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MicroRNAs (miRNAs) are a class of non-coding single-stranded 
RNAs comprising approximately 21 nucleotides, and are found in 
a large number of plants and other organisms (D’Ario et al., 2017). 
miRNAs regulate many important biological processes, such as 
plant development (D’Ario et al., 2017) and the morphogenesis of 
shoot architecture (Wang et al., 2018), and can be harnessed for crop 
improvement (Tang and Chu, 2017). In addition, miRNAs influence 
the interactions between plants and their environments (Song et al., 
2019), affecting plant responses to pathogen attack (Islam et al., 
2018) and playing an important role in the defense against tempera-
ture stress (Megha et al., 2018).

Due to its advantages of rapid speed and low cost, next-generation 
sequencing has played an important role in the detection of known 
miRNAs, which are annotated miRNAs in the miRbase or sRNAanno 
database, in many studies (Le Trionnaire et al., 2011; Moran et al., 
2017; Islam et al., 2018; Megha et al., 2018), leading to the develop-
ment of numerous sequencing software tools for the functional anal-
ysis of miRNA data. More than 1000 miRNA bioinformatics tools 
were used for miRNA identification and target prediction studies 
between 2003 and 2013 (Chen et al., 2019a). Many research tools 

for miRNA analysis are available online, enabling the majority of re-
searchers to access and use them (Shukla et al., 2017). These tools in-
clude various types of algorithms and functions, with approximately 
77% having been developed for the study of miRNAs in animals 
rather than plants (Akhtar et al., 2015; Morgado and Johannes, 2019). 
Additionally, most comprehensive tests and evaluations of these tools 
have been performed on animals (Li et al., 2012; Bisgin et al., 2018) 
and are lacking in plants (Srivastava, 2014). In particular, the detec-
tion of known miRNAs in species with varying genome sizes has not 
yet been conducted, making it difficult for researchers to select opti-
mal software (Fig. 1) (Akhtar et al., 2015). Understanding the benefits 
and drawbacks of using different miRNA analysis programs is essen-
tial for improving the efficiency of miRNA studies.

Eight widely used or newly developed miRNA analysis tools 
were selected for an assessment of their ability to detect known 
miRNAs in plant species: miRDeep-P2 (Kuang et al., 2019), miR-
Plant (An et al., 2014), miRExpress (Wang et al., 2009), mirnovo 
(Vitsios et al., 2017), sRNAbench (Barturen et al., 2014), miRDeep2 
(Friedländer et al., 2012), miRkwood (Guigon et al., 2019), and 
miR-PREFeR (Lei and Sun, 2014) (Table 1).
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MicroRNAs (miRNAs), endogenous non-coding RNA regulators, post-transcriptionally inhibit 
the expression of their target genes. Several tools have been developed for predicting 
annotated known miRNAs, but there is no consensus about how to select the most suitable 
method for any given species. In this study, eight miRNA prediction tools (mirnovo, miRPlant, 
miRDeep-P2, miRExpress, miRkwood, miRDeep2, miR-PREFeR, and sRNAbench) were 
selected for evaluation. High-throughput small RNA sequencing data from four plant species 
(including C

3
 and C

4
 species, and both monocots and dicots, i.e., Arabidopsis thaliana, Oryza 

sativa, Triticum aestivum, and Zea mays) were used for the analysis. The sensitivity, accuracy, 
area under the curve, consistency, duration, and RAM usage of the known miRNA predictions 
were evaluated for each tool. The miRNA annotations were obtained using miRBase and 
sRNAanno. Algorithms, such as random forest, BLAST, and receiver operating characteristic 
curves, were used to evaluate accuracy. Of the tools evaluated, sRNAbench was found to be 
the most accurate, miRDeep-P2 was the most sensitive, miRDeep-P2 was the fastest, and 
miRkwood had the highest memory usage. Due to its large genome size, only three tools 
were able to successfully predict known miRNAs in wheat (Triticum aestivum). Our results 
enable us to recommend the tool best suited to a variety of researcher needs, which we hope 
will reduce confusion and enhance future work.
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miRDeep2 was developed using the programming language Perl. 
The preprocessing of reads by this tool is completed by its mapper.
pl script, but their quantification is accomplished by quantifier.pl 
(Friedländer et al., 2012). sRNAbench is an improved version of mi-
Ranalyzer, with similar functions to miRDeep2 (Hackenberg et al., 
2011); it offers several novel features, including genome and library 
mapping and the analysis of differentially expressed genes (Barturen 
et al., 2014). miRExpress uses the Smith–Waterman algorithm to 
perform the alignment; therefore, miRExpress does not require ge-
nome mapping, as it maps the reads directly to the known miRNAs 
in miRbase (Wang et al., 2009; Kozomara et al., 2019). miRDeep-P2, 
the updated version of miRDeep-P, contains a new filtering strategy 

