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Purpose: Eupatilin is an antioxidative flavone and a phytopharmaceutical derived from Artemisia asiatica. It has been reported to possess 
anti-tumor activity in some types of cancer including gastric cancer. Eupatilin may modulate the angiogenesis pathway which is part of 
anti-inflammatory effect demonstrated in gastric mucosal injury models. Here we investigated the anti-tumor effects of eupatilin on gas-
tric cancer cells and elucidated the potential underlying mechanism whereby eupatilin suppresses angiogenesis and tumor growth.
Materials and Methods: The impact of eupatilin on the expression of angiogenesis pathway proteins was assessed using western blots 
in MKN45 cells. Using a chromatin immunoprecipitation assay, we tested whether eupatilin affects the recruitment of signal transducer 
and activator of transcription 3 (STAT3), aryl hydrocarbon receptor nuclear translocator (ARNT) and hypoxia-inducible factor-1α (HIF-
1α) to the human VEGF promoter. To investigate the effect of eupatilin on vasculogenesis, tube formation assays were conducted using 
human umbilical vein endothelial cells (HUVECs). The effect of eupatilin on tumor suppression in mouse xenografts was assessed.
Results: Eupatilin significantly reduced VEGF, ARNT and STAT3 expression prominently under hypoxic conditions. The recruitment of 
STAT3, ARNT and HIF-1α to the VEGF promoter was inhibited by eupatilin treatment. HUVECs produced much foreshortened and se-
verely broken tubes with eupatilin treatment. In addition, eupatilin effectively reduced tumor growth in a mouse xenograft model.
Conclusions: Our results indicate that eupatilin inhibits angiogenesis in gastric cancer cells by blocking STAT3 and VEGF expression, 
suggesting its therapeutic potential in the treatment of gastric cancer.
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Introduction

It has been well demonstrated that neovascularization, or an-

giogenesis, is required for successful tumor growth and metastasis.

(1) In addition vascular endothelial growth factor (VEGF) is known 

to be one of the most important and well characterized inducers of 

angiogenesis.(2-4) 

VEGF expression and angiogenesis could be induced as a con-

sequence of microenvironmental alterations, particularly hypoxia,(4) 

or genetic aberrations,(5,6) and including the activation of onco-

genic kinases.(7,8)

Hypoxia-inducible factor (HIF) is a transcription factor that is 

stabilized under reduced oxygen tension and plays a key role in the 

cellular response to hypoxia. HIF is a heterodimer consisting of 

two subunits, oxygen-sensitive HIF-α and constitutively expressed 

HIF-β [also known as aryl hydrocarbon receptor nuclear transloca-

tor (ARNT), the heterodimeric partner of aryl hydrocarbon recep-

tor (AHR)].(9) Upon hypoxia, HIF-1α heterodimerizes with the 

constitutively expressed HIF-1β subunit, and together they bind to 

DNA to increase the transcription of target genes including VEGF, 

erythropoietin, transferrin, endothelin 1, inducible nitric oxide syn-

thase, and insulin-like growth factor II.(10-12)

Constitutive activation of protein kinases is highly prevalent 

in a wide range of cancers and their role in VEGF induction and 

angiogenesis has been well documented.(7,8) Although diverse ki-
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nases transduce signals through multiple routes, signal transducers 

and activators of transcription 3 (STAT3) comprises a convergence 

point of many signaling pathways(13,14) and transmits signals to 

the nucleus, where it binds to specific DNA promoter sequences 

and thereby regulate gene expression.(15) STAT proteins participate 

in tumorigenesis through up-regulation of genes encoding apop-

tosis inhibitors (myeloid cell leukemia sequence 1 (MCL1), BCL2-

like 1 (BCL2L1)) and cell-cycle regulators (cyclin D1/D2, MYC).

(16) STAT3 is also involved in tumor progression through induc-

ing angiogenic factors, such as VEGF.(17) Aberrant activation of 

STAT3 is commonly observed in tumors and is strongly associated 

with tumor development and progression. 

