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Laryngopharyngeal reflux image 
quantization and analysis of its 
severity
Chung‑Feng Jeffrey Kuo1, Chih‑Hsiang Kao1, Sifundvolesihle Dlamini1 & Shao‑Cheng Liu2*

Laryngopharyngeal reflux (LPR) is a prevalent disease affecting a high proportion of patients seeking 
laryngology consultation. Diagnosis is made subjectively based on history, symptoms, and endoscopic 
assessment. The results depend on the examiner’s interpretation of endoscopic images. There are 
still no consistent objective diagnostic methods. The aim of this study is to use image processing 
techniques to quantize the laryngeal variation caused by LPR, to judge and analyze its severity. 
This study proposed methods of screening sharp images automatically from laryngeal endoscopic 
images and using throat eigen structure for automatic region segmentation. The proposed image 
compensation improved the illumination problems from the use of laryngoscope lens. Fisher linear 
discriminant was used to find out features and classification performance while support vector 
machine was used as the classifier for judging LPR. Evaluation results were 97.16% accuracy, 98.11% 
sensitivity, and 3.77% false positive rate. To evaluate the severity, quantized data of the laryngeal 
variation was used. LPR images were combined with reflux symptom index score chart, and severity 
was graded using a neural network. The results indicated 96.08% accuracy. The experiment indicated 
that laryngeal variation induced by LPR could be quantized by using image processing techniques to 
assist in diagnosing and treating LPR.

Laryngopharyngeal reflux (LPR) results from the gastric inclusion flowing back to the throat. It is found that 
pepsin and gastric acid do major harm to the upper aerodigestive mucosa. Both the laryngeal and pharyngeal 
mucosa has lower bearing capability for gastric contents1. More than 50% of people with voice disorder cases are 
related to LPR2. The primary cause is the upper esophageal sphincter dysfunction3. LPR has diverse symptoms, 
such as the sensation of foreign bodies in the throat, hoarseness, throat clearing, etc. Common signs include 
mucosal swelling on the larynx and pharynx, subglottic stenosis and vocal edema4. It is generally diagnosed by the 
symptoms and changes in the throat, but there is a lack of convenient and effective objective diagnostic method 
and if this disease is left untreated it can be one of the etiological causes of laryngeal cancer5.

Laryngoscopy is the regular diagnostic method for aerodigestive disorders, but its interpretation is subjective 
with doubtful efficacy in LPR. According to the reflux finding score (RFS)6,7, laryngoscopic examination can be 
standardized to provide a quantized data, but the inter-rater variability problem exists8,9. Detecting pH varia-
tions in the throat and the upper end of the esophagus is currently the gold standard10. However, this method 
has restrictions, such as optimal location of the proximal probe, invasiveness and takes 24 h.

The patient’s nonstationary shooting position or lens movement during laryngoscopic examination can lead to 
nonuniform illumination and blur images. Many studies have used videos, however, the information in the videos 
were only applicable to functional voice disorders. Therefore, a newer and more objective method is required. 
The use of image processing has been employed to quantize the changes of the laryngeal mucosa induced by 
LPR11. Jiang et al.12 used RGB (red, green, blue) channel values to calculate the red index of various regions of 
the larynx image. The analysis indicated that the red index of the vocal cords of patients with LPR was much 
higher. Their study did not discuss texture information. Additionally, the laryngoscope lens was not stationary, 
leading to inconsistent standard of comparison. The previous researches do not mention how to correct the light 
source problem resulting from the lens position of the laryngoscope.
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Many studies have performed laryngeal sub-region analysis for LPR where the regions were segmented manu-
ally which took time and resulted in cognitive differences. Ozturan et al.13 analyzed four regions, including the 
left and right vocal cord, arytenoid cartilage, and epiglottis and choose three points in each region by manual 
siting. The hues of the points were analyzed to identify LPR. This method is free of the lens position problem 
and its analysis is rapid, but there are still subjective cognitive differences and the range of the points are only 
1 mm in diameter, causing the information to be insufficient.