that overhauls the older algorithm (Yang and 
Li, 2011) and has superior speed in processing 
next-generation sequencing data (Kuang et al., 
2019). miRPlant was the first tool developed 
for plant miRNA identification that does not 
require any third-party applications, such as 
mapping or RNA secondary structure predic-
tion tools. It visualizes the identified miRNAs 
in a hairpin diagram alongside all the RNA-Seq 
reads (An et al., 2014). mirnovo is a machine 
learning–based algorithm that can rapidly 
identify known miRNAs in animals and plants 
directly from small RNA (sRNA)-Seq data with 
or without a reference genome, making it very 
straightforward and intuitive for users (Vitsios 
et al., 2017). In addition, miRkwood and miR-
PREFeR are used for the prediction of miRNA 
precursors from sRNA-Seq data. miRkwood 
is a user-friendly tool that can identify a large 
diversity of plant miRNAs while avoiding false 
positives (Guigon et al., 2019), whereas miR-
PREFeR, an older tool than miRkwood, uses 
the expression patterns of RNAs to accurately 
detect and annotate miRNAs based on plant 
miRNA criteria (Jha, 2012; Lei and Sun, 2014).

Most previous studies evaluating miRNA 
analysis software have focused on running 
time, sensitivity, and accuracy (Li et al., 2012; 

Srivastava, 2014; Bisgin et al., 2018; Ou et al., 2019). In this study, 
we not only evaluated the eight tools in terms of these three fac-
tors, but also compared the number of known miRNAs predicted 
by each of them, as well as the maximum memory (random access 
memory [RAM]) cost when the software is running. To evaluate the 
accuracy of these tools, we applied the receiver operating character-
istic (ROC) curve, which is widely used in different research fields 
involving animals and plants (Radivojac et al., 2013; Lyu et al., 2018; 
Zhao et al., 2018). The ROC curve is useful for visualizing the effec-
tiveness of the model by comparing the rate of false positives and 
true positives. ROC and random forest (RF) assessments were pre-
viously combined to evaluate the results of an miRNA study (Zhao 

FIGURE 1.  The complexity of large data sets and the need for bioinformatics tools.

TABLE 1.  Summary of the eight miRNA analysis tools evaluated in this study.

Tool Year Reference Platform Features
Programming 

language Citationsa  Organism

mirnovo 2017 Vitsios et al., 2017 Linux, MAC OS, Web-based miRNA prediction Perl, Python, R 13 Plants, animals
miRPlant 2014 An et al., 2014 Linux, MAC OS, Windows miRNA identification Java 56 Plants
miRDeep-P2 2018 Kuang et al., 2019 Linux, MAC OS miRNA prediction Perl 0 Plants
miRExpress 2009 Wang et al., 2009 Linux, MAC OS Expression profiles C++ 171 Plants, animals
miRkwood 2019 Guigon et al., 2019 Linux, MAC OS, Web-based miRNA identification Perl/C 0 Plants

miRNA prediction
miRDeep2 2012 Friedländer et al., 2012 Linux, MAC OS miRNA identification Perl 1021 Animals

miRNA prediction
Next-generation sequencing

miR-PREFeR 2014 Lei and Sun, 2014 Linux, MAC OS, Windows miRNA identification Python 46 Plants
miRNA prediction
miRNA-Seq

sRNAbench 2014 Barturen et al., 2014 Linux, MAC OS, Web-based Differential expression Java 111 Plants, animals
miRNA identification
miRNA prediction
Next-generation sequencing

aThe number of citations of each software tool was determined in June 2019 based on a Google Scholar search. 
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et al., 2018). We therefore compared the comprehensive evaluation 
of eight different tools in four different plant species by evaluating 
the area under the ROC curve (AUC).

The aim of this study was to provide useful information to assist 
researchers with the selection of the optimal miRNA analysis tool 
for studying different plant species under varying constraints.

METHODS

Data sets and gene annotations

A total of 20 RNA data sets were obtained from the National Center 
for Biotechnology Information (NCBI) for four different plants, 
Arabidopsis thaliana L., rice (Oryza sativa L.), maize (Zea mays L.), 
and wheat (Triticum aestivum L.), representing varying genome 
sizes, both monocots and dicots, and C3 and C4 species (see Data 
Availability Statement; Appendix 1). The genome sizes of A. thaliana, 
O. sativa, Z. mays, and T. aestivum are 0.12 Gbp (Kaul et al., 2000), 
0.37 Gbp (Kawahara et al., 2013), 2.11 Gbp (Jiao et al., 2017), and 
14.5 Gbp (IWGSC, 2018), respectively. Six data sets per species, in-
cluding three wild-type samples and three treatment samples, were 
selected for A. thaliana, O. sativa, and Z. mays. One wild-type data set 
and one treatment data set were selected for T. aestivum. The known 
miRNA sequences and annotations from A. thaliana, O. sativa, and 
Z. mays were downloaded from miRbase (version 22; http://www.
mirba​se.org/). The known miRNA sequences and annotations of T. 
aestivum were downloaded from sRNAanno (Chen et al., 2019b).

Pre-processing of RNA-Seq data

The miRNA adapters were removed from all the RNA-Seq data us-
ing cutadapt software (Marcel, 2011). The length distribution of all 
clean reads in each sample was assessed, and reads with lengths be-
tween 18 and 30 bp were kept.

Program implementation

All miRNA sequencing software tools were run on a local server 
using the default or recommended parameters. The server was 
equipped with 16 central processing units (CPUs) and 64 GB of 
RAM. The operating system was CentOS7 (x86_64-bit version).