While searching for an antiangiogenic agent that would inhibit 

HIF-1 activity, we identified a novel pharmacologic activity of 

eupatilin. Eupatilin, a phytopharmaceutical derived from Artemisia 

asiatica, has been reported to possess antioxidative and cytoprotec-

tive functions in various models of gastric mucosal damage.(18-20) 

We found that eupatilin inhibits HIF-1 activity in vitro. Eupatil-

in completely blocks HIF-1α expression at the post-transcriptional 

level and consequently inhibits the transcription factor activity of 

HIF-1 in cancer cells cultured under hypoxic conditions. 

In this study, we demonstrated that eupatilin inhibits STAT3 

activation in hypoxia-stimulated cancer cells. Further, the tran-

scriptional activation of the VEGF promoter was mediated by ac-

tive STAT3. Furthermore, active STAT3 interacted with HIF-1 and 

increased HIF-1 accumulation in the hypoxic cells. 

Materials and Methods

1. Cell culture and hypoxic condition
The human gastric cancer cell line MKN45 was maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% heat-inactivated fetal bovine serum (FBS) and 1% antibiotics. 

Human umbilical vein endothelial cells (HUVECs) were obtained 

from Angiolab Corp. (Daejeon, Korea) and grown in M199 medium 

(GIBCO BRL, Gaithersburg, MD, USA) supplemented with 10% 

FBS, 50 μg/ml endothelial cell growth supplement (Sigma, St louis, 

MO, USA), heparin, and antibiotics. HUVECs were used between 

passages 5 and 8. Both MKN45 and HUVEC cells were cultured at 

37oC in a humidified atmosphere containing 5% CO2. For hypoxic 

conditions, cells were incubated at 5% CO2 levels with 1% O2 bal-

anced with N2 in a hypoxic GasPak (BD bioscience, San Jose, CA, 

USA; 260683). 

2. Treatment with chemicals
Eupatilin was generously provided by Dong-A Pharmaceutical 

Co. Ltd. (Yongin, Korea), dissolved in dimethysulfoxide (DMSO) 

as a 10 mM stock solution, stored at -20oC, and then diluted into 

Hanks’ balanced salt solution (HBSS; GIBCO, Rockville, MD, 

USA) for use in experiments. Cells were treated with various con-

centrations of eupatilin (0~150 mM) or with DMSO vehicle. Oth-

erwise, cells were preincubated with 100 mM of eupatilin or under 

hypoxic conditions for 5~6 hr.

3. Co-immunoprecipitation assay
After treatment with eupatilin, cells were washed in PBS, and 

cell lysates were prepared by adding 1 ml of RIPA modified buf-

fer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 1 

mM EDTA, 1 mM PMSF) supplemented with protease inhibitors 

(Roche Molecular Biochemicals, Mannheim, Germany). Agarose 

beads precleared with protein A/G (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) were then incubated with lysates at 4oC for 

1 hr and a 1 : 200 dilution of anti-HIF-1α monoclonal antibody 

(BD Biosciences, San Jose, CA, USA) was added. After incubation 

at 4oC for 2 hr, the beads were washed one time with RIPA buf-

fer and twice with PBS, and the immune complexes were released 

from the beads by boiling in sample buffer for 5 min. Following 

electrophoresis on 10% SDS-polyacrylamide gels, immunoprecipi-

tates were analyzed by Western blotting using rabbit anti-STAT3 

polyclonal antibody (Cell Signaling Technology, Danvers, MA, 

USA) (1 : 1,000), rabbit anti-ARNT polyclonal antibody (Santa 

Cruz Biotechnology, Santa Crue, CA, USA; sc-5580) (1 : 1,000), 

and rabbit anti-VEGF polyclonal antibody (Santa Cruz Biotech-

nology, CA, USA; sc-507) (1 : 500).

