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Astrocytes are now considered as key players in brain information processing because
of their newly discovered roles in synapse formation and plasticity, energy metabolism
and blood flow regulation. However, our understanding of astrocyte function is still
fragmented compared to other brain cell types. A better appreciation of the biology of
astrocytes requires the development of tools to generate animal models in which astrocyte-
specific proteins and pathways can be manipulated. In addition, it is becoming increasingly
evident that astrocytes are also important players in many neurological disorders.Targeted
modulation of protein expression in astrocytes would be critical for the development of
new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and
explore their function in experimental models. In particular, viral-mediated gene transfer
provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of
genes of interest during central nervous system development or in adult animals. We will
review the different strategies that led to the recent development of efficient viral vectors
that can be successfully used to selectively transduce astrocytes in the mammalian brain.
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Astrocytes make up most of the cells in the brain. In addi-
tion to well-characterized roles for astrocytes in regulating brain
metabolism and blood flow, there is now an increasing body of
evidence that astrocytes are dynamic regulators of synaptogenesis,
synaptic function and network activity. This is conceptualized in
the tripartite synapse model, where pre-synaptic and post-synaptic
elements of neurons are surrounded and regulated by astrocyte
processes (Araque et al., 1999; Barres, 2008).

Astrogenesis occurs relatively late in development after most
neurogenesis has completed (Freeman, 2010). Defects in astro-
cyte maturation, tripartite synapse formation and plasticity during
early post-natal development may be responsible for some psychi-
atric and neurodegenerative diseases. There is a growing body
of evidence to support the view that a loss of normal astrocyte
functions or a gain of abnormal effects can contribute to dis-
ease processes, and there are now numerous examples of astrocyte
contributions to pathological mechanisms in amyotrophic lateral
sclerosis (ALS), Huntington’s disease (HD), and brain tumors to
cite few of them (for review see Sofroniew and Vinters, 2010).

Despite progress and potential significance, cellular, develop-
mental, and systems-level studies of astrocytes still lag far behind

those of neurons. New sophisticated genetic tools to label and
manipulate astrocytes in vivo were recently developed. Additional
tools that allow for temporally controlled deletion of genes, specif-
ically in rodent astrocytes, along with improved high resolution
imaging techniques, are enabling researchers to address funda-
mental questions in astrocyte biology for the first time. However,
these tools need to be more fully expanded and exploited to better
understand astrocyte biology in vivo. The situation is complicated
by the recent findings that astrocytes do not represent a homo-
geneous cell population across brain regions as well as within
the same brain region (Zhang and Barres, 2010). So, despite
evidence showing pronounced region- and layer-specific morpho-
logical heterogeneity as well as region-specific actions of astrocytes
on neuronal functions, currently available tools have had limited
utility for examining functional diversity among astrocytes.

To understand the role of astrocyte signaling in brain function,
it is critical to study astrocytes in situ where their complex mor-
phology and intimate association with neurons remains intact.
Understanding neuron–glia interactions in vivo requires dedicated
experimental approaches to manipulate each cell type indepen-
dently. These approaches include targeted transgenesis and viral
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transduction to overexpress or block the expression of a specific
gene in astrocytes.

The past and current approaches of targeted transgenesis were
recently reviewed in a comprehensive paper (Pfrieger and Slezak,
2012) and will not be detailed here.

Yet, a very important application of transgene expression is
the visualization of a large population of astrocytes in vivo by a
fluorescent protein. The use of bacterial artificial chromosomes
(BACs) for the production of transgenic mice has opened new
opportunities to study gene expression and functions in the brain.
The resulting gene expression central nervous system (CNS) atlas
program GENSAT represents a powerful resource for the scientific
community (http://www.gensat.org). However, it remains difficult
and time-consuming to target specific cell subpopulations through
transgenesis, and differences in recombination efficiency between
transgenic lines complicate the analysis. We will therefore rather
focus on an alternative approach to genetically manipulate astro-
cytes that relies on the use of viral vectors. Indeed, the development
of highly efficient viral vectors for gene transfer in the CNS is pro-
viding new systems for localized and controlled gene expression.
Even if such approach requires the stereotaxic injection of the viral
vectors in each animal, it significantly reduces the costs of in vivo
experiments, and it can be used in combination with mouse mod-
els for conditional gene targeting, providing high flexibility and
versatility to replace, modify, induce, or block expression of target
genes. We will therefore review the recent development in this field
that led to the emergence of effective and selective viral vectors for
transducing astrocytes in vivo.

VIRAL VECTORS: POTENT SYSTEM FOR IN VIVO GENE
DELIVERY IN BRAIN
Viral vectors offer the possibility to control expression of a trans-
gene in adult or developing brain areas and can exploit the unique
ability of viruses to deliver genetic material into mammalian
cells. Viral vectors are derived from various viruses and are engi-
neered to preserve the transduction efficiency while preventing
the original pathogenicity and, in most cases, the capacity to
multiply (Davidson and Breakefield, 2003). These viral vectors
are often called multiply attenuated and replication-deficient viral
vectors (Figure 1). Among the most widely used vectors for CNS
applications are the lentiviral (LVs) and adeno-associated viral
vectors (AAVs) which have particularly attractive properties which
include, the capacity to infect non-dividing cells, the absence of
cytotoxic or immune response, long-term transgene expression
and large diffusion in the brain. At least for LV, the cloning capac-
ity is sufficient to integrate most of the genes of interest (Déglon
and Hantraye, 2005). Viral vectors provide a gene transfer tool
that is independent of age and species considered (Kay et al., 2001;
Kirik et al., 2003; Lundberg et al., 2008). Along with somatic gene
transfer in developing or adult animals, viral vectors can also be
used for transgenesis in species in which classical methods are not
suitable, in particular large animals (Yang et al., 2008; Wongsrikeao
et al., 2011).