Prediction system assessment

To evaluate the performance of the software tools, the following 
measures were calculated: (1) The number of miRNAs predicted 
using both a BLAST search of the known miRNA sequences and the 
eight miRNA tools was considered to be the number of true posi-
tives (TP). (2) The number of known miRNAs predicted by BLAST 
but not by the eight miRNA tools was considered to be the number 
of false negatives (FN). (3) The number of known miRNAs neither 
predicted by BLAST nor the eight miRNA tools was considered to 
be the number of true negatives (TN). (4) The number of miRNAs 
predicted by the eight miRNA tools but not by BLAST was consid-
ered to be the number of false positives (FP).

We used the following measures to evaluate the performance of 
the different software tools:

For the accuracy evaluation, RF assessment and the ROC curve 
were used. The two important parameters of RF are ntree = 100 and 
mtry = 4 (Appendix S1). We used BLASTN (Camacho et al., 2009) 
and the eight miRNA analysis tools to predict the known miRNAs 
of the four species. The parameters for BLAST were ‘-task blastn-
short -evalue 0.01’. To obtain the results of the BLAST alignment, the 
following filters were used: first, the miRNAs with read mismatches 
greater than one were removed. Next, the miRNAs that were suc-
cessfully aligned in the reverse strand were discarded, after which 
the miRNAs that were mapped to target sequences with homologies 
of less than 90% were removed. From this set of miRNAs without 
gaps, those that were uniquely mapped and had a depth greater 
than five were retained (Appendix S2). For example, SRR1849765 is 
a sample O. sativa data set in this study. First, we BLAST-searched 
this sample against miRbase and obtained 568 known miRNAs. We 
then removed the miRNAs with read mismatches greater than one 
and discarded the miRNAs that were successfully aligned in the re-
verse strand, resulting in 558 known miRNAs. Next, we removed 
the miRNAs that were mapped to target sequences with homologies 
of less than 90% and obtained 302 known miRNAs. We retained 
the pre-filtered miRNAs without gaps that were uniquely mapped, 
and finally, we screened all miRNAs with a depth greater than five, 
resulting in a total of 142 known miRNAs. We compiled the results 
of known miRNAs predicted by the eight software types for all sam-
ples in Appendix S3.

Known miRNAs are annotated miRNAs contained in the miR-
Base or sRNAanno databases. Unknown miRNAs are miRNAs 
that are not annotated in the miRbase or sRNAanno databases. 
True known miRNAs are miRNAs annotated in the miRBase or 
sRNAanno databases and predicted by BLAST, while false known 
miRNAs are miRNAs annotated in the miRBase or sRNAanno 
database but not predicted by BLAST. Both the true known 
miRNAs and false known miRNAs were combined as the training 
data. The miRNA results obtained from the eight miRNA analy-
sis tools were used as testing data (Appendix S2). Classification 
models were built in RF using the training data and applied to 
the testing data sets for the accuracy evaluation. The ROC curves 
were plotted using sensitivity and specificity, and the AUCs were 
calculated to further compare the performance of these models. 
ROCR (Sing et al., 2005), an R package (R Core Team, 2020), was 
used to generate the ROC chart. The UpSet plots were drawn 
with R, while all other pictures were drawn with Excel (Microsoft 
Corporation, Redmond, Washington, USA) or the online version 
of ECharts (Apache Software Foundation, Forest Hill, Maryland, 
USA).

Model establishment

miRkwood and miR-PREFeR were used to predict the known 
precursor miRNAs. The remaining six kinds of software were 
used to predict known mature miRNAs, which differ from 

(1)Sensitivity (Sen) =
TP

TP + FN

(2)Accuracy (Acc) =
TP + TN

TP + TN + FP + FN

(3)NormalizedRunning time =
Running time

Sample size

(4)Specificity (TNR) =
TN

FP + TN

http://www.mirbase.org/
http://www.mirbase.org/
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precursor miRNA sequences. We analyzed the predicted results 
of the known precursor miRNAs and known mature miRNAs 
separately.

The ROC curve is a useful measure for comparing multiple 
models. The model with the highest AUC value is typically the 
most optimal. We divided the predicted known miRNAs into ma-
ture short-sequence training models and precursor long-sequence 
training models. At the same time, the BLAST comparison results 
of each sample were independently constructed to train the mod-
els. The prediction results of each sample in all eight software tools 
were independently constructed to test the models. We found that 
miRDeep2 and mirnovo identified the fewest known miRNAs 
in A. thaliana, which was insufficient to use RF to create models 
for miRDeep2 and mirnovo in A. thaliana; however, we used RF 
to construct models for the other six tools using the A. thaliana 
training data. The results of the BLAST analysis were used as test-
ing data to assess each training model. Finally, the test results of six 
A. thaliana samples were used to generate ROC curves (Appendix 
S4). Similarly, a large number of known miRNAs were identified in 
O. sativa samples by the eight tools, with each generating an ROC 
curve (Appendix S5). The ROC results for Z. mays are also provided 
in Appendix S6. sRNAbench, miRDeep2, and miRExpress success-
fully identified multiple known T. aestivum miRNAs in the two 
samples selected for analysis (Appendix S7), which were combined 
to generate one ROC curve.

