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Abstract 

Knowledge-driven text mining is becoming an important research area for identifying pharmacogenomics target 

genes. However, few of such studies have been focused on the pharmacogenomics targets of adverse drug events 

(ADEs). The objective of the present study is to build a framework of knowledge integration and discovery that aims 

to support pharmacogenomics target predication of ADEs. We integrate a semantically annotated literature corpus 

Semantic MEDLINE with a semantically coded ADE knowledgebase known as ADEpedia using a semantic web 

based framework. We developed a knowledge discovery approach combining a network analysis of a protein-protein 

interaction (PPI) network and a gene functional classification approach. We performed a case study of drug-

induced long QT syndrome for demonstrating the usefulness of the framework in predicting potential 

pharmacogenomics targets of ADEs.  

1 Introduction 

    Adverse drug events (ADEs) have been well recognized as a cause of patient morbidity and increased health care 

costs in the United States. With rapid developments in human genomics, the genetic component of ADEs is being 

considered as one of significant contribution factors for drug response variability and drug toxicity, thus 

representing a major component of the movement to pharmacogenomics and individualized medicine [1-2].  

    Text mining of published literature resources such as MEDLINE for identifying pharmacogenomics target genes 

and/or pathways is considered as an important research area that is complementary to the human-based curation 

approach as used in the PharmGKB [3-5]. In particular, knowledge-driven text mining that leverages existing 

pharmacogenomics knowledge is a promising direction. For example, Pakhomov, et al used PharmGKB to train text 

mining approaches for identifying potential gene targets for pharmacogenomic studies, demonstrating the capability 

of finding new gene targets [6]. Xu, et al developed a knowledge-driven conditional approach to extract 

pharmacogenomics specific drug-gene relationships from MEDLINE abstracts [7]. In these studies, the 

information/knowledge extraction is mainly focused on the binary relations between drugs and their gene targets. In 

addition, few of such studies have been focused on the pharmacogenomics targets of ADEs. We hypothesize that it 

would be helpful to use a ternary relation domain model among drugs, ADEs and their associated gene targets for 

guiding the knowledge integration and discovery.  

    The objective of the present study is to build a framework of knowledge integration and discovery that aims to 

support pharmacogenomics target predication of ADEs. Specifically, we leverage a semantically coded ADE 

knowledgebase known as ADEpedia [8] and a semantically annotated literature corpus Semantic MEDLINE [9] and 

integrate them in a semantic web based framework. The ADEpedia (http://adepedia.org), developed in our previous 

and ongoing studies, is a standardized knowledgebase of ADEs that intends to integrate existing known ADE 

knowledge for drug safety surveillance from disparate resources such as the FDA Structured Product Labeling 

(SPL), the FDA Adverse Event Reporting System (AERS) and the Unified Medical Language System (UMLS).  

Semantic MEDLINE is a recent development by the National Library of Medicine that integrates document 

retrieval, advanced natural language processing (NLP), and automatic summarization and visualization to support 

more effective biomedical information management [9]. Semantic MEDLINE identifies genes noted in biomedical 

text as associated with a disease process and can potentially simplify secondary database curation [10]. 

    Based on the integration, we first retrieve the genetic associations of drugs and ADEs using SPARQL-based 

semantic query services. We then develop a knowledge discovery model for predicting potential pharmacogenemics 

targets of an ADE. To demonstrate the usefulness of the framework, we perform a case study on long QT syndrome 

induced by tricyclic antidepressive agents. Long QT syndrome is a heart condition in which delayed repolarization 

of the heart following a heartbeat causes prolongation of the QT interval, and increases the risk of torsades de 

pointes, ventricular fibrillation and sudden cardiac death. Drug induced QT prolongation, is an increasing public 

88



 

health problem [11]. While many of the drugs known to prolong the QT interval were antiarryhythmics (e.g. 

quinidine), many non-cardiac drugs such as tricyclic antidepressants have also been reported to cause QT 

prolongation. At the cellular level, the blockade of rapid outward potassium current by these drugs is responsible for 

their pro-arrhythmic effect.  