Natural viruses have a specific pattern of infection, which
reflects the recognition and interaction between viral cap-
sid/envelope and receptors expressed on susceptible cells. Simi-
larly, the tropism of viral vectors is primarily determined by the

interaction of the viral surface proteins with receptor molecules
expressed on target cells but other mechanisms could be used
for subpopulation-restricted gene transfer in the brain. In partic-
ular, cell-type-specific promoters, post-transcriptional regulatory
elements, replacement of retroviral envelope proteins with heterol-
ogous viral surface proteins, a phenomenon called pseudotyping
(Page et al., 1990) or the use of various serotypes (AAV and Ad
harboring different capsids) have been proposed to dissect and
elucidate gene functions in astrocytes.

The first viral vector was obtained by exploiting the natural
tropism of brain cells from the Herpes simplex virus type 1 (HSV-
1; Geller and Breakefield, 1988; Federoff et al., 1992). The HSV-1
genome is complex and large, but replication-incompetent vec-
tors, with a partial (first generation of HSV-1 vectors) or complete
(amplicons) deletion of viral genes allow the insertion of very
large transgenes (around 150 kb). The HSV-1 amplicons are nei-
ther pathogenic nor toxic for the infected cells and are retrogradely
transported to the CNS from the peripheral nervous system (PNS;
Frampton et al., 2005). These vectors have a widespread tropism
for neurons (Jerusalinsky et al., 2012) and similarly to AAV and
adenoviral vectors, their genetic material does not integrate into
the host genome thus reducing the risk of insertional mutagenesis
(Manservigi et al., 2010). However, HSV amplicons are difficult to
produce, elicit low levels of adaptive immune responses and most
of the human population is seropositive which limits their clinical
applications for chronic disorders (Manservigi et al., 2010).

A few years after the apparition of HSV vectors, adenoviral vec-
tors (Ad) were derived from the Ad type 5 serotype (Le Gal La
Salle et al., 1993; Horellou et al., 1994). These vectors also have a
high cloning capacity (approximately 30 kb of double-stranded
DNA for gutless Ad) but the tropism of these vectors is not nat-
urally oriented to the brain (Arnberg, 2012). Interestingly, a live
(replication-competent Ad) vaccine has been safely administered
to humans (Rubin and Rorke, 1994). This vaccine program reflects
the strong immune response induced by Ad in humans (White
et al., 2011), a reason why these vectors are promising candi-
dates for tumoral therapy, and are proposed for the treatment
of glioblastoma (Candolfi et al., 2006; Kroeger et al., 2010).

In the mid 1990s, the first AAV (from serotype 2) and LVs were
reported (Page et al., 1990; Kaplitt et al., 1994; Naldini et al., 1996).
The AAV vectors are derived from the smallest non-enveloped
viruses (approximately 20 nm) and have a cloning capacity of
5 kb of single-stranded DNA. The AAV2 naturally infects humans
but is non-pathogenic. It is classified as a dependovirus because
it requires a co-infection with a helper virus such as Ad or HSV
to perform its infectious replication cycle. The AAV persists for
years in transduced cells mostly as an extrachromosomal episome
(Nakai et al., 2001; Schnepp et al., 2005). To date, more than 100
serotypes of AAV have been identified, each of them possessing
a specific tropism in the CNS due to the binding of the capsid
with specific receptors (Wu et al., 2006a,b). Fourteen clinical trials
using AAV gene transfer were performed to assess their potential
therapeutic value in various neurodegenerative diseases (Crystal
et al., 2004; Tuszynski et al., 2005; Kaplitt et al., 2007). In 2012, the
first AAV gene therapy product was marketed by the European
Medicine Agency (EMEA) for the treatment of patients suffering
from lipoprotein lipase deficiency (Yla-Herttuala, 2012).
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FIGURE 1 | Strategies to target astrocytes. Three steps of
viral cycle are used to modify the tropism of viral vectors: (1) the
entry, (2) the transcriptional and (3) post-transcriptional regulations.
After binding to their respective receptors, LV, AAV, and Ad enter into
host cells via receptor-mediated endocytosis. Viral DNA (AAV and Ad)
or RNA (LV) are uncoated in the cytoplasm. The viral DNA remains as

extrachromosomal episomes in the nucleus while viral RNA is
integrated into the host genome after reverse transcription. For
non-replicative vectors, in most cases only the transgene is expressed.
In the case of oncolytic viruses, viral genes encoding structural proteins are
necessary for the encapsidation and production of replicative particles. PIC,
pre-integration complex.