4. Chromatin immunoprecipitation
Cells were treated with eupatilin for the indicated times fol-

lowed by treatment with the cross-linking reagent formaldehyde 

(1% final concentration) for 10 min at 37oC. They were then rinsed 

twice with cold PBS, and swollen on ice in SDS lysis buffer (1% 

SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1) for 10 min. Nuclei 

were collected and sonicated on ice. Supernatants were obtained 

by centrifugation for 10 min and diluted 10-fold in chromatin im-

munoprecipitation (ChIP) dilution buffer (0.01% SDS, 1.1% Triton 

X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1, 167 mM 

NaCl). The mixture (fragmented chromatin) was then incubated 

with 2 ml of anti-HIF-1α, anti-STAT3, or anti-ARNT antibody 

on a rotator at 4oC for 4 hr. Protein A/G plus-agarose beads (20 



Cheong JH, et al.

18

ml) were added followed by incubation for 1 hr at 4oC with rota-

tion to collect the antibody/chromatin complexes. Cross-linked, 

precipitated chromatin complexes were recovered and cross-links 

were reversed according to Upstate’s protocol (Upstate, Chicago, 

IL, USA). Final DNA pellets were recovered and analyzed by 

PCR using a pair of primers that encompass the VEGF promoter 

region (235 bp). The primers used were forward 5’-AGACTC-

CACAGTGCATACGTG-3’ and reverse 5’-AGTGTGTCCCTCT-

GACAATG-3’.

5. Endothelial cell tube formation assay
Growth factor-reduced Matrigel (BD Biosciences, San Jose) 

was placed in the well of a pre-chilled 24-well cell culture plate 

and incubated at 37oC for 1 hr to allow polymerization. HUVECs, 

at concentrations of 4×104 per well, were plated into the growth 

factor-reduced Matrigel coated wells, and incubated at 37oC in 5% 

CO2 in the conditioned media. After 16-h incubation, the plates 

were photographed. Tube formation was quantified by counting the 

number of connected cells in five randomly selected fields at ×200 

magnification. All experiments were performed in triplicates. Sta-

tistical significance was determined using independent sample two-

sided Student t-test at the 5% level of significance using SPSS for 

Windows (version 12.0, SPSS Inc., Chicago, IL, USA).

6. In vivo tumor model
Animal experiments were carried out in accordance with the 

policies of the animal research committee of the Yonsei Univer-

sity College of Medicine. Tumor models were generated by direct 

subcutaneous injection of 1×106 MKN45 cells into 8-week-old 

female nude mice. When tumors were approximately 50 mm3 in 

size (7 days), the animals were randomly divided into two groups 

(five mice per group) for no treatment (vehicle only) and treatment 

with eupatilin (EPT), respectively. EPT (10 mg/kg) in 200 μl HBSS 

or 200 μl of HBSS only were administered three times a week 

for 2 weeks by intraperitoneal injection. The total amount of EPT 

injected to the mice in the treatment group was 60 mg/kg for each 

mouse. 

Mice were weighed and tumor measurements were taken in 

three coordinates using digital calipers two to three times weekly. 

Tumor measurements were converted to tumor volume using the 

formula L×S2/2 (where L = ongest diameter; S = shortest diam-

eter). Mice were sacrificed when the longest diameter of all tumors 

exceeded 15 mm in the control group. At the time of sacrifice, mice 

were weighed, and tumors excised and ex vivo tumor weight was 

measured. Statistical significance was determined using Student's 

t-test. 

