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Abstract: The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The
property of light in converting its energy into different forms has been exploited in the fields of optical
imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of
nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly,
in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these
include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT)
and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be
used in photo-based diagnostics and therapies by using various polymeric systems.

Keywords: light; optical imaging; phototherapy; nanomedicine; photodynamic therapy; photothermal
therapy

1. Introduction

For the past several decades, many studies focused on eradicating cancer, one of the most dreaded
diseases, have been reported that use new treatment modalities as well as conventional treatments, such
as surgery, chemotherapy, and radiotherapy [1]. Owing to the limitations of conventional treatments,
such as their side effects (e.g., functional, physical, and psychological impairment, the occurrence of
multidrug resistance, inadequate selectivity to target location, and low efficacy (e.g., chemotherapy)),
many researchers are devoted to discovering alternative, less-invasive approaches to combat cancer [2–4].
Recently, photo-based treatment in cancers has attracted more interest because of its great potential in
clinical cancer therapy [5–7].

Light has been used to treat vitamin D deficiency, autoimmune diseases, neonatal jaundice, and
skin-related diseases [8,9]. The energy from light, a form of electromagnetic radiation that comprises
photons, can be converted into different forms, such as heat, chemical energy, and acoustic waves [10–12].
Notably, absorbed light can induce changes in photosensitive agents (PSAs) administered in the body.
PSAs can then react as photophysical or photochemical molecules for diagnostic or therapeutic
purposes [13–15]. The rapid development of nanotechnology has enabled it to serve as a good prospect
for the development of photosensitive nanomedicines for the above purposes [16–18].
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In recent years, nanomedicines with good potential for use in phototherapy (PT) have become
popular research topics. The advantages of nanotechnology, such as targetability, surface modification,
environmental responsiveness, and economic preparation, could promote the development of innovative
drug delivery systems for cancer diagnosis and therapy at a molecular level, ultimately improving
treatment efficacy and reducing side effects [19–22]. Based on photosensitive applications for imaging
and therapy, nanomedicines incorporated with PSAs have many advantages, including high PSA loading
capacity in nanoparticles (NPs), protection of PSAs from degradation and photo-bleaching, extended
circulation times, and optimized distribution in vivo [23–25]. In particular, the lack of selectivity to
target locations can be overcome with the use of nanotechnology, which would lead to decreased
damage to healthy tissues and improved PT efficacy in tumors via the enhanced permeability and
retention (EPR) effect [26–29]. Following intravenous (IV) administration, the PSA-incorporated NPs
can be activated by light, inducing fluorescence for imaging or radical molecules for PDT, or elevating
temperature for photothermal therapy (PTT) (Figure 1). The most widely studied drug delivery systems
based on nanoparticle technology are liposomes, polymers, and solid inorganic NPs [16]. Among
them, we focus on polymeric-based nanomedicines. In this review, we address the benefits and risks
of using light, imaging agents, PT, and photosensitive nanomedicines derived using polymers of
different architectures.
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2. Benefits and Risks of Photo-Based Imaging and Therapy

Nowadays, light is widely employed in disease applications, including cancers, for therapy and
imaging. However, the risks as well as benefits of using light for imaging and treatment should be
carefully examined. The benefits and risks of photo-based imaging and therapy are presented in Table 1.
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Table 1. Benefits and risks of photo-based imaging and therapy.

Benefits Ref.

High selectivity [4,30]
High efficacy and low/no systemic toxicity [4,30]
Light irradiation in the location of lesions can be controlled well [4,13]
Minimally or non-invasive and effective modality [13,30–32]
Convenient method [13,30–32]

Risks

Photic injury, photochemical injury, and photomechanical damage [13,33]
Phototoxicity [13,33]
Frequent PT treatments can lead to immunosuppression [34]
Increased risk of developing skin cancer [35,36]

PT: phototherapy.

PT can be established by controlling time, treatment sites, efficacy at the irradiation area, duration,
and the power of light [4,13]. When PSA nanomedicines are used in PT, the activation of non-toxic PSAs
using local light irradiation results in the selective killing of target cells (e.g., cancer cells), with only
minor damages occurring in normal tissues. The careful design of phototherapeutic nanomedicines
and well-controlled light irradiation in the location of lesions (e.g., tumor tissues) maximize their
efficacy because of the dual selectivity of PT [37–39]. Unlike surgery, minimally invasive techniques
requiring a small insertion of an instrument into a body cavity can be conducted with a flexible optical
fiber-bundle device that has a diameter of ~200–300 µm; this is very suitable for imaging deep within
tissues or delivering light for PDT [40–43]. Non-invasive photo-based imaging and therapy within
tissues or the body can also be achieved with near-infrared (NIR) light in the range of 650–900 nm,
thereby enabling deep tissue propagation with low attenuation [44–46]. According to clinical demands,
treatment can be easily adjusted by adapting the procedure of photo-based imaging and therapy [13].