RESULTS

Computational time

The computational time required by each software tool to identify 
the miRNAs in the four species was determined using a single local 
server (Fig. 2) by selecting one sample from each species (A. thali-
ana: SRR1312898, O. sativa: SRR1849770, Z. mays: SRR6939404, 
and T. aestivum: SRR5461177). We found that sRNAbench took 
the least amount of time to predict the miRNAs, while miRPlant 
and mirnovo took a longer period of computational time. For A. 
thaliana, mirnovo was slowest, while for O. sativa, miRPlant was 
slowest. When performing the miRNA analysis in Z. mays, the eight 
different software tools took varying amounts of time. We success-
fully used miRDeep2, miRExpress, and sRNAbench to predict 
the positive known miRNAs in T. aestivum. sRNAbench was still 
fastest, while miRDeep2 was much slower than miRExpress and 
sRNAbench. Figure 2B shows the normalized running time of the 
eight tools for predicting the known miRNAs, which were gener-
ated using Equation (3). The normalized results better explain the 
relationship between the time costs of the software and the sizes of 
the different samples. Overall, sRNAbench was the fastest for the 
analysis of all four species.

Average number of true positive known mature or precursor 
miRNAs identified

We next compared the average number of true positive known 
miRNAs identified by the eight software tools in all samples of the 
four species (Fig. 3). miRExpress identified the greatest number 
of mature known miRNAs in A. thaliana, O. sativa, and Z. mays, 
while sRNAbench identified the greatest number of mature known 

miRNAs in T. aestivum. Fewer known miRNAs were predicted 
by miRDeep2 than the other tools in A. thaliana and T. aestivum. 
miRkwood identified more known miRNA precursors in A. thali-
ana, O. sativa, and Z. mays than miR-PREFeR.

Known miRNA comparisons among the three most successful 
tools

We compared the known miRNAs predicted by the eight software 
tools in all samples of the four species. Both types of miRNAs de-
tected in one species by each software were counted for comparison. 
Among the prediction tools, sRNAbench and miRExpress detected 
the most mature miRNAs, whereas miRkwood identified the most 
miRNA precursors. The results from each tool were shared with at 
least one other tool for A. thaliana, O. sativa, and Z. mays (Fig. 4). 
We next focused on the three tools that ran successfully in all four 
species: miRExpress, miRDeep2, and sRNAbench (Fig. 4A–D). We 
believe that the other five tools did not predict the known miRNAs 
in T. aestivum due to the huge size of its genome. These unsuc-
cessful tools require relatively large amounts of memory to predict 
miRNAs, exceeding the maximum operating memory range of our 
computer for their analysis of T. aestivum. Comparing the predic-
tive results of the three tools that were successful in all species tested 
will help us to further explore which software is more suitable for 
the prediction of different plant miRNAs. The results of the three 
tools were most similar for A. thaliana and O. sativa (Fig. 4A, B), 
whereas less consistent results were observed in Z. mays (Fig. 4A–
C). These three tools were used to predict known miRNAs in T. aes-
tivum, but the results were quite inconsistent (Fig. 4D). The known 
miRNAs detected by miRDeep2 were all included in the miREx-
press and sRNAbench databases for three of the four species, with 
the exception of T. aestivum. The results indicated that sRNAbench 
has the potential to identify more known miRNAs, while miRDeep2 
filtered out many true known miRNAs. Thus, miRDeep2 may be not 
suitable for plant research.

Sensitivity and specificity

High sensitivity (Equation 1), one of the most important criteria 
for evaluating software operation capacity, results in the predic-
tion of more known miRNAs. As shown in Fig. 5A, sRNAbench, 
miRExpress, and miRkwood were more highly sensitive than the 
other tools. The sensitivity of miRPlant was stable across the four 
species tested. The sensitivities of miR-PREFeR and miRDeep-P2 
were higher for Z. mays than for A. thaliana and O. sativa, while 
the sensitivity of mirnovo was higher for O. sativa than for A. 
thaliana and Z. mays. The results of the treatment samples (Fig. 
5C) showed the same tendency as the results for the wild-type data 
sets (Fig. 5A).

In addition to sensitivity, specificity (Equation 4) is an im-
portant criterion for evaluating software operating results. The 
higher the specificity of the software, the smaller the number of 
miRNAs falsely predicted by the software. As shown in Fig. 5B 
(wild-type data set), the specificities of miRDeep2 and mirnovo 
were high, and the specificity of mirnovo was stable across the 
different species. The specificity of miRkwood was the lowest of 
all the tools evaluated. The specificities for the treatment data 
sets (Fig. 5D) showed the same tendency as for the wild-type 
data sets (Fig. 5B).
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Accuracy

Accuracy (Equation 2) is an important consideration when predicting 
miRNAs. We quantified the accuracy of each tool, as shown in Fig. 6.

When predicting mature miRNAs in A. thaliana, miRDeep-P2 
had the highest accuracy. When predicting mature miRNAs in O. 
sativa and Z. mays, mirnovo had the highest accuracy, while for 

T. aestivum, miRDeep2 had the highest accuracy (Fig. 6A). When 
searching for known miRNA precursors, miRkwood had a higher 
accuracy rate than miR-PREFeR in all three species (Fig. 6A).