Finally, the most extensively characterized LVs are derived
from HIV-1, which is a subclass of retroviruses. Retroviruses
are lipid-enveloped particles comprising a homodimer of lin-
ear, positive-sense, single-stranded RNA genomes of 7–11 kb.
Following entry into target cells, the RNA genome is retro-
transcribed into linear double-stranded DNA and integrated into
the cell chromatin (Delelis et al., 2010). To decrease the risk of
insertional mutagenesis, integration-deficient LVs (IDLV) were

designed (Wanisch and Yanez-Munoz, 2009). These IDLVs are
based on the use of integrase mutations that specifically prevent
proviral integration, a process that results in the generation of
increased levels of circular vector episomes in transduced cells.
LVs were tested clinically for the treatment of adrenoleukodystro-
phy (ALD) and Parkinson’s disease (PD). In the case of ALD, an ex
vivo approach was used, with the transduction of hematopoietic
CD34+ cells and re-infusion of corrected cells in the patients. An
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immunological improvement occurred in the two treated children
aged 9–12 months in combination with a blockage of the demyeli-
nating lesions observed by magnetic resonance imaging (MRI),
12–16 months after gene therapy (Cartier et al., 2009, 2012). In
a second study, a dopamine replacement strategy, with an LV
that encodes the three enzymes responsible for the production
of dopamine was tested in a phase I/II clinical trial. Increasing
doses of LV were injected into the striatum of 15 patients with
mid-stage PD. An improvement in motor function was observed at
6-months relative to pre-treatment assessment (Palfi, 2008; Jarraya
et al., 2009 and see http://www.oxfordbiomedica.co.uk).

STRATEGIES TO TARGET ASTROCYTES
The understanding of astrocyte functions in normal and altered
brain strongly relies on the availability of experimental systems to
specifically target astrocytes in vivo. However, the first generation
CNS viral vectors had a strong neurotropism in vivo (Naldini et al.,
1996; Hermens and Verhaagen, 1997; Rabinowitz and Samulski,
1998). Indeed, the injection of AAV2 into adult rodent brains
was associated with neuronal transgene expression when using
ubiquitous promoters (Bartlett et al., 1998; Mandel et al., 1999;
Bjorklund et al., 2000). Similarly, stereotaxic injection into rat
or mouse brain of LVs pseudotyped with the vesicular stomati-
tis virus glycoprotein (VSV-G) with CMV (cytomegalovirus) or
PGK (phosphoglycerate kinase 1) promoters, leads to the specific
transduction of neurons with very limited transgene expression in
other cell types (Naldini et al., 1996; Kordower et al., 1999; Déglon
et al., 2000). Finally, the Ad5 displays a partial neurotropism with
the transduction of other cell types, especially astrocytes (Smith
et al., 1996; Bohn et al., 1999; Soudais et al., 2001; Rubio and
Martin-Clemente, 2002; Wang et al., 2012).

However, it is important to mention that a number of parame-
ters could alter the tropism. These include, amongst other factors,
the purity of the vector, the mode of production, the site of
administration, species, the developmental stage, and normal or
pathophysiological conditions. Unfortunately, data gathered in
primary cultures (neurons and astrocytes) are not predictive of
the in vivo tropism and a systematic evaluation of each vector is
still required. Indeed, VSV-G/LV-GFP under the control of var-
ious promoters efficiently transduces primary rat astrocytes and
to a lesser extent mouse astrocytes (Englund et al., 2000; Li et al.,
2010) while transgene expression is mainly restricted to neurons
in vivo (Naldini et al., 1996; Kordower et al., 1999; Déglon et al.,
2000). This phenomenon was also observed with AAV2, which
efficiently targets astrocytes in vitro but not in vivo (Gong et al.,
2004). The purification method has also a major impact on the
tropism of AAV8. In the mouse hippocampus, the CsCl-purified
AAV8-CMV-GFP displayed an astroglial pattern in contrast to the
expected neuronal expression obtained with an iodixanol purifi-
cation method (Klein et al., 2008). Foust et al. (2009) found that
injection of AAV9-CMV early enhancer/chicken β actin promoter
(CAG)-GFP into the tail vein of adult mice mainly transduces
astrocytes throughout the CNS (Foust et al., 2009), whereas the
tropism is mainly neuronal after intracerebral injection or intra-
venous injection in neonatal mice (Klein et al., 2008). Finally,
discrepancies have been observed on the transduction efficiency
and tropism of various AAV serotypes between species (rodent, cat,

and primates; Davidson et al., 2000; Vite et al., 2003; Burger et al.,
2004; Gray et al., 2011). Additional studies are therefore still war-
ranted to fully characterize the tropism of these vectors in the CNS.
However, three strategies to direct viral vectors toward astrocytes
have already been developed: shifting the tropism by favoring the
entry of viruses in astrocytes, limiting transgene expression with
astrocytes-specific promoters or blocking transgene expression in
unwanted cells (Figure 2).

ALTERING THE ENTRY OF VIRAL VECTORS
The tropism of a virus is first determined by its binding with
a specific receptor at the surface of the host cell (Lutschg et al.,
2011; Arnberg, 2012). Knowledge of the structure and viral capsids
or envelopes and their corresponding receptors provide essen-
tial information to specifically target individual cell types and/or
diseased tissues. For example, the tropism of Ad5 vectors is regu-
lated by the binding to its primary cellular receptor; the coxsackie
and adenoviral vectors receptor (CAR). Tissues refractory to Ad5
infection do not express CAR. The limited expression of CAR in
dopaminergic neurons of the substantia nigra of mice explains
the poor transduction of these cells and transgene expression
in astrocytes and other non-neuronal cells (Lewis et al., 2010).
However, the expression of CAR in the nervous system and in
particular in glial cells has not been extensively examined and
CAR-independent forms of Ad have been developed to shift the
tropism (Grellier et al., 2011).