Photo-based nanomedicines should be scrutinized for their risks. Light damages, such as photic
injury, photochemical injury, and photomechanical injury, can be induced according to irradiation
power density, irradiation time, spot size, wavelength, and manner of exposure (e.g., irradiation
frequency) [33,47,48]. Photothermal damage, which involves the heating of tissues by the absorbed
energy, is the most common type of photic injury. At the cellular and molecular levels, an increase in
temperature leads to protein denaturation, molecular tertiary structure loss, and membrane fluidization.
When photochemical injury is caused by long durations and high energy (or low wavelength) of light
exposure, free radicals generated under these conditions can interact with endogenous chromophores
and oxidize proteins and cell membrane lipids, causing painful eye injury, premature skin aging,
skin burning, or skin cancer [49,50]. Furthermore, exposure to high-energy light (megawatts or
terawatts/cm2), even if the duration of irradiation is short (nanoseconds to picoseconds), can cause
photomechanical injury via compressive or tensile forces to tissues [13,33]. When light is employed for
optical imaging (OI) and therapy, the potential of phototoxicity, which can be caused by drugs and
essential oils that diffuse into the skin or eyes, should be considered [13,33,51–53]. In particular, high
exposure to ultraviolet (UV) light increases the risk of skin cancer development. Frequent treatment
with light can suppress the immune system, leaving the body vulnerable to diseases, infections, and
skin cancers [34,54]. In fact, the more treatment one undergoes and the fairer the skin, the higher the
risk of skin cancer [35,36]. Based on the benefits and risks described above, imaging and therapy using
light should be carefully considered.

3. Optical Imaging

As OI is the most universal visualization technique, it is extensively used in many research
areas [55–57]. Non-ionizing radiation ranging from UV to NIR light has been used in OI [58–60]. OI is
associated with lower risks in patients and a faster analysis process and serves as a sensitive method
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for visualizing biological processes in vivo. In addition, the properties of OI can enable long-term or
repetitive observation of disease progression [61,62]. One of the fundamental advantages of OI is the
accessibility it provides to interactions between light and tissue and the corresponding photophysical
and photochemical processes at the molecular level. In the OI process, imaging PSAs can produce
detectable and targeted signals after injection into the body. PSAs can then be detected with high
sensitivity, high toxicity, low toxicity, good solubility in aqueous media, high fluorescence quantum
yield, high resolution, and prolonged fluorescence lifetime. Table 2 shows some of the widely used
PSAs in OI.

Table 2. Imaging PSAs used in OI.

Type of PSAs PSAs Structure Imaging Modality Ref.

Fluorescent dye Coumarin
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Table 2. Cont.

Type of PSAs PSAs Structure Imaging Modality Ref.

Fluorescent protein Green fluorescent
protein (GFP)
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Fluorescence imaging is based on the illumination of a target tissue with a specific wavelength or
wavelength range (e.g., from UV to NIR) from a light source. The types of fluorescence compounds used
for imaging include fluorescent dyes, quantum dots, and fluorescent proteins [67,73,74]. The interaction
between the photons and PSAs results in the excitation of the PSAs. This excited light penetrates the
tissue layers to reach the PSAs and, consequently, is partially reflected and scattered. PSAs emit photons
with specific wavelengths on their subsequent return to the basal energetic state; these photons are then
captured with an array of detectors for imaging [75–77].

In bioluminescence imaging, luciferin and luciferase are used as the light-emitting molecule and
oxidizing enzyme, respectively. The oxidation of luciferin by luciferase in the presence of co-factors, such
as adenosine triphosphate (ATP) and magnesium, results in the release of photons as the substrate returns
from its electronically excited state to its ground state, ultimately emitting light with a broad emission
spectrum (red and far-red emission) for imaging [78–80]. Previously, bioluminescence was employed to
detect metastatic cancer, imaging protein interactions, and signaling pathways. For example, Stollfuss
et al. used bioluminescence to image tumorigenesis and metastasis in a mouse model [81–84]. Further,
Stowe et al. applied bioluminescence to the monitoring of tumor burden and cell tracking of chimeric
antigen receptor (CAR) T cell therapy within a single animal model [85,86]. Bioluminescence imaging
can also be used to monitor infectious disease models. In fact, Luker et al. demonstrated the application
of bioluminescence imaging to provide information not only on the interaction among host and pathogen
of luciferase-expressing viruses, bacteria, and fungi but also on the real-time response to antiviral or
antibiotic treatments [87].