LPR is treated by lifestyle changes and medication14,15, including antacids and proton-pump inhibitors (PPI)16. 
There is still no gold standard for treating LPR, because the examiners cannot specifically judge its severity. 
Theoretically, the use of image processing to analyze various regions of the larynx is feasible and effective. This 
study proposed searching for sharp images in laryngeal endoscopic images, in which the larynx was divided by 
automatic segmentation and the hue and textural features of various regions were analyzed. Our study assumed 
that LPR could be distinguished more objectively by changes in the hue and texture of various regions of the 
larynx using support vector machine (SVM). An artificial neural network (ANN) was trained by the quantized 
data and the reflux symptom index (RSI) score to classify the severity of the LPR.

Materials and methods
Data and data acquisition and processing equipment.  The image samples were provided by the 
Department of Otorhinolaryngology-Head and Neck Surgery at Tri-Service General Hospital (Taipei, Taiwan). 
The subjects were divided into two groups; the non-LPR group composed of 246 subjects including normal 
patients and those with polyps, cysts and leukamus lesions, and LPR group. The gold standard test for LPR is 
24-h pH monitoring, and LPR group comprised of 106 cases that have met all of the following inclusion criteria: 
The RSI17 was higher than 13 points, the total time percentage of the esophagus pH lower than 4 was higher than 
1.0%, and the pH test results was abnormal18. Excluded cases were patients with anemia, smokers, asthmatic 
and allergic, patients on medication and patients who has received radiotherapy or neck operations. The images 
were captured using a laryngeal video stroboscope and processed by MATLAB. Details on the acquisition and 
processing equipment are provided in the supplementary.

Selecting the appropriate image.  This study proposed screening the sharpest image automatically 
from dynamic laryngeal endoscopic video using sharp contour of the sharp image. Four functions for judging 
sharpness were tested: the variance, the sum-modulus-difference, the gradient magnitude maximization and 
the energy of the Laplacian of the image. See supplementary material for method details. The variance reflects 
the image’s gray level variation. Among endoscopic images, blurred and distorted images often have blurred 
contours. The more blurred the contour is, the smaller the variance. The sum-modulus-difference (SMD) uses 
the first derivative action as a high pass filter to extract the high frequency signals from the image. In terms of 
the endoscopic image calculation, the gray level difference between two adjacent pixels is calculated and the 
horizontal (SMDx) and vertical (SMDy) directions are processed. The sharp image is obtained by calculating the 
sum of SMDx and SMDy, and the endoscope image with the maximum value is selected. The gradient magnitude 
maximization uses Sobel operation and uses the first derivative to process images. Two masks are used in the 
endoscopic image for calculation. One is the x-direction and the other is the y-direction. The total gradient is 
calculated and the endoscopic image in which the maximum value occurs is selected. The energy of the Lapla-
cian of the image uses the second differentiation of the image intensity function as a high pass filter. Laplace’s 
operation for searching the larynx boundary in the endoscopic image is used for the second differentiation. The 
approximately discretized Laplace’s operation kernel is used as a high pass filter.

Automatic segmentation method.  Some Refs.11,13,19,20 have performed region segmentation of the lar-
ynx for follow-up analysis. Pribuišienė et al.21 indicated that the most distinctive signs of the LPR are the mucous 
membrane damage of the true vocal cords and arytenoid cartilage. This region can be displayed completely 
during shooting to avoid inconsistent feature comparison. This study used automatic segmentation to segment 
the left and right vocal cords, arytenoid cartilage and glottis. In comparison to manual segmentation, automatic 
segmentation saves time and is free of subjective cognition.

The glottis is a relatively dark region in the image, therefore the gray threshold was used for segmentation22. In 
order to highlight the differences in brightness, keep more details and avoid over-segmentation, this study calcu-
lated the gray level of the full image. The lower bound of the threshold of the image was calculated. This value was 
taken as binary threshold. Active contour method (ACM)23,24 was used since the boundaries of the vocal cords, 
arytenoid cartilage, and peripheral tissues can be blurred sometimes. Its advantage is that a continuous closed 
segmentation boundary can be obtained even there is noise. In this method, the target object’s edge detection 
problem is changed into an energy minimization framework. The purpose is to compute the deformation curve 
which can minimize the sum of the internal and external energy in an energy field. The internal energy aims to 
normalize the curve shape and the external energy aims to approach the target object edge and converge to the 
target object boundary to reconstruct the complete contour of the target object. Let s be the parametric curve 
such that v(s) = (x(s), y(s)), where x and y are the given curvilinear coordinates; the total energy function Esnake 
is defined in Eq. (1):