All the accuracy results for the treatment data from the four 
species are shown in Fig. 6B. In the analysis of the treatment sam-
ples, miRkwood again had a higher success rate than miR-PREFeR 

FIGURE 2.  Computational time required by each of the eight software tools using the default or recommended settings. The programs in the red 
dashed boxes are used to predict known miRNA precursors; the rest of the software tools are used to predict known mature miRNAs. (A) Time re-
quired for the eight software tools to analyze data sets from the four species (in minutes). Entries are shaded with red to yellow gradients, where red 
represents the longest period and yellow the shortest. (B) Relative normalized running time required for each software tool. The y-axis displays the 
running time normalized against the size of the genome (Equation 3). ath, Arabidopsis thaliana; osa, Oryza sativa; tae, Triticum aestivum; zma, Zea 
mays.
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(Fig. 6B), with a similar accuracy rate for predicting miRNAs in A. 
thaliana and O. sativa. miRkwood had a higher accuracy rate when 
predicting miRNAs in the wild-type samples of Z. mays than in the 
treatment samples. Overall, the accuracy results of wild-type data 
and treatment data had similar tendencies.

Performance evaluation of the tools across the four species

sRNAbench and miRExpress had the highest AUC values (Fig. 7A, 
B). The AUC values for miRPlant, miRDeep2, and mirnovo were 

all above 0.8 in O. sativa, while the AUC value for miRDeep-P2 
was below 0.8 for this species. The AUC values for miRkwood were 
considerably different between the O. sativa samples. Finally, miR-
PREFeR had the lowest AUC values, although they were stable 
across the four species (Appendices S4–6). For T. aestivum, with 
its larger genome, the performance of miRDeep2 and miRExpress 
was poor, although the performance of sRNAbench was better 
(Appendix S7).

The average AUC values for the four wild-type species data sets 
are shown in Fig. 7C. Overall, sRNAbench had a relatively high av-
erage AUC value for all four species. miRExpress also performed 
well in all species except T. aestivum. Of the eight software tools, 
miRDeep2 performed worst for Z. mays; however, it provided a 
higher AUC value for O. sativa than all but sRNAbench and miR-
Express. The average AUC values in the treatment data for the four 
species are shown in Fig. 7D. The results for the wild-type and treat-
ment data were similar and showed that the most suitable miRNA 
software for identifying known miRNAs differed between species.

RAM usage

RAM usage also differed dramatically between the eight software 
tools (Fig. 8). When the genome of the tested species was larger 
(A. thaliana < O. sativa < Z. mays < T. aestivum), sRNAbench, 
miRPlant, and miR-PREFeR all required larger amounts of 
memory, while in contrast, the amount of memory required for 
miRkwood was similar for the analysis of the A. thaliana, O. 
sativa, and Z. mays samples. This may be explained by the fact 
that miRkwood was run with the Docker container, which can 

FIGURE 4.  UpSet plot and Venn diagrams of the known miRNAs. The programs in the red dashed boxes are used to predict known miRNA precursors; 
the rest of the software tools are used to predict known mature miRNAs. (A–C) Known miRNAs detected by all tools in Arabidopsis thaliana (A), Oryza 
sativa (B), and Zea mays (C). (D) Known miRNAs detected by sRNAbench, miRExpress, and miRDeep2 in Triticum aestivum. The UpSet plots show all 
intersections among all tools, while the Venn diagrams show the intersections among sRNAbench, miRExpress, and miRDeep2.

A B

C D

FIGURE 3.  Average number of true positive known miRNAs predicted 
by the eight software tools for the four species. The programs in the red 
dashed boxes are used to predict known miRNA precursors; the rest of 
the software tools are used to predict known mature miRNAs. Error bars 
represent SD. ath, Arabidopsis thaliana; osa, Oryza sativa; tae, Triticum aes-
tivum; zma, Zea mays.
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influence the calculation of memory usage. Among the six ma-
ture miRNA prediction tools (miRPlant, mirnovo, miRDeep-P2, 
miRDeep2, miRExpress, and sRNAbench), sRNAbench required 
the most memory for the analyses of A. thaliana and O. sativa. 
miRExpress required the least memory for the analysis of all four 
species. Most of the programs exceeded the maximum computer 

memory in their analyses of the large T. aestivum genome, and 
only three programs (miRDeep2, miRExpress, and sRNAbench) 
successfully predicted the known mature miRNAs in T. aestivum. 
miRDeep2 and sRNAbench required significantly more memory 
for analyzing T. aestivum than for A. thaliana and O. sativa. The 
results showed that none of these tools require much memory for 