4. Phototherapy

PT involving the irradiation of light for the treatment of diseases such as cancer can be broadly
classified into two categories: PDT and PTT [13,88]. These commonly used fixed-wavelength light is
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used to activate the administered PSAs. Treatment using PT can be administrated as a stand-alone
therapy or be combined with chemotherapy agents to achieve synergistic effects [69,88–94]. PDT based
on noninvasive photochemistry utilizes the generation of highly reactive singlet oxygen, the excited state
of molecular oxygen (1O2), which can destroy the target cells via oxidative stress [95–97]. The irradiation
process in PDT involves three components: light, PSAs, and molecular oxygen. As the PSAs are
irradiated by light of an appropriate wavelength and power to absorb a photon and excite an electron,
they are promoted to an excited singlet state from the ground singlet state (electron-paired). The excited
singlet state of lower-energy orbital moves to a lower-energy excited triplet state (electrons unpaired)
accompanied by fluorescence emission, loss of energy as heat, or other photophysical energy. The excited
PSAs also produces reactive oxygen species (ROS) via a direct reaction with other biomolecules or
ground state oxygen [13,88,98]. The ROS generated in the PDT can induce damage to the target tissue
as a form of cell necrosis by rupturing the cell membrane and causing cell apoptosis via the activation
of several signal pathways [95–97].

In PTT, light can increase the temperature in PSAs exposed to specific wavelengths of visible (Vis)
or NIR light [99–101]. Similarly, irradiation of light to a target location after PSA administration excites
the PSAs, which undergo internal conversion to the ground state. The conversion of electrons from the
excited state to the ground state results in the emission of energy in the form of heat and increases the
surrounding temperature [102–104]. The resulting hyperthermia can cause irreversible cell damage at
42–46 ◦C if the duration of treatment is more than 10 min. The higher the temperature provided, the
shorter the treatment time required [13].

PSAs for PDT require a high molar extinction coefficient as well as high-energy and long-lived
triplet states to induce singlet oxygen with a high quantum yield. However, PSAs for PTT assume
a high molar extinction coefficient, a very low quantum yield of fluorescence, and a short-lived and
low-energy triplet state (pico-second range) [13,105–108]. The PSAs commonly used and investigated
in PT are presented in Table 3.

Table 3. Commonly investigated PT agents.

Type of PSAs PSAs Modality Ref.

Tetrapyrrole

Porphyrin PDT, PTT [109,110]
Chlorin PDT [111]

Phthalocyanine PDT, PTT [112]
Bacteriochlorin PDT [113]

Natural compound

Hypericin PDT [114]
Hypocrellin PDT [115]
Riboflavin PDT [116]
Curcumin PDT [117]

Other photoactive dye

Methylene blue PDT [118]
Toluidine blue PDT [119]

Rose Bengal (RB) PDT [120]
Squaraine PDT [121]

Boron dipyrromethene PDT [122]
Phenalenones PDT [123]

Indocyanine green (ICG) PDT, PTT [124,125]

Inorganic NPs Titanium dioxide (TiO2) PDT [126]
Zinc oxide (ZnO) PDT [126]

Metallic NPs Gold NPs PDT, PTT [102,127]

Carbon-based NPs
Fullerene PDT [126]
Graphene PDT, PTT [126,128]

Quantum dots (QDs) Ge-QDs, Ag2S QDs, CdS, CdSe, PbSe, InP,
CdTe, and tungsten sulfide (WS2) QDs

PDT, PTT [129]

PT: phototherapy; PSA: photosensitive agents; NPs: nanoparticles; PDT: photodynamic therapy; PTT: photothermal
therapy.
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5. Photosensitive Nanomedicines

Photosensitive nanomedicines based on nanotechnologies have been studied to better elucidate
their application in photo-based diagnostics and therapies. Nanomedicines with photosensitivity
include NPs that were PSAs, photo-triggered carriers loading drugs, and nano-sized carriers containing
PSAs [130–132].