(1)Esnake =
1

∫
0

Esnake(v(s))ds =
1

∫
0

Einternal(v(s))+ Eimage(v(s))+ Econ(v(s))ds



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:10975  | https://doi.org/10.1038/s41598-020-67587-1

www.nature.com/scientificreports/

Einternal aims to normalize the stretching and bending of the curve shape and represents the internal energy. 
Eimage is the image energy deduced from the image information, Econ is the constraint energy, and the total energy 
of Eimage and Econ is Eexternal. Einternal is defined as Eq. (2):

where, |vs(s)|2 is the curve elasticity, |vss(s)|2 is the curvature of the parametric curve, α(s) controls the stretch-
ing, β(s) controls the smootheness of the curve, and Einternal makes the curve contract inward continuously and 
remain smooth. Eimage is defined as Eq. (3):

where I(x,y) is the gradient of image I at (x,y) and the Eexternal makes the curve approach the target object contour 
continuously until they are coincident. Esnake minimization must be coincident, as expressed in Eq. (4):

For the physical motion of the snake, Einternal and Eexternal will be balanced eventually, as expressed in Eq. (5):

where Einternal = αx′′(s)− βx′′′(s), Eexternal = −∇Eimage . The target object can be approached effectively by the 
continuous initialization of the aforesaid snake model. When Esnake reaches total energy minimization, the effect 
is reached. The parametric curve v(s) is the final contour of object.

Hue feature.  A laryngeal endoscopic image is a color image and is directly applicable to the RGB (red, 
green, blue) color space. The RGB color space has rapid calculation and does not need to calculate coordinate 
conversions. Its defect is that the detection result will be affected by the environment and light source. In order 
to circumvent this issue, this study propose the use of two color spaces which are free from the effect of bright-
ness: the HSV (hue, saturation, value) color space and the YCbCr color space25. In the HSV color space, H = 0° 
represents red, H = 120° represents green and H = 240° represents blue. S is 0–1, and the image is a gray level 
image when S = 0. V represents brightness, in which V = 0 represents black and V = 1 represents white. The main 
components of the YCbCr color space are the brightness (Y) and two chromaticies (Cb, Cr). Y is the gray level of 
the gray scale image converted from a color image. The brightness separability is very high and is favorable for 
adjusting different chromaticity components. Cb is the blue chromaticity component and Cr is the red chromatic-
ity component. The YCbCr color space can reduce the effect of brightness, hence it is used in image processing 
techniques. This study used chromaticity as a hue feature, and there were six chromatic values (R-G-B-H-Cb-Cr) 
used as hue features. The left and right vocal cord, arytenoid cartilage, and the ratio of the vocal cords to aryt-
enoid cartilage were analyzed. There were four region analysis with 24 hue features in all.

Textual features.  In terms of the perceptual experience of the human eye, the rough and directionality are 
the primary characteristics used by the human eye to distinguish texture. The Gray-level Co-occurrence Matrix 
(GLCM)26,27 describes the grayness relationship between adjacent pixels in a local area or overall area of an 
image. To quantize the laryngeal variation induced by LPR, this study used the equalization, contrast, correlation 
and homogeneity of GLCM to describe the texture information of various regions of larynx. The angle was set 
as 0° to analyze the features of LPR. Normalization was performed before the GLCM eigenvalue were extracted 
and the sum of the elements of GLCM was set as 1 for computing. The eigenvalues used are discussed below.

Equalization (E)28.  This eigenvalue is known as the energy, which was used in this study to measure the con-
sistency and equalization of the gray level distribution in each region of an image. Consistency and equalization 
refer to the probability of the occurrence of a pixel pair and a higher probability of recurrence represents higher 
consistency and equalization. The range of (E) of GLCM was [0, 1]. It reaches the maximum value (E = 1) when 
the gray levels of the image were identical.

Contrast (Con)28.  This eigenvalue was used to measure the intensity contrast between adjacent pixels in each 
region of the image. A larger gray level difference between adjacent pixels represent a larger Con value of GLCM. 
In a k × k GLCM, the range of Con would be [0, (k − 1)2].

The correlation (Cor).  This one was used to measure the correlation between adjacent pixels in each region.

