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A commentary on

Commentary: “Prdm13 regulates subtype specification of retinal amacrine interneurons and

modulates visual sensitivity”

by Bowrey, H. E., and James,M. H. (2015). Front. Cell. Neurosci. 9:424. doi: 10.3389/fncel.2015.00424

First, on behalf of all of the authors of our paper, we thank Drs. Bowrey and James for their
interest in our paper and for giving us their comments on the OKRs (Optokinetic Responses) of
Prdm13-deficient (Prdm13−/−) mice (Watanabe et al., 2015).

Drs. Bowrey and James hypothesized that Prdm13−/− mice showed enhanced sensitivities to
moving visual stimuli through “aliasing” caused by the decreased sampling function of the reduced
numbers of amacrine cells in the retina (Bowrey and James, 2015). Aliasing is a phenomenon in
which the presentation of continuously moving visual stimulus of high spatial frequency causes
reduced neural sampling function, leading to misrecognition of a high frequency stimulus as a low
frequency pattern (Gotz, 1964; Anderson and Hess, 1990; Coletta et al., 1990; Artal et al., 1995).

According to the previous studies on mouse visual function analysis, the optimal spatial
frequency range, that which elicits smooth eye movement, is 0.01–0.5 cycle/degree, and the
maximum spatial frequency for maintaining smooth eye movement without causing aliasing is
1.0 cycle/degree (Prusky et al., 2000; Geng et al., 2011). However, in fact, many experiments set the
highest spatial frequencies lower than 1.0 cycle/degree (Prusky and Douglas, 2004; Prusky et al.,
2004; van Alphen et al., 2010; Busse et al., 2011; Histed et al., 2012). In our study, we set the highest
spatial frequency at 0.5 cycle/degree, at which aliasing is very unlikely to occur. Even if we suppose
that aliasing can occur at 0.5 cycle/degree, the OKRs of Prdm13−/− mice at 0.5 cycle/degree were
unchanged in both initial and late phases compared with those in WT mice. This strongly suggests
that an aliasing effect, which shows stronger responses at higher frequencies, was not observed at
0.5 cycle/degree.

Visual responses in classical OKR were measured basically by whether or not the mouse head
or eye moves. On the other hand, the visual responses used in our OKR system are based on the
speed of the smooth eye movements elicited by moving visual stimuli. In other words, the classical
OKR digitally detected the existence of responses to visual stimuli, whereas our OKR continuously
measured the extent of moving stimuli speeds. Hence, if aliasing occurred in our OKR system, eye
movement speed would become slower, and reduced OKRs would be observed.

Most studies of retinal sampling function have focused on photoreceptors and ganglion cells
(Missotten, 1974; Thibos et al., 1987; Dacey, 1993). The relationship between amacrine cell subtypes
and retinal sampling function has barely been explored. On the other hand, it has been reported
that direction-selective ganglion cells (DSGCs) in the retina provide direct inputs to the brainstem

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncel.2015.00520
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2015.00520&domain=pdf&date_stamp=2016-01-28
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:takahisa.furukawa@protein.osaka-u.ac.jp
mailto:takahisa.furukawa@protein.osaka-u.ac.jp
http://dx.doi.org/10.3389/fncel.2015.00520
http://journal.frontiersin.org/article/10.3389/fncel.2015.00520/full
http://loop.frontiersin.org/people/299006/overview
http://loop.frontiersin.org/people/298992/overview
http://loop.frontiersin.org/people/296118/overview
http://dx.doi.org/10.3389/fncel.2015.00424


Sugita et al. Response: Prdm13 regulates amacrine subtype

structures involved in OKRs (Oyster et al., 1980; Yonehara
et al., 2009; Kim et al., 2010; Kay et al., 2011). DSGC spike
responses were elicited by moving grating stimuli at spatial
frequencies of 0.025–0.2 cycles/degree and temporal frequencies
of 0.25–5.33 cycles/s in the preferred direction (Hoggarth et al.,
2015). These spatiotemporal tuning properties of DSGCs are
similar to those of mouse OKRs (Tabata et al., 2010). In our
study, Prdm13−/− mice showed OKRs at spatial frequencies
of 0.03–0.25 cycles/degree and temporal frequencies of 0.375–
12 cycles/s (Watanabe et al., 2015), which are consistent with
the spatiotemporal frequency ranges of DSGCs. This suggests
that DSGCs modulate the OKRs of Prdm13−/− mice, as
we mentioned in the Discussion of our paper. Furthermore,
Hoggarth suggested that the GABAergic wide-field amacrine
cells modulate the spatiotemporal tuning properties of DSGCs
(Hoggarth et al., 2015). Since a significant number of Prdm13-
positive amacrine cells are GABAergic, GABAergic wide-
field amacrine cells might be affected in Prdm13−/− mice.
Hence, modulation of DSGCs may be the more probable
mechanism affecting the OKRs of Prdm13−/− mice than aliasing.
However, further elucidation of the functional mechanisms

of Prdm13-positive amacrine cells in the retinal circuit is
needed.

Taking the above considerations together, we conclude that
OKR enhancement in Prdm13−/− mice is not due to aliasing.
However, we do not deny the possibility that Prdm13-positive
amacrine cells are involved in aliasing when it occurs. Further
detailed analysis of Prdm13−/− mouse visual function will
advance our understanding of information processing in the
intricate retinal circuit.
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