First, some NPs such as TiO2, ZnO, and fullerene for PDT can act as PSAs through the generation
of singlet oxygen. Metallic NPs such as gold NPs act as PSAs for PTT induced by photothermal effects
(i.e., plasmonic PTT). Gold NPs can absorb light (photonic energy) effectively and convert it efficiently
into heat energy [102–104]. The thermal energy created by gold NPs is dependent on the interactions
between light and NP, which occur via a surface plasmon resonance effect [102,104,133].

Photo-triggered systems include photosensitive polymers and anticancer drugs. Generally, light
irradiation can remotely affect the photo-responsive carriers in cancer cells [134–136]. First, the optical
signal is captured by the photochromic molecules (chromophores), which convert photo-irradiation into
a chemical signal through a photoreaction, ultimately causing the release of drugs by the change in carrier
structures. The photo-triggered system utilizes photo-responsive chemistry, such as photoisomerization
using azobenzene (AZO) [137], spiropyran (SP), and dithienylethene (DTE) [138]; photo-induced
rearrangement using 2-diazo-1,2-naphthoquinone (DNQ) [139]; photo-based cleavage using o-nitrobenzyl
ester [140], coumarinyl ester [141], and pyrenylmethyl ester [142]; and photo-induced energy conversion
using AZO derivatives [143].

Nano-sized systems containing PSAs have been demonstrated to exploit the enhancements
in PSA delivery, such as the high concentration of PSAs in NPs, protection from degradation and
photobleaching, prolonged circulation times, and optimized distribution in vivo [24,144–147]. However,
free PSAs tend to be completely cleared upon administration (in vivo) and are less effective [13]. Among
the nano-sized carriers, polymeric drug systems, which possess several favorable properties, have been
examined to elucidate their potential application in photosensitive nanomedicines. These favorable
properties include easy fabrication, tailor-made design, versatile functionality, responsiveness to
environmental stimuli, and high drug loading capacity [148–154]. In the next section, nanomedicines
incorporating PSAs prepared using polymers of different architectures are discussed.

6. Polymer-Based Photosensitive Nanomedicine

Polymers with different architectures, such as linear, branched, and crosslinked polymers, have
been designed as PSA delivery systems for the treatment of cancers [37,131,155]. These polymers
exhibit different physicochemical properties, such as hydrodynamic properties, melt rheology, and
mechanical performance, depending on their structures [156]. Photo-based nanomedicines fabricated
with polymers have been prepared by loading PSAs in the hydrophobic block or conjugating PSAs to
the polymer backbone. After IV injection, PSAs incorporating nanomedicines can circulate systemically
and accumulate in tumor tissues via the EPR effect [157]. The nanomedicines delivered to the target
sites enable the capture of an image or reveal the cytotoxicity induced by irradiation because of the
adequate light for PSAs. Various polymers with different structures and PSAs have been used to design
photo-based nanomedicines (Figure 2).