As mentioned above, more than 100 serotypes of Ad and AAV
were characterized but only a dozen of them infect cells of the
CNS. Indeed, for most of them, only limited data are available
concerning their receptors and their pattern of expression in the
brain. The earliest and most used serotype is the AAV2, which has
a natural tropism for neurons (Bartlett et al., 1998; Kugler et al.,
2003). The binding of AAV2 to its primary receptor, the heparan
sulfate proteoglycan (HSPG) has been well-characterized, and is
centered around two amino acids on the spikes of the AAV2 capsid
(Kern et al., 2003; Opie et al., 2003). However, HSPG is neces-
sary, but not wholly sufficient, for the transduction of permissive
cells. In addition, fibroblast growth factor receptor 1 (FGFR-1)
was identified as a co-receptor of AAV2 (Qing et al., 1999). The
tropism of AAV5 in vivo correlated with the pattern of expres-
sion of platelet-derived growth factor receptor (PDGFR)-alpha
(Di Pasquale et al., 2003). The AAV1, 5, 7, 8, and 9 not only
infect astrocytes in vivo but also neurons and other cells (David-
son et al., 2000; Wang et al., 2003; Shevtsova et al., 2005; Cearley
and Wolfe, 2006; Gray et al., 2011). The AAV9 is unique com-
pared to other AAV serotypes in that it is capable of crossing
the blood–brain barrier and transducing neurons and/or astro-
cytes in the brain depending of the developmental stage (Foust
et al., 2009). Recently, it has been shown that AAV9 uses galac-
tose at the N-linked glycans as a receptor (Bell et al., 2011; Shen
et al., 2011). The identification of the amino acids of the AAV9
capsid necessary for binding to galactose opens the possibility to
modify the tropism (Bell et al., 2012). Finally, AAV4 and AAVrh43
preferentially target astrocytes (Liu et al., 2005; Lawlor et al., 2009)
but the receptors for these serotypes are unknown. AAV4-RSV-
βGal and AAVrh43-CAG-eGFP exclusively transduce astrocytes
when injected into the subventricular zone (SVZ) or the striatum.
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However, AAVrh43-CAG-eGFP infects approximately 3 mm3 of
the striatum and 2,000 astrocytes per mm3 while AAV8-CAG-
eGFP infects 6 mm3 of the striatum and 150,000 neurons per
mm3 (Lawlor et al., 2009).

Lentiviral vectors are increasingly being used in neuroscience
research and are unique in the sense that they are enveloped viruses
that can be pseudotyped (i.e., the original envelope protein can be
replaced by heterologous glycoproteins). The most used pseudo-
type for LV is VSV-G which confers some interesting properties
to the vector (Figure 2). It dramatically broadens LV tropism by
facilitating transduction of various cell types in different species,
it stabilizes the vector particles from shear forces during centrifu-
gation thereby allowing vector concentration and it directs LV to
an endocytic pathway, which reduces the requirements of viral
accessory proteins for transduction (Cockrell and Kafri, 2007).
Initial studies suggest that VSV-G/LV enters into cells using phos-
phatidylserine (PS), but there is no correlation between the cell
surface PS levels and VSV infection or binding (Coil and Miller,
2004). In addition, competition for PS using antagonists does not
block the binding of VSV on target cells. Currently, the receptors
responsible for VSV-G/LV entry in cells are unknown.

In the CNS, VSV-G/LVs expressing transgenes under the con-
trol of ubiquitous promoters have mainly a neuronal tropism
with a limited transgene expression in astrocytes (Naldini et al.,
1996; Déglon et al., 2000; Watson et al., 2002). Among the other
envelopes used to pseudotype LVs, lymphocytic choriomeningitis

virus (LCMV) and Mokola virus (MOK) envelopes result in a
partial transduction of astrocytes. In vivo, LV/LCMV infects specif-
ically astrocytes in the substantia nigra and in the striatum (Miletic
et al., 2004; Cannon et al., 2011). Injection of MOK/LV into the
striatum or the hippocampus leads to the infection of cells that are
mainly astrocytes (Pertusa et al., 2008; Colin et al., 2009). Although
no quantifications were done using LCMV/LV, 70% of cells trans-
duced by MOK/LV are astrocytes, 20% are neurons and 10% are
other cell types of the striatum. In addition, it is important to note
that the titers and the transduction efficiency of these latter vectors
are usually lower than VSV-G/LV.

In conclusion, specific serotypes or envelopes only partially
improve the astrocytic targeting of viral vectors. However, engi-
neering chimeric capsids or envelopes targeting astrocytes is
difficult and time-consuming. In order to optimize viral vectors
tropism, strategies aiming at restraining transgene expression with
astrocytic promoters, or by blocking expression in unwanted cells,
mainly in neurons, were developed.