Homogeneity (Hom).  It was used to measure the local grayness homogeneity in each region. If the local gray-
ness homogeneity of the image was uniform, the Hom value would be large.

Classifiers.  The features of various regions were extracted and classified to identify LPR. SVM29 has a good 
training and classification execution speed and will separate the hyperplane during computing. This study 
extracted the hue and textural features of various regions of the larynx to accurately identify LPR. SVM was 
effective for dividing samples into negative and positive. An ANN has strong nonlinear fitting capability, strong 
noisy data tolerance and is characterized by multiple entry/exit features. The LPR severity analysis required 

(2)Einternal =
1

2

(

α(s)|vs(s)|
2 + β(s)|vss(s)|

2
)

,

(3)Eimage = −
∣

∣∇/(x, y)
∣

∣

2
,

(4)αx′′(s)− βx′′′(s)−∇Eimage = 0.

(5)Einternal + Eexternal = 0,
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multiple classification results and the ANN met the requirements of this study for strong error tolerance and 
multiple entry/exit characteristics. SVM30,31 is a binary linear classifier that is used to find a hyper-plane in a 
space so that two classes of data can be separated. It is used to find a zone with the maximum boundary in 
two different classes of data. The hyper-plane is called the optimal hyper-plane and the class of the unknown 
data is determined according to the data position in it. The back-propagation neural network (BPNN)32–34 has 
a forward recurrent learning ability network. This study used BPNN as a classifier to analyze the LPR severity 
because of its higher error tolerance and multiple entry/exit characteristics. The architecture was comprised of 
three layers; input layer, hidden layer and output layer as shown in supplementary Fig. 1.

Results and validation
Clear laryngeal endoscopic images were searched for automatic segmentation and feature analysis. The automati-
cally-segmented regions included left and right vocal cords, and the arytenoid cartilage, and the hue and textural 
features of various regions were analyzed. LPR can be diagnosed by using image processing techniques to analyze 
larynx image features. This study proposed using the quantized data of variations of the throat induced by LPR 
to analyze its severity and provide doctors medical advice and assistance with patient diagnosis. The detection 
system was divided into five parts as shown in Fig. 1.

Image selection.  Feature filtration.  Non-throat images were filtered using red component. Blurred im-
ages were eliminated using the rapid execution of variance. Images with a red component less than 0.4 were 
filtered out. The average value of variance of the remaining images was calculated and images with a lower than 
average value of the variance were removed.

Glottis structure discrimination.  The glottis is a relatively dark region in the image, as shown in Fig. 2A. The 
lower bound of threshold is used as the image binarization, as shown in Fig. 2B. The binary image is shown in 

Figure 1.   System flow chart.
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Fig. 2C. This study used glottis structure condition for screening. The conditions were: area, centroid position 
and aspect ratio. Regions that were too small were excluded, regions where the glottis was not in the center were 
eliminated, and since glottis shape is an inverted triangle, the east–west regions were filtered out using aspect 
ratio. The glottis segmentation is shown in Fig. 2D.

Sharp image.  After the glottis is screened out, the sharp image is screened out of multiple images, because most 
images are blurred as the patient or lens moves, i.e. insufficient sharpness. The object boundary in the blurred 
image is quite blurred; on the contrary, the object boundary in the sharp image is relatively clear, as shown in 
Fig. 3. The Fig. 3A image is obviously blurred due to the movement of arytenoid cartilage (arrowhead); the 
Fig. 3B is a blurred image as the lens is unfocused; Fig. 3C is a sharp image. This study tested and compared 
10 sample and used four functions for judging the sharpness: the variance, the sum-modulus-difference, the 
gradient magnitude maximization, and the energy of the Laplacian of the image. It is obvious that the red frame 

Figure 2.   Glottis segmentation process: (A) original image, (B) gray level histogram of original image [the solid 
red line is the average value (u = 158) and the dotted red line is the lower bound of the threshold (TH = 131)], 
(C) binary image, (D) glottis discrimination.

Figure 3.   (A) The shift of arytenoid cartilage results in apparent blur (arrowhead), (B) unfocused lens results in 
blurred image, (C) sharp image.
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images are relatively sharp. This study used sum-modulus-difference to search for the sharpest throat image, as 
this method had better execution speed and good precision as shown in Fig. 4.