6.1. Photosensitive Nanomedicine Using Linear Polymers

For linear polymers, several block copolymers, such as AB-, ABA, and ABC-type, are employed
as PSA carriers. For the desired purposes of photosensitive nanomedicines, the block copolymers are
combined with a hydrophobic block to incorporate a pool of water-insoluble agents, a polyelectrolyte
to achieve a conjugating backbone of PSAs or stimuli responsiveness, and/or a hydrophilic block that
provides stability and enables extended circulation throughout the body [1,111,130,131].
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Oh’s group developed several block copolymers that exhibited structural changes through a
response to an acidic condition of the tumor extracellular pH (pHex) or endosomal pH (pHen). Poly
(aspartic acid-graft-imidazole)-poly(ethylene glycol) (PAIM-PEG) was synthesized as a pH-sensitive
nanocarrier of the photosensitizer, indole-3-acetic acid (IAA), for the treatment of skin cancer (Figure 3).
IAA-loaded micelles (ILMs) resulted in the formation of spherical particles (ca. 140 nm) at pH 7.4,
pH-dependent IAA release, and cytotoxicity due to micelle disintegration at acidic pH. Notably, when
ILMs were administered as treatment with nontoxic Vis light at a wavelength of 480 nm, synergistic
pH-dependent cell damage was observed under Vis light irradiation in both in vitro and in vivo models
using the B16F10 melanoma cell line; this was confirmed via ROS production at an acidic pH of 6.5 [158].
These researchers also prepared an on-demand pH-sensitive nanocluster (NC) system with gold nanorods
and doxorubicin (Dox) using PAIM-PEG (Figure 4). The NC system showed less systemic toxicity at pH
7.4 due to the formation of a robust nano-assembly and enhanced antitumor efficacy via the synergic effect
of increased Dox release at pHex and pHen, as well as a gold nanorod photothermal effect with locally
applied NIR light [131]. A stable polyelectrolyte nanoparticle composed of PEG-poly(l-lysine)-poly(lactic
acid) (PEG-PLL-PLA) for PDT was also constructed. The photosensitizer, Chlorin e6 (Ce6), and a
pH-responsive 2,3-dimethyl maleic anhydride (DMA) moiety were conjugated to the lysine residue in
PEG-PLL-PLA, resulting in the PEG-PLL(-g-Ce6, DMA)-PLA triblock copolymer. The micellar systems
were found to accumulate at the tumor site and substantially inhibit the growth of KB cell line [111].
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Figure 3. Schematic concepts for an improved photodynamic therapeutic effect using IAA-loaded
micelles (ILMs): (a) hypothetical mechanism for the behavior of ILMs and (b) proposed performance
of ILMs in vivo. Reproduced with permission from Sim, T.; Lim, C.; Hoang, N.H.; Kim, J.E.; Lee,
E.S.; Youn, Y.S.; Oh, K.T. Synergistic photodynamic therapeutic effect of indole-3-acetic acid using a
pH-sensitive nano-carrier based on poly(aspartic acid-graft-imidazole)-poly(ethylene glycol). J. Mater.
Chem. B 2017 [158].
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For PDT, Wang et al. [159] designed a novel photosensitizer carrier with an oxygen self-compensating
ability using synthesized PEG-poly(acrylic acid)-polystyrene (PEG-PAA-PS) followed by chemical
conjugation of hemoglobin (Hb) (Figure 5). Zinc phthalocyanine (ZnPC), a second-generation
photosensitizer, was encapsulated in the Hb-conjugated PEG-PAA-PS micelles. The micelles could
generate more 1O2 in the presence of Hb and induce more significant photocytotoxicity on HeLa cells than
on those without Hb. Li et al. [160] reported a convenient and universal approach to spatiotemporally
control the chemodrug release via a PDT-mediated alteration of the tumor microenvironment. Briefly,
the micelles were formed by an arylboronic ester (BE)-modified PEG-2-((((4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)benzyl)oxy)carbonyl)amino) ethyl methacrylate, which was used to encapsulate
Dox and hematoporphyrin (Hp). The Dox/Hp co-encapsulated micelles were stable under normal
physiological conditions and displayed a uniform size distribution (∼100 nm). Extensive ROS is
generated from Hp at the tumor sites under tumor-specific light irradiation, thereby rapidly dissociating
the micelles and selectively releasing the Dox as a consequence of the ROS-mediated cleavage of
the hydrophobic BE moieties on the polymers; this results in synergistic anti-cancer effects of the
Dox-mediated chemotherapy and the Hp-mediated PDT.

For PTT, Pan et al. [161] prepared PEG-poly(L-aspartic acid sodium salt)10 (PLD) micelles,
including heptamethine cyanine (IR825) with polarity-sensitive fluorescence characteristics. These
micelles were not only beneficial for in vitro imaging (Ex: 552 nm, Em: ~610 nm) but also for in vivo
NIR fluorescence imaging-guided PTT (Ex: 780 nm, Em: 830 nm). In addition, an in vivo study revealed
that PEG-PLD (IR825) micelles possess promising tumor ablation ability during PTT. Guo et al. [162]
designed and synthesized a donor–acceptor structured porphyrin-containing conjugated polymer,
poly([(5,15-diethynyl-10,20-bis(3,5-bis(octyloxy)phenyl)porphyrin]zinc-alt-(2,1,3-benzothiadiazole)
(PorCP), for efficient PTT in vitro and in vivo. The porphyrin in the polymer acted as a backbone and
displayed an absorption peak at 799 nm. The NPs formed by PorCP displayed favorable nonradiative
decay, good photostability, a high extinction coefficient at 800 nm based on the molar concentration
of porphyrin, and a remarkable photothermal conversion efficiency (63.8%). Yang et al. [163] used
an organic conductive polymer, polypyrrole (PPy), for photothermal ablation of cancer in vitro and
in vivo at ultra-low laser power density (Figure 6). The NPs formed by polypyrrole showed high
stability and little cytotoxicity in physiological environments and a laser power-dependent cancer
cell ablation effect. The result of intratumoral injection of NPs revealed excellent tumor treatment
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efficacy using an ultra-low power of NIR laser irradiation at 0.25 W/cm2 (75 J/cm2). Further, 100%
tumor elimination was achieved without any marked toxic side effects post-treatment.
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Figure 6. (a) Schematic representation of synthesis of poly(vinyl alcohol) (PVA). (b) Transmission
electron microscopy (TEM) image of PPy NPs. (c) Dynamic light scattering (DLS) data of PPy NPs.
(d) UV-Vis-NIR absorbance spectrum of a PPy solution (inset: photo of PPy solutions in water, saline,
and fetal bovine serum). (e) Heating curves of water and various PPy concentration (0.1, 0.25, 0.5, and
1 mg/mL), 808 nm laser irradiation, and power density of 0.5 W/cm2. PPy: polypyrrole; NPs: nanoparticles.
Reproduced with permission from Yang, K.; Xu, H.; Cheng, L.; Sun, C.; Wang, J.; Liu, Z. In vitro and
in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater.
2012 [163].