TARGETING ASTROCYTES WITH TRANSCRIPTION REGULATORY
ELEMENTS
Different astrocytic promoters have been used to restrict transgene
expression into glial cells. However, the packaging size of each viral
vector limits the type of promoters which can be inserted. Analysis
of the transcriptional regulatory elements of the glial fibrillary
acidic protein (GFAP) promoter reveals that 5′-flanking regions

FIGURE 2 | Mechanisms used to restrain the transgene expression

of AAV and LV in astrocytes. (1) To modify the entry, various AAV
serotypes or LV pseudotyping with heterologous VSV-G (green) and
MOK-G (blue) envelopes were used. The tropism of LV is mainly neuronal
(green cells) with the VSV-G envelope and a partial shift toward astrocytes
(blue cells) is observed with the MOK-G envelope. AAV1, 2, 5, 7, and 8 mainly
transduce neurons (green) while AAV4, 9, rh43 display a partial astrocytic
tropism. (2) To restrict transgene expression, astrocytic promoters were
investigated (cells in the upper part). Transgene expression under the control

of a PGK promoter (pPGK, green mRNA) leads to a preferential
expression in neurons, whereas a gfa2 promoter (pgfa2, blue mRNA)
results in an astrocytic expression. (3) To block the transgene expression in
unwanted cells (lower part), miRNA target (miRT) sequences are integrated in
the 3′-UTR of the vector (red signal on the green mRNA). The miR124 is
exclusively expressed in neurons. As a consequence the miR124T is only
recognized in neurons and the transgene expression is blocked (mRNA
degraded). miR124, microRNA 124; miR124T, miR-124 target sequence;
Tg. transgene.
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of the gene are sufficient to direct transgene expression in astro-
cytes (Brenner et al., 1994). Two fragments compatible with AAV
and LV vectors were created: gfa2 of 2.2 kb and gfaABC1D of
600 bp (Brenner et al., 1994; Lee et al., 2008). The cloning of the
gfa2 fragment into Ad5 and AAVrh43 vectors restricts transgene
expression in rat astrocytes (Do Thi et al., 2004; Lawlor et al., 2009;
Mamber et al., 2010; Arregui et al., 2011). However, no quantifi-
cation was performed to determine the number of transduced
astrocytes. In the study by Lawlor et al. (2009), the gfa2 promoter
was cloned into the AAV8 vector. The Gfa2-AAV8 vector infects
mainly astrocytes in the striatum but a low transgene expression
was still observed in neurons. The authors indicated that AAV8-
gfa2-eGFP has high transduction efficiency with a wide diffusion
in the striatum while AAVrh43-gfa2-eGFP transduces only a lim-
ited number of cells. It was shown recently that injection of high
titer of AAV5-gfa2-eGFP into the striatum or the substantia nigra
provides an astrocyte-specific expression with no residual expres-
sion into neurons or microglial cells. In addition, the expression
was stable until 12 weeks post-injection. Stereological analysis of
transgene expression reveals that a mean of 15,000 astrocytes per
mm3 of striatal tissue were transduced (Drinkut et al., 2012), cor-
responding to ∼75% of the astrocytes present in the transduced
area (Savchenko et al., 2000).

Astrocytic promoters were also used in combination with
LCMV and MOK pseudotyped LVs (Figure 2). The vector
LCMV/LV-gfa2-Cre was injected into the SVZ of Rosa26 mice
that express the sequence LoxP-stop-LoxP-LacZ (Stein et al., 2005).
The expression of Cre in transduced cells removes the STOP cas-
sette in Rosa26 mice and as a consequence, LacZ staining was
observed in astrocytes of the SVZ after LCMV/LV injection. How-
ever, no quantification was performed although some neurons
expressed the transgene. To develop an expression system acti-
vated in pathological conditions, Jakobsson et al. (2004) took
advantage of GFAP up-regulation in reactive astrocytes. Using
toxin-induced lesion models (6-hydroxy-dopamine and ibotenic
acid lesions), they showed that the transgene expression is eight-
fold higher in reactive astrocytes: a finding which correlates with
the activity of the endogenous GFAP gene (Jakobsson et al., 2004).
Recently, other astrocytic promoters were used in LV vectors, such
as the glutamate transporter promoter, EAAT1 (Colin et al., 2009).
In this study, striatal injection of MOK/LV-EAAT1-GFP leads to
the expression of the transgene mainly in astrocytes (75% of the
transduced cells).

In conclusion, astrocyte-specific promoters alone or in combi-
nation with an “astrocytic” capsids or envelopes, significantly shift
the tropism of viral vectors toward astrocytes in vivo. However,
the targeting is, in most cases, not complete and a residual trans-
duction (10–40%) of non-astrocytic cells is observed. In addition,
most studies rely on the use of the GFAP promoter. Large initia-
tives are underway to characterize the regulatory elements of the
whole human genome (Gerstein et al., 2012; Whitfield et al., 2012)
and new astrocyte-specific promoters were recently described.
For example, the aldehyde dehydrogenase 1 family, member L1
(ALDH1L1) promoter is highly active in all mature astrocytes
(Cahoy et al., 2008) while the GLAST promoter was used to express
transgene in GFAP-positive but also GFAP-negative astrocytes (Liu
et al., 2006; Regan et al., 2007; Buffo et al., 2008). Analysis of

GLAST and GLT1-GFP mice has revealed an unexpected non-
overlapping pattern between the two transporters and confirmed
the differential activation of the promoters during embryogenesis
and in adulthood. GLAST activity was low in the forebrain and
high in the cerebellum, whereas GLT1 expression was higher in
the cortex than in the cerebellum, consistent with the prominent
role of GLT-1 in glutamate uptake in the forebrain. Combining
data from the ENCODE project and the gene expression cartog-
raphy in human and mouse brain will provide additional and
essential information to identify minimal fragments necessary for
cell-type-specific transgene expression in viral vectors (Hawry-
lycz et al., 2012). This strategy has already been developed by
the Pleiade Project, which integrated information from genomic
databases to construct synthetic MiniPromoters for viral vectors
containing only the indispensable regulatory elements to achieve
gene expression (Portales-Casamar et al., 2010).