FIGURE 5.  Comparison of the sensitivity and specificity of various software tools when predicting known miRNAs. The programs in the red boxes are 
used to predict known miRNA precursors; the rest of the software tools are used to predict known mature miRNAs. Error bars represent SD. (A) The 
sensitivity of the eight software tools when analyzing the wild-type samples. (B) The specificity of the eight software tools when analyzing the wild-
type samples. (C) The sensitivity of the eight software tools when analyzing the treatment samples. (D) The specificity of the eight software tools when 
analyzing the treatment samples. ath, Arabidopsis thaliana; osa, Oryza sativa; tae, Triticum aestivum; zma, Zea mays.
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FIGURE 6.  Comparison of the accuracy of the various software tools. The programs in the red dashed boxes are used to predict known miRNA precur-
sors; the rest of the software tools are used to predict known mature miRNAs. The charts show the accuracy of the eight software tools in predicting 
known miRNAs in the four species for wild-type data (A) and treatment data (B). Error bars represent SD. ath, Arabidopsis thaliana; osa, Oryza sativa; 
tae, Triticum aestivum; zma, Zea mays.
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FIGURE 7.  The receiver operating characteristic (ROC) curves and area under the curve (AUC) values for the miRNA predictions of the eight software 
tools. The programs in the red dashed boxes are used to predict known miRNA precursors; the rest of the software tools are used to predict known 
mature miRNAs. Error bars represent SD. (A) ROC curve of the miRNA predictions using the wild-type Oryza sativa data set. (B) ROC curve of the miRNA 
predictions using the treatment O. sativa data set. (C) Average AUC values from wild-type samples of the four species. (D) Average AUC values from 
the treatment samples of the four species. ath, Arabidopsis thaliana; osa, O. sativa; tae, Triticum aestivum; zma, Zea mays.
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the analysis of small genomes, enabling these analyses to be per-
formed using a personal laptop.

Experimental verification of the identified known miRNAs in 
the four species

We identified numerous known miRNAs using the eight tools, some of 
which have been verified in previous studies (Baldrich et al., 2015; Feng 
et al., 2017; Yu et al., 2017; Minow et al., 2018). As shown in Appendix 
2, the prediction results of six of the software tools (excluding miRDeep2 
and mirnovo) covered most known miRNAs in the A. thaliana wild-
type data. Arabidopsis thaliana has the smallest genome, so most of 
the analysis tools performed better for this species. For the O. sativa 
leaf wild-type data, both sRNAbench and miRkwood successfully 
predicted five experimentally verified known miRNAs, while miREx-
press predicted four. With the exception of mirnovo, all software tools 
successfully predicted three experimentally verified known miRNAs 
in the mature leaf treatment data of Z. mays. For T. aestivum, which 
had the largest genome among the four species, only sRNAbench and 
miRExpress could successfully predict four experimentally verified 
known miRNAs. In addition, miRkwood could identify more of the 
experimentally verified known miRNA precursors in A. thaliana and 
O. sativa than miR-PREFeR. This is consistent with the experimental 
results in our study and supports the credibility of these findings.

DISCUSSION

Selecting the appropriate software tool for different tasks

To identify true known miRNAs, the eight tools excluded other RNA 
fragments by rigorously comparing each read with known rRNA, small 
conditional RNA (scRNA), small nuclear RNA (snRNA), small nucle-
olar RNA (snoRNA), tRNA, and mRNA sequences (Li et al., 2012). 
To increase the specificity of its results, miRExpress accepts reads 

by aligning sequences with known miRNAs 
(Chen et al., 2019a). sRNAbench gave the best 
sensitivity performance when detecting known 
miRNAs, while miRExpress was second best due 
to its construction of miRNA expression pro-
files by aligning sequences with known miRNAs 
(Chen et al., 2019a). miRExpress predicted the 
most known mature miRNAs in A. thaliana, O. 
sativa, and Z. mays compared to other software, 
and is therefore the optimal software tool for pre-
dicting large numbers of known miRNAs.

The number of true positive known miRNAs 
identified in Z. mays by miRDeep2 was very 
low (Fig. 3), although its average AUC values 
were higher for O. sativa and T. aestivum (Fig. 
7C, D). When we predicted the known miRNAs 
in Z. mays, miRDeep2 had the lowest AUC 
value among the eight software tools (Fig. 7C, 
D); therefore, miRDeep2 does not appear to be 
suitable for the prediction of known miRNAs 
in this species. miRDeep2 was developed for 
use in animal studies, and as the pathway of 
miRNA maturation in plants is different from 
that in animals (Du and Zamore, 2005), this 
tool therefore may not be suitable for pre-

dicting known miRNAs in plants. In addition, several true positive 
known miRNAs, which were predicted as false negatives by miRD-
eep2, resulted in the low accuracy of the analysis in Z. mays. We there-
fore retrieved mature miRBase miRNAs, which may be incorrectly 
predicted by miRDeep2, and reinserted them into the miRDeep2 
results to predict the known miRNAs of Z. mays. Then, we regener-
ated the ROC graph of the eight software tools predicting the known 
miRNAs in four species (Appendix S8). As suspected, the AUC value 
of miRDeep2 in the six Z. mays samples greatly increased.

When analyzing the A. thaliana and O. sativa data, the calcu-
lation speed of miRDeep-P2 was faster than that of miRExpress, 
placing it second after sRNAbench. In contrast, miRDeep-P2 was 
much slower than miRExpress when analyzing Z. mays data, and it 
failed to analyze the T. aestivum data.

In the known mature miRNA predictions, miRExpress had the 
best sensitivity performance for A. thaliana, O. sativa, and Z. mays, 
while sRNAbench had the best sensitivity of all tools when analyz-
ing the T. aestivum data. Of the two, miRExpress used less memory 
than sRNAbench.