6.2. Photosensitive Nanomedicine Using Branched Polymers

Branched polymers, such as star-shaped and dendron/dendrimers, have been gaining attention due
to their potential for application in photo-based nanomedicines. In fact, several star-shaped polymers
have been used as photo-responsive delivery systems. Qu et al. [164] developed a star-shaped micellar
system by mixing a photoinitiated crosslinking amphiphilic copolymer containing cinnamyl groups with
a phenylboronic acid (PBA)-functionalized redox-sensitive amphiphilic copolymer (Figure 7). The end
groups of the hydrophilic segments were decorated with PBA ligands to provide active targeting ability.
A redox response was triggered by the disulfide bonds in the micellar matrix to achieve rapid intracellular
release of drugs. The results of the in vivo antitumor effect on H22-bearing BALB/c mice showed
that the micelles had high therapeutic efficacy against solid tumors, with minimal side effects against
normal tissues. Dai et al. [165] synthesized star-shaped porphyrin-cored PLA-poly(gluconamidoethyl
methacrylate) for targeted PDT. Under irradiation, the copolymer exhibited efficient singlet oxygen
generation and displayed high-fluorescence quantum yields. When a longer irradiation time was
applied, more BEL-7402 cancer cells were found to die.

For dual delivery systems, Zhang et al. [166] reported the high tumor-targeting and anticancer
effects of Dox-loaded photosensitizer-core pH-responsive copolymer nanocarrier prepared from a
four-armed star-shaped copolymer, [methoxy-poly(ethylene glycol)-poly(2-(N,N-diethylamino)ethyl
methacrylate)-poly(ε-caprolactone)]4-zinc β-tetra-(4-carboxyl benzyloxyl)phthalocyanine (PDCZP).
The nanocarriers loaded with zinc phthalocyanine (ZnPc) had a long emission wavelength (max.
677 nm) and could generate singlet oxygen (1O2). The Dox-loaded nanocarriers showed improved
in vitro and in vivo anticancer effects under irradiation, with rapid Dox release from nanocarriers in
acidic media. Gangopadhyay et al. [167] formulated single-component fluorescent organic polymeric
NPs using a star-shaped four-arm PEG containing the chromophore, coumarin, which acted as a
photosensitizer and photo-trigger molecule. By itself, it displayed PDT and enabled the simultaneous
release of the chemotherapeutic drug, chlorambucil, upon irradiation with light. The anticancer drug
was released by the coumarin chromophore in a photo-controlled manner, and the coumarin generated
singlet oxygen (1O2) upon irradiation with UV/Vis light (≥365 nm). In vitro study results using the
HeLa cell line revealed a reduction in cell viability of up to ~5% when a combined treatment of PDT and
chemotherapy was administered. An’s group constructed multi-stimuli-responsive NPs through the
co-assembly of a three-arm star quaterpolymer with cypate and paclitaxel as a photothermal cyanine
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dye and chemotherapeutic compound, respectively (Figure 8). The NPs enhanced the photothermal
effect and preferred NIR-light-triggered drug release in the acidic environment as well as lysosomal
disruption-mediated intracellular drug translocation. The NPs also exhibited enhanced cellular uptake
and tumor accumulation [168].Biomedicines 2020, 8, x FOR PEER REVIEW 13 of 25 
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Figure 7. (A) Synthetic route and chemical structure of 6arm PEG-PCCL and PBA-PEG-ss-PCL copolymers.
(B) Schematic illustration of DOX-loaded star-shaped mixed micelle formation and photo-crosslinking
under 365 nm UV light irradiation. (C) Phenylboronic acid-mediated endocytosis of these multifunctional
micelles and subsequently GSH-triggered intracellular drug release. Reproduced with permission from
Qu, Q.; Wang, Y.; Zhang, L.; Zhang, X.; Zhou, S. A nanoplatform with precise control over release of
cargo for enhanced cancer therapy. Small 2016 [164].
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Figure 8. Schematic illustration of NIR light/pH/reduction–responsive nanoparticles consisting of PEG-a-
PCL-SS-P(NIPAM-co-DMA) star quaterpolymer for precise cancer therapy with synergistic effects. PEG:
poly(ethylene glycol); PCL: poly(ε-caprolactone); SS: disulfide; P(NIPAM): poly(N-isopropylacrylamide;
DMA: N,N-dimethylacrylamide. GSH: glutathione; MS-NPs: multi-stimuli-responsive nanoparticles;
PTX: paclitaxel. Reproduced with permission from An, X.; Zhu, A.; Luo, H.; Ke, H.; Chen, H.; Zhao, Y.
Rational design of multi-stimuli-responsive nanoparticles for precise cancer therapy. ACS Nano 2016 [168].