DETARGETING STRATEGY USING MICRORNA
To further improve viral vector tropism, post-transcriptional
regulatory elements have been integrated into viral vectors to
block transgene expression in non-targeted cells. This strategy
called“detargeting”uses microRNA (miRNA) machinery to obtain
tissue-specific expression (Brown et al., 2007; Figure 2). miRNAs
are small non-coding RNA of 19–25 nucleotides that mediates
post-transcriptional gene suppression (Bartel and Chen, 2004;
O’Carroll and Schaefer, 2013). Approximately 1,000 miRNAs have
been identified and almost 50% of them are expressed in mam-
malian brains (He et al., 2012). These miRNA are differentially
distributed in distinct brain regions and show cell-type specificity
with even differential intraneuronal miRNA compartmentaliza-
tion (Bak et al., 2008; Edbauer et al., 2010). Since miRNAs target
most genes, they represent important regulators of expression
and are implicated in a large range of biological activities. The
negative regulation of gene expression is mediated through base-
pairing with complementary regions within the 3′ untranslated
region (3′-UTR) of their target protein-coding messenger RNAs
(mRNAs; Bartel and Chen, 2004; Kosik, 2006; Saugstad, 2010).
To restrict transgene expression in a specific cell population, a
miRNA present in unwanted cells but not expressed in targeted
cells is chosen. A natural target sequence (miRT) or a sequence
fully complementary to the mature miRNA is cloned in the 3′-
UTR of the gene of interest (Brown et al., 2007). This detargeting
strategy was first demonstrated in the CNS with the neuron-
specific miR124 (Colin et al., 2009). In this latter study, four
copies of the natural target sequence of miR124 from the integrin-
β1 gene were inserted in a LV to block transgene expression in
neurons. When a miRT with a partial complementarity (bulged
miRT) to its miRNA is placed in 3′-UTR of a gene of interest,
repression occurs both at post-transcriptional (mRNA degrada-
tion) and translational levels. Whereas, in the case of a synthetic
miRT with full complementarity with the miRNA, mRNA degra-
dation is the main mechanism of action (Gentner and Naldini,
2012). Importantly, no saturation of miRNA machinery or adverse
biological effects was reported with these miRNA-regulated LV
(Colin et al., 2009; Gentner et al., 2009). The miRT threshold
for saturation varies for each miRNA, perfectly complementary
miRTs have a lower risk to saturate the miRNA machinery. In
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addition, each miRNA has differential suppressive activity rang-
ing from 5 up to >150-fold (Gentner et al., 2009). In this context,
miR124 is a promising candidate because it is highly expressed
in neurons (Lagos-Quintana et al., 2002; Smirnova et al., 2005;
Deo et al., 2006). The insertion of four miR124T sequence in a
VSV-G pseudotyped LV (VSV/LV-PGK-LacZ-miR124T) signifi-
cantly decreases transgene expression levels and the number of
β-galactosidase-positive neurons in the striatum of adult mice
(Colin et al., 2009). This detargeting approach was used to shift
the tropism of LV toward astrocytes. Double-immunofluorescence
staining with neuronal and astrocytic markers demonstrated that
combining mokola pseudotyping and miR124T (MOK/LV-PGK-
LacZ-miR124T) resulted in a transgene expression that was almost
exclusively restricted to astrocytes, with 89 ± 3% β-galactosidase-
S100β-positive cells and 6 ± 4% NeuN-positive cells. This effect
was not restricted to the striatum as similar results were obtained
in the hippocampus and cerebellum.

In conclusion, the use of these three different strategies (modu-
lation of viral vector entry, transcription and post-transcriptional
regulations) has enabled the development of efficient gene trans-
fer systems to specifically target astrocytes (Figure 3). Thanks
to the unique features of these new viral vectors, it has already
been possible to make significant advances in two areas of
research related to the development of innovative therapies and
the modeling of neurological disorders.

VIRAL VECTORS TARGETING ASTROCYTES: APPLICATIONS
FOR BRAIN DISEASES
MODELING BRAIN DISEASES
There is evidence to support the idea that the mechanisms respon-
sible for selective neurodegeneration in some brain disorders are
non-cell autonomous and based upon pathological cell–cell inter-
actions. The selective death of the neuronal population at risk
in each disorder can be better explained by the convergence of
multiple pathogenic mechanisms which provoke damage within
the vulnerable neuron and neighboring cell types rather than by
autonomous cell mechanisms (Ilieva et al., 2009).

In order to dissect out the specific role of different cell pop-
ulations in vivo (neurons, astrocytes, microglia), two different
strategies were recently used. The first one relies on the use of the
Cre/loxP system to silence the expression of the mutant protein
in specific cell types by crossing different Cre-expressing trans-
genic mice with transgenic mice expressing the mutant protein
flanked by loxP sites in all cell types. The opposite strategy con-
sists of selectively expressing the mutant protein in specific cell
types using either specific promoters such as GFAP or by cross-
ing different Cre-expressing transgenic mice with transgenic mice
expressing the mutant protein after a STOP cassette flanked by
loxP sites.