Results

1. Eupatilin down-regulates the expression of active 

STAT3 protein levels and VEGF in gastric cancer 

cells under hypoxia
To investigate the effects of eupatilin on the expression of 

STAT3 and VEGF in hypoxic condition, we examined HIF-1α, 

ARNT, STAT3, p-STAT3 and VEGF by Western blot. Eupatilin 

strongly inhibited the expression of HIF-1α which is stimulated 

by hypoxia (Fig. 1). We found that total STAT3 expression was 

increased by hypoxic conditions. Interestingly, active STAT3, the 

phosphorylated form, was more significantly reduced with eupa-

tilin treatment in hypoxia than in normoxia. As shown in Fig. 1, 

eupatilin coordinately inhibited the expression of HIF-1α, phos-

phorylated STAT3 and VEGF at a level of 100 μM in MKN45 cells 

cultured in hypoxia. These data indicate that eupatilin was capable 

of down modulating the expression of proteins in angiogenesis 

pathways in gastric cancer cells under hypoxic conditions.

2. STAT3 interacts with HIF-1 α and eupatilin inhi-

bits STAT3 recruitment to the VEGF promoter 
Our data showed that STAT3 protein expression was greater in 

hypoxic conditions compared to normoxia, suggesting the impor-

tant role of STAT3 in regulating VEGF expression in hypoxia (Fig. 

Fig. 1. Eupatilin inhibits the expression of angiogenesis gene products, 
HIF-1α, ARNT, STAT3 and VEGF. MKN45 cells were treated with in-
dicated concentration of eupatilin before being cultured for 6 hr under 
normoxic (20% O2 v/v) or hypoxic (1% O2 v/v) conditions. Expression 
levels of HIF-1α, ARNT, STAT3, phospho-STAT3 were analyzed by im-
munoblotting. β-actin was used for loading control. Proteins were vi-
sualized by enhanced chemiluminescence. HIF-1α = hypoxia-inducible 
factor-1α; ARNT = aryl hydrocarbon receptor nuclear translocator; 
STAT3 = signal transducer and activator of transcription 3; VEGF = 
vascular endothelial growth factor.
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1). We thus hypothesized that VEGF expression is cooperatively 

regulated by HIF-1α and ARNT, as well as by STAT3. To test 

this hypothesis, we first investigated possible interaction between 

HIF-1α, STAT3, ARNT and VEGF using the co-immunoprecip-

itation assays. MKN45 cells grown under either normoxic or hy-

poxic conditions were lysed and immunoprecipitated with an anti-

HIF-1α antibody, followed by Western blotting with anti-STAT3, 

ARNT, or VEGF antibodies. We found that STAT3 and VEGF 

were co-precipitated with HIF-1α in normoxic or hypoxic cells 

(Fig. 2A). Interestingly, for reasons yet to be explained, ARNT was 

co-precipitated with HIF-1α only in hypoxic conditions. 

To investigate whether STAT3, HIF-1α, and ARNT might be 

recruited to the VEGF promoter and whether eupatilin may be 

inhibiting the interaction between the angiogenic proteins and the 

VEGF promoter, we performed ChIP assays on chromatin samples 

from normoxic and hypoxic cells with eupatilin treatment. As 

expected, a slight increased in the interaction of HIF-1α with the 

VEGF promoter was observed for hypoxia (Fig. 2B). 