To utilize dendrimers, Kojima et al. [169] prepared two PEG-attached dendrimers derived from
poly(amido amine) (PAMAM) and poly(propylene imine) (PPI) dendrimers to form nanocapsules of the
photosensitizers, rose bengal (RB), and protoporphyrin IX (PpIX) (Figure 9), for PDT. Compared to free
PpIX, the complex of PpIX with PEG-PPI exhibited efficient cytotoxicity. Further, Taratula et al. [170]
encapsulated silicon naphthalocyanine (SiNc) into the hydrophobic interior of a generation 5 PPI
dendrimer following surface modification with PEG. The NPs showed robust heat generation
capability (∆T = 40 ◦C) and efficiently produced ROS under NIR irradiation (785 nm, 1.3 W cm−2)
without releasing SiNc from the nanoplatform. With NIR irradiation, the PT mediated by SiNc
efficiently destroyed chemotherapy-resistant ovarian cancer cells and prevented cancer recurrence.
Yuan et al. [171] developed a light-and-pH dually responsive amphiphilic dendrimer-star copolymer,
poly(ε-caprolactone)-block-poly(methacrylic acid-co-spiropyran methacrylate), for merocyanine PSA.
The SP groups exhibited light- and pH-dually responsive properties through UV light irradiation and
altered the pH values of the micelle solutions. Upon UV light irradiation or at low pH, the hydrophobic
SP isomerized to hydrophilic merocyanine or merocyanine H+. The copolymer micelles possessed
good biocompatibility and were thus employed as the drug delivery system for the controlled release
of the anticancer drug Dox.
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imaging of caspase activity. The nanogel was prepared with gold NPs that were modified with a vinyl 
group and Cy5-linked CPADVEDK peptides (Figure 10). However, the shell of such nanogels can be 
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of the nanogels. 

Figure 9. Structures of RB (A), PpIX (B), and PEG-attached PAMAM (C) and PPI (D) dendrimers.
RB: rose bengal; PpIX: protoporphyrin IX; PEG: poly(ethylene glycol); PAMAM: poly(amido amine);
PPI: poly(propylene imine). Reproduced with permission from Kojima, C.; Toi, Y.; Harada, A.;
Kono, K. Preparation of poly (ethylene glycol)-attached dendrimers encapsulating photosensitizers for
application to photodynamic therapy. Bioconjug. Chem. 2007 [169].