Performance evaluation

Various software tools are available for the analysis of miRNA 
sRNA-Seq data, but selecting the most appropriate tool for a spe-
cific purpose still poses a challenge to researchers. miRExpress can 
be used for the analysis of animals or plants, including A. thaliana 
and humans, while miRDeep2 is more suitable for use with an-
imal data sets, including data from Caenorhabditis elegans, fruit 
fly, human, and mouse. sRNAbench can also be used to predict 
C. elegans, chicken, fruit fly, human, mouse, rat, Xenopus, and ze-
brafish miRNAs. Furthermore, sRNAbench and miRExpress can 
also identify differentially expressed miRNAs. As early as 2012, Li 
et al. (2012) compared miRExpress, miRanalyzer (the precursor 
to sRNAbench), and miRDeep (the precursor to miRDeep2) for 
human, chicken, and C. elegans samples, showing that miRExpress 

FIGURE 8.  RAM usage of the eight software tools when predicting known miRNAs in the four 
species. Each peak represents the memory cost of a tool when analyzing a specific species. The 
programs in the red dashed boxes are used to predict known miRNA precursors; the rest of the 
software tools are used to predict known mature miRNAs. ath, Arabidopsis thaliana; osa, Oryza 
sativa; tae, Triticum aestivum; zma, Zea mays.
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and miRanalyzer had better predictive capabilities. In a later 
study, Bisgin et al. (2018) compared the ability of miRExpress, 
sRNAbench, and miRDeep2 to predict miRNAs in rat liver, reveal-
ing that sRNAbench and miRDeep2 are more suited to this task 
than miRExpress. miRPlant and mirnovo provide a user-friendly 
interface with improved predictive accuracy for species such as 
O. sativa, although mirnovo can also predict miRNAs in diverse 
species such as fruit fly, soybean (Glycine max (L.) Merr.), and hu-
man. miR-PREFeR has previously been used to predict miRNAs 
in plants including soybean and tomato (Solanum lycopersicum 
L.). miRkwood can identify a large diversity of plant miRNAs with 
limited false positives, which can be beneficial for species such as 
Brassica rapa L. and soybean.

There are several possible reasons why the eight software tools 
differed in their ability to predict known miRNAs in the four plant 
species analyzed. First, the number of annotated known miRNAs 
varies between the species studied, which could influence the 
prediction results. Second, the depth of sequencing data differed 
between the samples, and samples with a low depth may lead to 
less accurate results. In addition, the same species may have differ-
ent miRNA expression levels at different growth stages, meaning 
several miRNAs may not be identified in all stages. Last, different 
genome sizes may affect the analysis performed by some software 
tools, such as miRDeep2 and miRkwood.

Based on our findings, we developed the following criteria for 
selecting the best tool for identifying known miRNAs in plants. 
First, for researchers with limited access to computer memory, we 
recommend miRExpress, because its calculation requires less mem-
ory while retaining high levels of accuracy. In addition, it can be 
used for the analysis of species with either large or small genomes. 
Second, for researchers who have access to sufficient computer 
memory and want to identify more known miRNAs, we recom-
mend using sRNAbench due to its accuracy and suitability for many 
species of different genome sizes. For researchers who have access 
to sufficient computer memory and want to identify known miRNA 
precursors, we recommend miRkwood, because its calculation time 
is short and a large number of known miRNA precursors can be 
obtained. We also recommend different software tools for different 
data types, as shown in Table 1.
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APPENDIX S1. The results of the random forest parameters. 
(A) The parameter mtry is equal to 4. (B) The dot plot shows the 
features and their importance; more important features have a 
higher MeanDecreaseGini value. (C) Determination of the ntree 
value for building the random forest model. The x-axis shows the 
number of trees (ntree). The position where the decreased trend 
of lines becomes flat is ideal, thus the parameter ntree is equal to 
100.

APPENDIX S2. Flow chart of the generation of the receiver operat-
ing characteristic (ROC) curve.

APPENDIX S3. Confusion matrices for all samples.

APPENDIX S4. The receiver operating characteristic (ROC) 
curves for the predictions of the known miRNAs from Arabidopsis 
thaliana using six software tools. (A–F) ROC curves for samples 
SRR1312888 (A), SRR1312898 (B), SRR1312896 (C), SRR1312899 
(D), SRR1312897 (E), and SRR1312900 (F). The number of known 
miRNAs predicted by mirnovo and mirdeep2 in A. thaliana is too 
small to draw the corresponding ROC curve, thus those results are 
not shown here.

APPENDIX S5. The receiver operating characteristic (ROC) 
curves for the predictions of the known miRNAs from Oryza sa-
tiva by the eight software tools evaluated. (A–D) ROC curves for 
samples SRR1849766 (A), SRR1849769 (B), SRR1849767 (C), and 
SRR1849770 (D).

APPENDIX S6. The receiver operating characteristic (ROC) 
curves for the predictions of the known miRNAs from Zea mays by 
the eight software tools evaluated. (A–F) ROC curves for samples 
SRR6939406 (A), SRR6939401 (B), SRR6939403 (C), SRR6939402 
(D), SRR6939404 (E), and SRR6939409 (F).
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APPENDIX S7. The receiver operating characteristic (ROC) curves 
for the predictions of the known miRNAs from Triticum aestivum 
by three software tools.