Image compensation.  In order to allow similar color ranges of the laryngeal endoscopic images, histo-
gram shifting was used to unify the average gray level of all images to the same value. Based on the difference 
between the average brightness value of the throat image and the set value, each pixel was increased or decreased 
to achieve the set average value. The formula is converted as follows: I(x,y) = O(x,y) + (S – Om), where (x, y) is 
the image coordinate, I is the grayscale value of the image after translation, O is the grayscale value of the current 
image, S is the set value, and Om is the grayscale value of the image before translation. The RGB was turned into 
YCbCr space where the Y channel value was shifted to 125. The image was turned back to RGB space to enable 
consistent standard for the subsequent hue features. The proposed method could avoid the light source problem 
resulting from the laryngoscope lens position and allow the segmentation to be more correct. Figure 5 shows 
the image compensation.

Region segmentation.  Arytenoid cartilage segmentation.  The image was binarized, relatively bright 
regions including the arytenoid cartilage were turned into white and the binary image was morphologically 
eroded. The largest region obtained by the notation was regarded as the arytenoid cartilage candidate block and 
discrimination of the arytenoid cartilage structure was performed. Finally, the region of arytenoid cartilage was 
obtained using ACM. The study then used the arytenoid cartilage structure conditions for screening which were: 
area, centroid position and aspect ratio. Regions that were too small were eliminated, regions where the aryt-
enoid cartilage was not in the upper part were eliminated, and since the arytenoid cartilage shape is rectangular, 
the south-north regions were filtered out using aspect ratio. The arytenoid cartilage segmentation is shown in 
Supplementary Fig. 2.

Figure 4.   Test of the four methods to judge sharpness.
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Vocal cord segmentation.  Both the vocal cords were presented as columnar features near the glottis and appear 
relatively brighter. This study used the vocal cord position for segmentation. First, the glottis was morpho-
logically dilated and the edge image was taken. The glottis was transected using its centroid, and the valley was 
searched and slit as shown in Supplementary Fig. 3.

Adaptive vocal cord segmentation.  Laryngeal endoscopic images do not have a fixed lens distance, therefore the 
vocal cord size varies, which means the number of iterations for the ACM cannot be fixed as shown in Fig. 6. 
In addition, since the left and right vocal cord size could differ, there would be obvious over-segmentation 
or under-segmentation under a fixed value. In order to solve this, the study proposed an adaptive method to 
determine the number of iterations. The growth range of the ACM was mitigated gradually as the gap between 
the vocal cords and the false vocal cords narrowed. The difference between the gray level variations in the range 
grown by this iteration and in the growth range of the last iteration was slight and could be described by calcu-
lating the entropy of the gray level variation. This is to say, when the difference in the gray level and entropy in 
the range grown by two iterations were slight, the entropy will have a minimum difference. If the growth range 
increased continuously, the growth range would exceed the vocal cord and the entropy difference between the 
range grown by this iteration and the growth range of the last iteration would increase. Using this characteristic, 
the entropy of the growth range was calculated during every iteration and subtracted from the last iteration to 
find out the number of iterations with the minimum entropy difference. The result was the optimum number of 
iterations of the vocal cord. The minimum number of iterations of the ACM was 13, the maximum was 41, and 
the entropy of the growth range of every iteration was calculated. The entropy difference between iterations was 
calculated and the minimum difference was found out. In this example, the minimum entropy was 21st iteration 
and the entropy difference was 0.0043. As the minimum number of iterations of the ACM in this study was 13, 
the minimum entropy difference was the 21st iteration, meaning the growth ranges of the 33rd, 34th iterations of 
the ACM were approximately saturated. The optimum number of iterations of the left and right vocal cord could 
be found out as shown in Supplementary Fig. 4.

Segmentation accuracy validation.  In order to determine the segmentation accuracy, dice similarity coefficient 
(DSC)35,36 was used to calculate the segmentation accuracy corresponding to each sample. This study drew 10 
samples randomly and the manual segmentation performed by three doctors was compared with the method 

Figure 5.   Image compensation: (A) original image, (B) brightness histogram of the original image (average: 
103.72), (C) image compensation, (D) brightness histogram of the image compensation (average: 125).
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proposed in this study refer to Table 1 showing the DSC average value of the four regions for the 10 samples in 
the supplementary. The DSC of the four regions were 0.8674 for the left vocal cord, 0.8460 for the right vocal 
cord, 0.8796 for the arytenoid cartilage, and 0.9293 for the glottis. The results proved that the proposed auto-
matic segmentation was accurate and stable.