3. Eupatilin directly decreases HUVEC capillary tube 

formation
In light of the role of eupatilin in suppressing the angiogenic 

pathway as suggested above, we next investigated the effect of eu-

patilin on vascular endothelial cells under hypoxic conditions. In 

vitro angiogenesis assays were conducted using HUVECs. During 

angiogenesis, endothelial cells must break and traverse through 

their basement membrane to form new blood vessels. Hypoxia can 

Fig. 2. STAT3 interacts with HIF-1 α and eupatilin inhibits STAT3 recruitment to the VEGF promoter. (A) MKN45 cells were incubated under 
normoxic or hypoxic conditions and cell lysates were immunoprecipitated with an anti-HIF-1α antibody, followed by Western blotting with an anti- 
ARNT, STAT3, and VEGF antibodies. STAT3, ARNT and VEGF co-precipitated with HIF-1α in hypoxic cells. (B) HIF-1α, STAT3 and ARNT are 
recruited to the VEGF promoter. Cross-linked, sheared chromatin was prepared from MKN45 cells grown in the absence or presence of eupatilin 
overnight. Chromatin samples were then immunoprecipitated with the antibodies indicated on the right. Th e precipitates were subjected to PCR 
analysis using primer pairs spanning the human VEGF promoter. Th e control was the PCR product of chromatin obtained before immunoprecipi-
tation. Th e recruitment of HIF-1α, STAT3 and ARNT was greater under hypoxic conditions. Eupatilin treatment signifi cantly inhibited the recruit-
ment of STAT3, ARNT, and HIF-1α to the VEGF promoter region. IP = immunoprecipitation; HIF-1α = hypoxia-inducible factor-1α; ARNT = aryl 
hydrocarbon receptor nuclear translocator; STAT3 = signal transducer and activator of transcription 3; VEGF = vascular endothelial growth factor.

Fig. 3. Eupatilin inhibits in vitro capillary tube formation of HUVECs. 
HUVECs were seeded into 24-well plates coated with Matrigel at a 
density of 4×104 per well and cultured in the conditioned media either 
untreated or treated with eupatilin (50 or 100 μM). Aft er 16-h of in-
cubation, photography was taken. (A) Th e representative photographs 
were shown (original magnifi cation, ×40). (B) Summary of in vitro vas-
culogenesis assay reveals that eupatilin reduced the hypoxia-induced 
vascular formation in dose dependent manner. Each value represents 
mean±SD of 3 independent experiments (*P<0.001). All experiments 
were performed in triplicates. HUVEcs = human umbilical vein endo-
thelial cells.
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stimulate endothelial cell invasion and tube formation. Eupatilin 

was administered to HUVECs seeded on Matrigel beds (10 mg/

ml) and incubated for 16 hr under hypoxic conditions. Eupatilin 

strongly inhibited the hypoxia-stimulated capillary network for-

mation. With increasing doses of eupatilin, vasculogenesis was sig-

nificantly inhibited as evidenced by the production of considerably 

foreshortened and severely broken tubes (Fig. 3). 

4. Effects of eupatilin on tumor growth in an in vivo 

xeno graft model
Based on the observed in vitro effects of eupatilin on angiogen-

esis, we investigated whether eupatilin might inhibit tumor growth 

in vivo. Tumor models were generated by direct, subcutaneous 

injection of 1×106 MKN45 cells resuspended in 200 μl condi-

tioned medium into 8-week-old female nude mice. After a tumor 

was established, mice were randomly divided into two groups (five 

mice per group) for no treatment (vehicle only) and treatment with 

eupatilin (EPT), respectively. EPT (10 mg/kg) in 200 ml HBSS or 

200 μl of HBSS only were administered three times a week by in-

traperitoneal injection. 

Tumors in eupatilin-treated mice were significantly smaller than 

those in vehicle-treated mice (Fig. 4A). The changes in tumor size 

was measured and plotted as average tumor size versus time (data 

not shown). When ex vivo tumor weight was measured upon sac-

rifice, there was a significant difference in tumor weight between 

the control (vehicle only) and EPT groups (Fig 4B). These results 

indicated that eupatilin effectively inhibited tumor growth in a xe-

nograft tumor model. 

Discussion

Angiogenesis is essential for the growth and metastasis of solid 

tumors, and the inhibition of angiogenesis is emerging as a prom-

ising strategy for cancer treatment.(21) VEGF is one of the most 

important and well characterized inducers of angiogenesis.(2-4) 

HIF-1α is stabilized in hypoxic conditions and is a transcrip-

tional regulator of VEGF synthesis.(22) Previous studies have 

demonstrated that STAT3 is a direct transcriptional activator of the 

VEGF gene, and that it forms a transcriptional complex with HIF-

1 α.(23) Many studies have concentrated on STAT3 as a potential 

target for cancer therapy and have found that STAT3 inhibition 

effectively blocks production of VEGF and tumor angiogenesis.

