary profile of adipose tissue function and energy metabolism,
have provided robust insights into the human MHO phenotype. Clinically, the prognostic
value of MHO is a subject of debate and the impact of MHO on obesity-related morbidity
and mortality requires further investigation. Further efforts are needed to establish a
unified definition of MHO to develop effective treatment strategies and to discover the
pathophysiologic underpinnings of MHO.
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