These two strategies were useful in providing evidence that
astrocytes play a key role in the pathogenesis of ALS (Ilieva et al.,

FIGURE 3 | Effects of the envelope/serotype, promoter, and miRT detargeting on the cellular tropism of LV, AAV and Ad. Overview depicting the
tropisms of viral vectors in the CNS. References used for this figure are detailed and cited in the text.
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2009), spinocerebellar ataxia 7 (Custer et al., 2006), HD (Gu et al.,
2005; Bradford et al., 2009, 2010), and taupathies (Forman et al.,
2005; Dabir et al., 2006). However, an alternative strategy based
upon the use of viral vectors to selectively and locally express the
mutant protein has also proven to be very useful and comple-
mentary to the development of transgenic mice in particular to
test whether a local expression is sufficient to induce pathological
mechanisms. Through the use of a newly developed LV (Colin
et al., 2009), a short form of the mutant protein huntingtin (mHtt,
responsible for HD), was expressed only in striatal astrocytes and
not in neurons (Faideau et al., 2010). It has been shown that these
glial cells developed a progressive phenotype of reactive astro-
cytes that was characterized by a marked decreased expression of
both glutamate transporters, GLAST and GLT-1, and of glutamate
uptake. This reactive phenotype was associated with neuronal dys-
function, as observed by a reduction in DARPP-32 and NR2B
expression. Consistent with the above findings, a histological re-
evaluation of potential astrocyte reactivity within postmortem
brains of HD patients showed the presence of astrogliosis in the
caudate nucleus of Grade 0 patients and confirmed the colocal-
ization of mHtt in astrocytes with a grade-dependent reduction
in GLT-1. Through the use of viral vectors that target astrocytes
locally, we were able to show that the presence of mHtt in astrocytes
is sufficient to alter the glial glutamate transport capacity early in
the disease process and may contribute to pathogenesis of HD.

GLIOBLASTOMA MULTIFORM
Glioblastoma multiform (GBM) is the most common primary
tumor developing in the brain from astrocytes. Due to the quick
proliferation and its infiltrative nature, complete ablation by
surgery is almost impossible. The prognosis is very poor, with
a median survival of 14.6–19.6 months and an inevitable relapse
within a few months after the resection (Grossman et al., 2010).
Viral-mediated gene therapy aiming to reduce glial proliferation
represents, therefore, an alternative therapy (Murphy and Rabkin,
2013). Indeed, GBM is a good candidate for gene therapy because
tumor cells rarely develop metastasis outside of the brain and
most cells in the CNS are post-mitotic, reducing side effects of
therapeutic strategies targeting dividing cells.

However, appropriate viral vectors for the treatment of GBM
are different from those developed for the treatment of neu-
rodegenerative diseases. For GBM therapy, the aim is to mediate
destruction of proliferating cells. Glial targeting is achieved either
by the injection of the vector into the tumor mass, by choosing a
vector which target dividing cells or having a partial tropism for
glial cells, as it is the case for Ad (Asadi-Moghaddam and Chiocca,
2009).

The first studies used a replication-deficient mouse moloney
leukemia virus (MLV) that infected dividing cells and expressed a
suicide gene (thymidine kinase, TK; Ram et al., 1993). Thymidine
kinase is a phosphotransferase enzyme that incorporates dGTP
analogs in the presence of ganciclovir instead of cellular dGTP
and leads to the blockade of cellular replication (Boivin et al.,
1993). But the low transduction efficiency neither improved tumor
progression nor the overall survival time (Ram et al., 1993, 1994;
Gunzburg et al., 1995). To improve the efficacy of the treatment,
vector-producing cells (VPC releasing MLV particles expressing

the TK suicide gene) were injected into the brain after surgical
resection of the tumor. However, no significant decrease of tumor
mass occurred despite the bystander effect (Ram et al., 1997; Klatz-
mann et al., 1998; Shand et al., 1999; Packer et al., 2000; Rainov,
2000; Martinet et al., 2003). As an alternative therapy, Ad-TK
was administered directly to GBM patients but the phase III trial
showed no positive outcome (Cottin et al., 2011). Interestingly,
it was shown that the preferential transduction of glioma cells is
not dependent on the expression of known Ad receptors on tumor
cells (Candolfi et al., 2006). Expressing the therapeutic suicide gene
under the control of a strong ubiquitous promoter in combination
with an immune stimulator may increase therapeutic efficacy and
prevent relapse (Candolfi et al., 2006; Ghulam Muhammad et al.,
2009).

As an alternative strategy to improve the therapeutic efficacy,
conditionally replicative or replicative viruses were developed. The
principle of oncolytic therapy is to inject directly into the tumoral
cells a lytic replicative-competent cytotoxic virus, such as HSV,
VSV, Ad, or retroviruses, which will induce apoptosis in prolif-
erative cells during replication (Parker et al., 2009; Zemp et al.,
2010; Castro et al., 2011; Russell et al., 2012). HSV were initially
used as lytic viruses in GBM therapy (Zemp et al., 2010). How-
ever, the high worldwide HSV seropositivity limits their use in
the clinic and as a consequence has led to the development of
other oncolytic viruses. A deletion of E1B region on Ad genome
(Ad-ONYX-15) was introduced to favor apoptosis in infected
glioma cells but the efficiency of this approach was too low to
reach a phase II of clinical trial (Moran, 1993; Chiocca et al.,
2004). In addition, replicative adenoviral vectors expressing ther-
apeutic genes were used to mediate tumoral cells destruction.
The candidate genes are inserted in the E3 deleted region and a
CAR-independent entry mechanism enhancing the transduction
efficiency of tumoral cells has been proposed for these new gener-
ation oncolytic viruses. To favor replication in GFAP-positive cells,
three copies of glial specific B enhancer were added on the gfa2
promoter (gfa2B3), leading to a decreased growth of glioma cells
(Horst et al., 2007).