Feature selection.  In order to detect LPR, different features of various regions were required, therefore 
hue and textural features were used. This study performed the Fisher linear discriminant of 76 LPR and non-
LPR samples. 36 features of different color spaces and textures in four regions were tested and the Fisher linear 
discriminator was used to find out the features with classification performance for LPR. It was found that the Cb 
channel and Cr of the arytenoid cartilage, the R channel of the vocal cords, the energy of GLCM of the arytenoid 
cartilage, and the contrasted Fisher linear discriminant of the vocal cord GLCM were 0.6425, 0.6409, 0.5213, 
0.6568, and 0.5241 respectively representing the highest among the 36 features. Table 2 shows the classification 
capacity of various features.

LPR analysis.  In order to diagnose LPR, this study used SVM as a classifier. There were 352 research sam-
ples, including 106 LPR and 246 non-LPR samples. According to Choi and Choi37 and Javaid et al.38, when the 

Figure 6.   Left vocal cord and right vocal cord of Sample I and Sample II iterated the same number of times: (A) 
41 iterations, (B) 25 iterations, (C) 20 iterations.

Table 1.   DSC average value of the four regions of the 10 samples.

Sample

Region

Arytenoid cartilage Left vocal cord Right vocal cord Glottis

No. 1 0.9106 0.8073 0.7643 0.8773

No. 2 0.9053 0.8843 0.8935 0.9234

No. 3 0.9288 0.8210 0.7939 0.9455

No. 4 0.8981 0.8150 0.8084 0.9394

No. 5 0.8361 0.8999 0.8095 0.9166

No. 6 0.8405 0.9163 0.8999 0.9454

No. 7 0.8847 0.9185 0.8576 0.9490

No. 8 0.8750 0.9012 0.8965 0.9213

No. 9 0.8601 0.8697 0.8352 0.9440

No. 10 0.8563 0.8411 0.9010 0.9311

Average 0.8796 0.8674 0.8460 0.9293



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:10975  | https://doi.org/10.1038/s41598-020-67587-1

www.nature.com/scientificreports/

sample ratio is unbalanced, the positive–negative sample ratio of 1:1 is recommended for K = 10 cross validation 
during classification evaluation. Therefore, this study used 106 LPR and non-LPR samples for validation, and the 
results of the classification was evaluated 10 times using cross validation.

LPR identification results analysis.  The non-LPR samples were defined as positives and the LPR samples were 
defined as negative. The results showed that both LPR and non-LPR are True. Table 3 shows the classification 
results. This study used accuracy, sensitivity, and false positive rate to evaluate the classification results.

Severity classification.  The severity was preliminarily classified into three levels according to the classification 
of the digestant, which was combined with RSI as the classification criteria. RSI scores of 13–20 were primary, 
21–30 were intermediate, and 31–45 were severe. There were 106 samples in this study, including 38 primary 
samples, 54 intermediate, and 14 severe samples. Stratified cross validation was used for classification, and ten-
fold stratified cross validation was used to evaluate the results of classification. The BPNN architecture was 
divided into the input, hidden, and output layers. The input layer had five processing units representing five 
eigenvalues, respectively which were the Cb and Cr channels of the arytenoid cartilage, the energy of GLCM, 
the R channel of the vocal cords and the contrast of the GLCM. There was one hidden layer and four processing 
units, and the output layer judge the LPR. The parameters of the BPNN used in this study were tested continu-
ously through trial and error. The final cycle index was 1,000 times, the learning rate was 0.65 and the momen-
tum factor was 0.5. Stratified cross validation was performed for this group of parameters to evaluate the results 
of classification and the overall recognition rate was 96.48% as show in Table 4.

Discussion
Manual examination of LPR using a laryngoscope is subjective. In this case, giving treatment according to the 
symptoms without specific diagnostic evidence may result in medical and economic burdens38. Using image pro-
cessing techniques to analyze the hue and texture of the laryngeal images is a more objective technique. In order 
to identify LPR accuracy, obtaining sharp images and uniform light source is a priority for analyzing images. In 
the study, the sharpest larynx image was found out by using the variance and the sum-modulus-difference in 
laryngoscopic images. The image compensation proposed in this study used histogram shifting to give a consist-
ent brightness range and to prevent the gray level of the image from exceeding boundaries that failed to display.