(24) In this study, we observed that eupatilin down-regulated the 

protein levels of HIF-1α and STAT3, which are upregulated in hy-

poxia in MKN 45 cells. Of note, for reasons yet to be determined, 

expression of phosphorylated STAT3 and ARNT was only signifi-

cantly reduced by eupatilin under hypoxic conditions (Fig. 1). 

Increasing evidence has indicated that STAT3 activation is 

necessary for the malignant phenotype of many tumors.(25) 

Some previous studies have emphasized that STAT3 is a critical 

requirement for HIF-1α expression and that HIF-1α expression 

is blocked by STAT3 inhibitors.(24) In this study, we found that 

eupatilin inhibited STAT3 expression and markedly suppressed 

the activation of STAT3. Furthermore, we identified an interac-

tion between HIF-1α and STAT3 at the VEGF promoter region 

using co-immunoprecipitation and ChIP assays, suggesting that 

both HIF-1α and STAT3 serve as transcriptional factors binding 

to the VEGF promoter. Indeed, increased interaction of HIF-1α 

to the VEGF promoter was observed in the hypoxia as expected 

(Fig. 2B). However, for reasons yet to be determined, the binding 

Fig. 4. The effect of eupatilin on the growth of xenografted human 
gastric cancer. MKN45 xenograft s on the fl anks of mice treated with 
vehicle only (T) or with eupatilin (EPT) for 2 weeks. EPT (10 mg/kg) 
in 200 μl HBSS or 200 μl of HBSS only were administered three times 
a week by intraperitoneal injection. (A) Representative photograph of 
mice treated with either vehicle only (T) or EPT. Th e arrows indicate 
MKN45 tumors on mouse fl ank. (B) Ex vivo tumor weight of tumors 
from 4A. Each value represents mean±SD (*P<0.05).
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of ARNT and STAT3 to the promoter region was not significantly 

enhanced under hypoxic conditions compared to normoxia. Re-

gardless, eupatilin was able to inhibit the recruitment of STAT3 to 

the VEGF promoter region in a dose-dependent manner. Interest-

ingly, the magnitude of inhibition between hypoxic and normoxic 

conditions was comparable, indicating that eupatilin could inhibit 

nuclear translocation of the angiogenic pathway proteins regardless 

of oxygen concentration. Furthermore, it also implies that eupatilin 

could havedual functions in suppressing the angiogenesis pathway 

by direct inhibition of protein expression and by intervening with 

nuclear localization of these proteins. In order to properly respond 

to hypoxia thereby inducing VEGF expression, HIF-1α is required 

to interact with multiple proteins to modulate its stability and be-

come activated. (23) In this respect, our data suggest that STAT3 

should be considered as a new regulator of VEGF expression by 

participating in a transcriptional unit with HIF-1α and ARNT in 

gastric cancer cells. Importantly, this co-regulatory effect was in-

hibited by eupatilin.

In light of the results presented in this study, STAT3 inhibition 

and the subsequent reduction in VEGF expression could represent 

a potential mechanism for eupatilin-mediated suppression of the 

angiogenesis pathway. In addition, eupatilin treatment also inhib-

ited xenograft tumor growth in mice. Taken together, the overall 

findings of our study indicate that the STAT3/HIF-1 pathway of 

VEGF expression is likely to be a main target of eupatilin action. 

Therefore, the inhibitory action of eupatilin on the expression of 

STAT3-mediated VEGF genes in tumors probably inhibits cell 

survival under hypoxia and may promote cell death in hypoxic ar-

eas by blocking angiogenesis. 

In conclusion, the antioxidative flavone eupatilin significantly 

down-regulates STAT3 protein levels and activity under hypoxic 

conditions, eventually leading to the inhibition of angiogenesis and 

tumor suppression in gastric cancer cells. The therapeutic potential 

of phytopharmaceutical eupatilin should warrants future preclini-

cal and clinical studies to realize a promise of anti-cancer effect by 

preventing tumor angiogenesis.
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