GENE THERAPY FOR NEURODEGENERATIVE DISORDERS
Degeneration of the nigro-striatal projection represents the major
pathological hallmark of PD. Preclinical rodent and non-human
primate models demonstrated a strong protective effect of glial
cell line-derived neurotrophic factor (GDNF) on the nigro-
striatal dopaminergic system (Gash et al., 1996; Kirik et al., 2000).
However, intrathecal infusion of GDNF protein or viral vector-
mediated expression of neurturin in the striatum of late stage PD
patients showed no significant clinical benefit (Lang et al., 2006;
Marks et al., 2010). Current gene therapeutic trials in the brain
predominantly use AAV2 due to its proven safety record. In the ani-
mal and human CNS, AAV2 predominately transduces neurons.
However, the expression of neurotrophic factors in neurons may
impose a serious safety issue since the factors can be secreted from
the soma, unmyelinated projections, or synaptic sites of trans-
duced neurons, thereby delivering a complex signaling-inducing
molecule to potential off-target sites. One alternative strategy
would be to restrict their impact to the immediate vicinity of
the site of the lesion. Through the use of an AAV5 expressing
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GDNF under the expression of GFAP,Drinkut et al. (2012) demon-
strated the same efficacy as neuron-derived GDNF. In terms of
safety, unilateral striatal GDNF expression in astrocytes did not
result in delivery of bio-active GDNF to the contralateral hemi-
spheres (potential off-target sites) as was the case when GDNF was
expressed in neurons. This suggests that astrocytic neurotrophic
factor expression achieved by a viral vector can be considered an
efficient alternative to current gene therapeutic strategies.

Astrocyte activation, characterized by hypertrophic somata and
processes, is an early hallmark in most neurodegenerative condi-
tions. The functional impact of this activation on the progression
of these diseases is still elusive and their therapeutic potential is
yet unexploited. A recent study has taken advantage of the strong
astrocytic tropism of AAV2/5 expressing the astrocyte-specific
promoter Gfa2 to test the potential of astrocyte-targeted thera-
peutics in an intact animal model of Alzheimer’s disease (AD;
Furman et al., 2012). It was shown that the bilateral adminis-
tration of AAV2/5 Gfa2–VIVIT (a synthetic peptide that blocks
the calcineurin (CN)/nuclear factor of activated T cells (NFAT)
pathway which regulates several components of the activated
astrocyte phenotype) into the hippocampus of 7- to 8-month-old
APP/PS1 mice, was associated with reduced glial activation, lower
amyloid levels, improved synaptic plasticity, and an improved cog-
nitive function at 16–17 months of age. This result represents a
proof-of-principle that astrocytes can be considered as significant
therapeutic targets not only in AD but also for other neurode-
generative diseases. Because of its specificity, lack of toxicity and
capacity for widespread and long-lasting transgene expression,
AAV appears to be an ideal vehicle for directing therapeutics to
astrocytes.

CONCLUSION AND PERSPECTIVES
The growing importance of astrocytes in crucial brain functions
and also dysfunctions has led to the development of new genetic
tools to label and manipulate these glial cells in vivo. Thanks to
these tools that include targeted transgenesis and viral transduc-
tion, considerable advances were made in the understanding of
astroglial biology. This first generation of astrocytic viral vectors
was instrumental to start depicting their role in specific brain
regions of different species. However, a better determination of
the numerous functions played by astrocytes during development,
in adulthood and disease will require new viral vectors that can
further resolve the intimate relationship between neurons and
glia in the maturing brain (Molofsky et al., 2012). One important

issue relates to the recent but well-accepted notion that astro-
cytes do not represent a homogenous population of cells. This
is, of course, thoroughly demonstrated for neurons (Miller and
Gauthier, 2007) but is just starting to be studied for astrocytes
in particular because of the lack of reliable markers to follow
these different cell populations. The launching of recent initia-
tives such as the Human Brain Project and ENCODE will increase
our knowledge on the functions of astrocytes and may help to
refine strategies previously developed to drive transgene expres-
sion into specialized astrocytes at different stages of development
either in normal or diseased states. A comprehensive mapping of
the cell-type-specific expression of miRNAs, the development and
in vivo assessment of efficient miRT sequences will also permit
one to ameliorate the detargeting strategy. Similarly, the iden-
tification of the receptors required for the binding of the viral
particles to astrocyte subpopulations will represent a major step
toward the production of more efficient astrocytic viral vectors.
In addition to these strategies which are already used to drive
the tropism of viral vectors toward astrocytes, new viral vectors
could be developed. Among these emerging viral vectors, baculovi-
ral vectors take advantage of their natural tropism for astrocytes
(Boulaire et al., 2009). Their large genome size (140 kb) is suitable
for the incorporation of large genes of interest and complex reg-
ulatory elements (Wang and Wang, 2006). Clinical observations
in patients suffering from neurological pathologies following viral
infections suggest that other viruses could have a cerebrotropism
(e.g., alphaviruses or arboviruses; Das et al., 2010; Walker et al.,
2012). This illustrates the need for multidisciplinary programs that
would share the expertise of neurobiologists, virologists, geneti-
cists, and clinicians in order to overcome the limitations of current
vectors and discover innovative gene transfer systems. Consider-
ing how much more might be discovered about the functions of
normal or diseased astrocytes, it is tempting to suggest that we
are just at the beginning of the development of astrocentric viral
vectors.
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