2 Materials and Methods 

2.1 Materials  

2.1.1 Semantic MEDLINE in RDF graphs 

    In our previous study [12], we have converted the Semantic MEDLINE in a relational database into six RDF 

graphs using a Semantic Web RDF transformation tool called D2R server (http://d2rq.org/d2r-server). RDF is a 

W3C standard that specifies a graph-based data model to represent Semantic Web data that enables powerful data 

integration of heterogeneous data sets (http://www.w3.org/TR/2004/REC-rdf-mt-20040210/). In the present study, 

we utilized two of the six RDF graphs: the disease-gene graph and the drug-gene graph. 

2.1.2 ADEpedia: A Standardized Knowledgebase of ADEs 

    As mentioned above, the ADEpedia intends to integrate existing known ADE knowledge from disparate resources 

to achieve a comprehensive ADE knowledgebase [8,13]. In the ADEpedia, the drugs and the ADEs are normalized 

using the UMLS Concept Unique Identifiers (CUIs). In the present study, we represent the normalized drug-ADE 

knowledge from the ADEpedia in RDF data model for the integration.  

2.1.3 Human Protein Reference Database 

    Protein-protein interaction (PPI) information comprising 9,303 proteins and 35,000 protein-protein interactions is 

collected from the Human Protein Reference Database (HPRD) [14], which contains manually curated physical 

interactions among proteins.  It has been known that proteins, the end product of genes, usually perform molecular 

function as a group, by physically interacting with each other. This interaction relationship is important to the Drug-

ADE gene context, since it may highlight interactions and related pathway that mediate occurrence of adverse-

effect. As the alternations of protein interactions could contribute to diseases onset or progression, PPI has been used 

to investigate disease biomarkers [15], and could also have potential in pharmacogenomics study of ADEs.  

2.2 Methods 

2.2.1 Knowledge Representation and Integration Using a Semantic Web Based Approach 

    Figure 1 shows our system architecture of knowledge integration for pharmacogenomics knowledge discovery 

applications in a semantic web-based framework.  In the Semantic Normalization layer, 1) we transform and 

represent the ADE knowledge in a RDF based data model; 2) we utilize two RDF graphs in a Semantic MEDLINE 

RDF store developed in our previous study. The two RDF graphs represent the domain patterns for the associations 

of disease-gene and drug-gene.  

In the Semantic Integration Layer, 1) we extract the severe ADE knowledge from the ADEpedia based on the 

severity information of each ADE. The severe ADE knowledge base was developed using an approach described in 

a separate paper [16]. The severity definition is based on the Common Terminology Criteria for Adverse Events 

(CTCAE) 5-scale grading system [17]. We assert 

that the grade >=3 is considered as “Severe”. 2) 

As we have normalized both the drugs and the 

ADEs using the UMLS CUIs, and the Semantic 

MEDLINE uses UMLS CUIs for the semantic 

annotations, so we use the CUIs as the anchor to 

extract the genetic association information of both 

drugs and ADEs for all severe ADEs from the 

RDF graphs of Semantic MEDLINE. 3) We 

integrate the genetic associations of severe ADEs 

into a separate RDF graph that is loaded into a 

4store-based RDF store (http://4store.org). We 

build a SPARQL endpoint against the RDF store 

for providing standard semantic query services.  

    In the Knowledge Discovery Layer, the 

pharmacogenomics knowledge discovery 

applications can invoke the semantic query 

services through the SPARQL endpoint to extract 

their associated genes annotated in Semantic 

MEDLINE, the related PubMed IDs for target 
Figure 1. System architecture 
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drugs and severe ADEs. In this study, we developed a knowledge discovery utilizing the HPRD PPI network and 

Gene Functional Classification and Enrichment Analysis. 