The most distinctive sign of LPR is the mucosal damage on the true vocal cords and the arytenoid cartilage. 
In this study, the arytenoid cartilage, glottis, left and right vocal cords were segmented automatically for analysis. 
This study used DSC for segmentation validation and the results proved that the proposed automatic segmen-
tation was accurate and stable. Du et al.19 and Witt et al.20 mentioned changes in hue and texture but did not 

Table 2.   Feature calculation for the Fisher linear discriminant. Values highlighted in bold represent significant 
difference among the 36 features

Feature f Feature f

A_R 0.0177 VC/A_R 0.2836

A_G 0.0373 VC/A_G 0.0575

A_B 0.0226 VC/A_B 0.0708

VC_R max 0.5213 VC/A_H 0.0327

VC_R min 0.3015 VC/A_Cb 0.3671

VC_G max 0.0021 VC/A_Cr 0.2012

VC_G min 0.0081 A_con 0.2378

VC_B max 0.2172 A_eng 0.6568

VC_B min 0.0984 A_cor 0.0087

A_H 0.0629 A_hom 0.2052

VC_H max 0.0126 VC_con max 0.5241

VC_H min 0.0022 VC_con min 0.22

A_Cb 0.6425 VC_eng max 0.018

VC_Cb max 0.0317 VC_eng min 0.0236

VC_Cb min 0.0061 VC_cor max 0.0019

A_Cr 0.6409 VC_cor max 0.0061

VC_Cr max 0.0411 VC_hom min 0.038

VC_Cr min 0.0433 VC_hom max 0.0183

Table 3.   LPR classification accuracy.

Accuracy Sensitivity False positive rate

97.16% 98.11% 3.77%
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indicate the regions in which hues and which textures are more distinctive for LPR. This study tested different 
color spaces and textures of four regions (36 features) and used the Fisher linear discriminant to find the features 
with classification performance for LPR. It was found that the Cb and the Cr channels of the arytenoid cartilage, 
the R channel of the vocal cords, the energy of GLCM of the arytenoid cartilage, and the contrasted Fisher linear 
discriminant of the vocal cord GLCM were outstanding. Our results revealed that LPR could induce changes in 
the larynx which cannot be described by human eye specifically. The aforementioned five features were combined 
with SVM to distinguish LPR and non-LPR conditions. The LPR recognition accuracy of the proposed method 
was 97.16%, the sensitivity was 98.11% and the false positive rate was 3.77%, proving that LPR could be identified 
according to the hue and textural features.

This study used the quantized data of laryngeal variation induced by LPR and RSI as the training and output 
samples of the BPNN. The five features and RSI were used as training samples of the BPNN and the overall 
recognition rate was 96.48%. The RSI evaluation method was subjective, but large amount of RSI information 
approached the objective results. The test results of the RSI samples indicated that the severity of LPR could be 
classified by quantized data of the laryngeal variations induced by LPR. The results could be used by doctors to 
provide medication suggestion for patients in real-time treatment.

Conclusion
This study proposed searching for sharp larynx images in videos taken by a laryngoscope, to solve the difficulty 
in capturing sharp images. In order to eliminate the light source problem resulting from an inconsistent laryn-
goscope lens position, histogram shifting was used to give samples a consistent gray level range for subsequent 
region segmentation and feature analysis. The automatic segmentation of the larynx segments was consistent 
across all samples, the subjective differences of the manual segmentation were reduced, and the manual aug-
mentation time was saved. The five features with discriminability for LPR were combined with SVM, and the 
LPR recognition result had high precision. In terms of severity of LPR, the five features were combined with RSI 
for ANN training. The results showed that using the quantized data of LPR images to classify the severity could 
assist doctors in diagnosis.

Ethics approval.  The research protocol (No.: 1-108-05-132) has been reviewed and approved by the Institu-
tional Review Board of Tri-Service General Hospital.

Consent for publication.  All methods were performed in accordance with the relevant guidelines and 
regulations. All patients provided written informed consent prior to participation.

Data availability
The datasets generated from this study are available from the corresponding author on reasonable request.
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