APPENDIX S8. The receiver operating characteristic (ROC) curves 
following the combination of the known Zea mays miRNAs pre-
dicted by the eight software tools and the mature miRNA sequences 
from miRBase. (A–F) ROC curves for samples SRR6939406 (A), 
SRR6939401 (B), SRR6939403 (C), SRR6939402 (D), SRR6939404 
(E), and SRR6939409 (F).
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APPENDIX 1. Deep sequencing data details for the four species.

Speciesa Genotype SRA Tissue Treatment
Sample

size Genome size

Arabidopsis
thaliana

Col-0 SRR1312888 12- to 13-d-old seedlings Wild type 1.6 Gbp 115 Mbp

Col-0 SRR1312896 12- to 13-d-old seedlings Wild type 1.7 Gbp
Col-0 SRR1312897 12- to 13-d-old seedlings Wild type 540.8 Mbp
Col-0 SRR1312898 12- to 13-d-old seedlings AGO10 overexpressor 1.3 Gbp
Col-0 SRR1312899 12- to 13-d-old seedlings AGO10 overexpressor 1.7 Gbp
Col-0 SRR1312900 12- to 13-d-old seedlings AGO10 overexpressor 443.6 Mbp

Oryza
sativa

Nipponbare SRR1849765 15-d-old leaf Wild type 202.2 Mbp 373 Mbp
Nipponbare SRR1849766 15-d-old leaf Wild type 206.7 Mbp
Nipponbare SRR1849767 15-d-old leaf Wild type 181.8 Mbp
Nipponbare SRR1849768 15-d-old leaf Elicitor treatment for 30 min 138 Mbp
Nipponbare SRR1849769 15-d-old leaf Elicitor treatment for 30 min 121.3 Mbp
Nipponbare SRR1849770 15-d-old leaf Elicitor treatment for 30 min 159.4 Mbp

Zea mays B73 SRR6939401 Mature leaf (leaf 7) B73_isolated from induced 
(id1) _ mature leaves 
(ML)_small_RNA_replicate1

621.5 Mbp 2.11 Gbp

B73 SRR6939402 Mature leaf (leaf 7) B73_ isolated from induced 
(id1) mature leaves 
(ML)_small_RNA_replicate2

1.1 Gbp

B73 SRR6939403 Mature leaf (leaf 7) B73_wild type (WT)_ 
mature leaves 
(ML)_small_RNA_replicate2

700 Mbp

B73 SRR6939404 Mature leaf (leaf 7) B73_ wild type (WT)_ 
mature leaves 
(ML)_small_RNA_replicate3

1 Gbp

B73 SRR6939406 Mature leaf (leaf 7) B73_ wild type (WT)_ 
mature leaves 
(ML)_small_RNA_replicate1

731.2 Mbp

B73 SRR6939409 Mature leaf (leaf 7) B73_ isolated from induced 
(id1) _ mature leaves 
(ML)_small_RNA_replicate3

640.8 Mbp

Triticum
aestivum

Chinese Spring SRR5461176 Spike (terminal spikelet stage) Biological replicate 1 676.1 Mbp 14.5 Gbp
Chinese Spring SRR5461177 Spike (terminal spikelet stage) Biological replicate 2 704.3 Mbp

Note: SRA = Sequence Read Archive.
aThe PubMed identification number (PMID) of each species is: Arabidopsis thaliana, 28231321; Oryza sativa, 26083154; Zea mays, 29688423; and Triticum aestivum, 28515146.
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APPENDIX 2. Software-identified known miRNAs in the four species that were experimentally verified.

Species (sample)
Identified 

miRNA miRDeep-P2 miRPlant sRNAbench miRDeep2 miRExpress miRkwood miR-PREFeR mirnovo

Arabidopsis thaliana 
(ath_seedling_WT)

ath-miR165 ✓ ✓ ✓ ✓ ✓ ✓
ath-miR166 ✓ ✓ ✓ ✓ ✓
ath-miR159 ✓ ✓ ✓ ✓ ✓ ✓
ath-miR168 ✓ ✓ ✓ ✓ ✓ ✓
ath-miR173 ✓ ✓ ✓
ath-miR393 ✓ ✓ ✓ ✓ ✓ ✓
ath-miR395 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Oryza sativa 
(osa_leaf_WT)

osa-miR156 ✓ ✓ ✓ ✓ ✓ ✓
osa-miR529 ✓ ✓ ✓ ✓
osa-miR5078 ✓ ✓ ✓
osa-miR172 ✓ ✓ ✓ ✓ ✓
osa-miR2863 ✓ ✓ ✓ ✓

Zea mays 
(zma_ML_Treat)

zma-miR399 ✓ ✓ ✓ ✓ ✓ ✓ ✓
zma-miR156 ✓ ✓ ✓ ✓ ✓ ✓ ✓
zma-miR166 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Triticum aestivum 
(tae_two_samples)

tae-miR396 ✓ ✓
tae-miR319 ✓ ✓
tae-miR167 ✓
tae-miR159 ✓