6.3. Photosensitive Nanomedicine Using Crosslinked Polymers

Crosslinked polymers in biomedical nanoplatforms possess many advantages, such as robustness
as well as their role as a protector of the loading agents and an enhancer of cellular uptake [172–174].
Photosensitive nanomedicines constructed with crosslinked polymers have been utilized for imaging
and PT [172]. In fact, Tang et al. [175] constructed NPs comprising photo-cross-linkable semiconductor
polymer dots (Pdots) doped with the photosensitizer Ce6. The photoreactive oxetane groups were
attached to the side chains of the semiconductor polymer, do-PFDTBT, which was polymerized with
9,9-Di-{6-[(3-methyloxetan-3-yl)methoxy]hexyl)-2,7-di[boronicacid bis(pinacol) ester]-fluorene and
4,7-bis(5-bromo-4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole. Following the photo-cross-linking
reaction, the Ce6-doped Pdots formed an interpenetrated structure to prevent the leaching of Ce6
from the Pdot matrix. The Ce6-doped Pdots (∼10 µg/mL) effectively suppressed the cancer cells under
low doses of light irradiation (∼60 J/cm2). Li et al. [176] synthesized a crosslinked nanogel for in vivo
imaging of caspase activity. The nanogel was prepared with gold NPs that were modified with a vinyl
group and Cy5-linked CPADVEDK peptides (Figure 10). However, the shell of such nanogels can be
degraded under acidic conditions, and caspase-3 or -7 can further cleave the peptide to release Cy5.
By employing in vivo fluorescence to observe the tumor, the nanogel-injected mice were found to have
the highest fluorescence signal at the tumor site, ultimately demonstrating the in vivo activation of
the nanogels.
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Figure 10. (a) Schematic illustration of the synthesis of a AuNP@gel probe through in situ polymerization
of vinyl-bearing acid-degradable cross-linkers, ionizable monomers, zwitterion monomers, and
cancer-cell-targeting vinyl-labeled folic acids on an AuNP core modified with Cy5/vinyl-labeled
CPADVEDK peptides. The green frame in the peptide sequence indicates the cleavage site for
caspase-3/-7. (b) UV/vis spectra of citrate-coated AuNPs, pep-AuNPs, AuNP@gels, and Cy5 dye solutions.
(c) Atomic force microscopy (AFM) images of pep-AuNP (top) and AuNP@gel (bottom) probes. (d)
Statistical sizes of pep-AuNP and AuNP@gel probes in part c (* p < 0.05). Reproduced with permission
from Li, Q.; Qiao, X.; Wang, F.; Li, X.; Yang, J.; Liu, Y.; Shi, L.; Liu, D. Encapsulating a single nanoprobe in
a multifunctional nanogel for high-fidelity imaging of caspase activity in vivo. Anal. Chem. 2019 [176].

Chambre et al. [177] prepared porphyrin-cross-linked nanogels via the self-assembly and in situ
cross-linking of thermoresponsive copolymers, poly[(PEG-based methacrylate-co-azide-containing
methacrylate (poly(PEGMEMA-co-AHMA)). To synthesize the nanogels, PEG-methacrylate-based
copolymers containing reactive azide groups as side chains were assembled into nanosized aggregates
and cross-linked with a tetra-alkynyl Zn porphyrin using the copper-catalyzed azide−alkyne
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cycloaddition reaction under surfactant-free conditions (Figure 11). The nanogels containing porphyrin
retained their singlet oxygen generation ability of the porphyrin core and could induce a temperature
increase upon irradiation at 635 nm. Further, the porphyrin-loaded nanogels could induce anticancer
effects owing to their accumulation in the cytoplasm of cells when illuminated at short and long
wavelengths. Ji et al. [178] hybridized graphene oxide (GO) into poly(N-isopropylacrylamide) (PNIPAM)
nanogels, which led to good stability and high photothermal effects. The hybrid nanogels accelerated
drug release under conditions mimicking the acidic solid tumor and intracellular microenvironments
and were further enhanced via remote photothermal treatment.Biomedicines 2020, 8, x FOR PEER REVIEW 17 of 25 
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Figure 11. (a) Schematic representation of gelation reaction of copolymer poly(PEGMEMA-co-AHMA).
(b) DLS data of three sets of nanogels (NG-A, NG-B, and NG-C) at 25 ◦C. (c) TEM image of nanogel
NG-A. (d) Size distribution of NG-A from TEM analysis. Reproduced with permission from Chambre,
L.; Saw, W.S.; Ekineker, G.; Kiew, L.V.; Chong, W.Y.; Lee, H.B.; Chung, L.Y.; Bretonnière, Y.; Dumoulin,
F.; Sanyal, A. Surfactant-free direct access to porphyrin-cross-linked nanogels for photodynamic and
photothermal therapy. Bioconjug. Chem. 2018 [177].

7. Conclusions

Photo-based nanomedicines have been successfully used in imaging and therapy applications.
However, the risks and benefits of using light should be considered during its selection for use
in diagnostics and therapies. Owing to remarkable advances in nanotechnology, photosensitive
nanomedicines can be designed and prepared for applications in photo-based diagnostics and
therapies such as photo-triggered systems, NPs containing PSAs, and NPs that are themselves PSAs.
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Photosensitive nanomedicines are fabricated with several polymers with different architectures, such
as linear, branched, and crosslinked structures. In this review, we sought to describe the potential
of using photosensitive nanomedicine for diagnosis and therapy. If a photo-based nanomedicine
system is successfully developed, several challenges will arise prior to its use in the clinic, such as its
nontoxicity, targeting properties, and reduced unwanted cargo release.
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