2.2.2 Pharmacogenomics Knowledge Discovery Using a Network Analysis Approach  

    To predicate potential pharmacogenomics targets of ADEs, we developed a network analysis approach utilizing 

the HPRD protein-protein interaction (PPI) network. The approach is described as follows.  

    Given a drug-gene list with M genes 1, ,{ }i i MD d ==
L
  and a ADE-gene list of N genes 1, ,{ }j j NA a ==

L
, our aim 

is to prioritize drug-gene closely related to ADE-gene list, and ADE-gene closely related to Drug-gene list, in the 

domain of PPI network. PPI network is defined as a graph ( , )G V E= , where V is vertex set of genes, including 

drug-genes and ADE-genes: ,i jd a V∈ , and E  is edge set indicating experimentally validated interactions 

between two genes.  

    The closeness of one ADE-gene to drug-gene list is defined as an average distance between this gene and all the 

genes in drug-gene list: 

1

1
( , ) ( , )

M
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i
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where ( )Gdist ⋅  is the shortest distance between two vertices on graph G .  Similarly, we could define closeness of 

one drug-gene to ADE-gene list: 

1
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    In order to prioritize closely related genes, the next question is how to assess if observed closeness is statistically 

significant comparing to random cases.  Take ( , )jc a D  as an example, we design a hypothesis-testing scheme by 

generating a large number (P=50,000 in this study) of false gene-lists { }
1, ,p p P

D
= L

%  with same size of true drug-gene 

listD , and then compute p-value by following equation: 
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    This p-value is more comparable across different genes than ( , )jc a D , since the relative topological importance 

of each gene is also controlled through random sampling. 

    To explore the functional groups of the prioritized drug- and ADE- genes, we performed Gene Functional 

Classification and Enrichment Analysis using an online bioinformatics application known as DAVID developed by 

the National Institute of Allergy and Infectious Diseases (NIAID), NIH [18]. For the validation of prioritized target 

genes, we also manually reviewed the relevant PubMed abstracts. 

3 A Case Study: Long QT Syndrome Induced by Tricyclic Antidepressants 

    We retrieved 265 subclasses of the tricyclic antidepressants class represented by the UMLS CUI “Antidepressive 

Agents, Tricyclic|C0003290”.  Using a SPARQL query against the knowledgebase in a RDF store, we extracted 218 

records for the target drug class “Antidepressive Agents, Tricyclic|C0023976”, covering 77 unique genes associated 

with the drug class and its 15 descendant drugs (including Amitriptyline, Clomipramine, Desipramine, and 

Fluoxetine, etc.). For the target ADE “Long QT Syndrome| C0023976”, we extracted 205 records, covering 11 

unique gene IDs that are associated with the disorder.  

    For the use of HPRD PPI network, we converted the gene IDs associated with the drug and the ADE into the 

HPRD IDs using an online ID conversion application called bioDBNet:db2db [19]. As a small portion of gene IDs 

does not have corresponding HPRD IDs, we got 71 HPRD IDs for those 77 drug genes and 11 HPRD IDs for those 

11 ADE genes.  

    Table 1 shows the network analysis results, generating a list of genes (comprising 15 drug-genes and 8 ADE 

genes) that are statistically significant (p<0.05) based on PPI network analysis. The results indicate that the 

significant drug-genes (or ADE-genes) are more closely related to the ADE-genes (or drug-genes) and should be 

prioritized for further consideration in predicating pharmacogenomics study.  

    We explored the functional groups of the prioritized genes using a gene functional classification tool. We 

identified two functional gene clusters based on the GO enrichment score (see Table 2). We found that the first 

cluster contains both drug-associated genes and ADE-associated genes whereas the second cluster contains the 
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genes only from those drug-associated genes. We consider that the first cluster implies a shared genetic mechanism 

between the drugs from the drug class tricyclic antidepressive agents and the ADE long QT syndrome. The GO 

enrichment analysis of the genes in the first cluster indicates that the genes are functionally enriched in “metal ion 

transport”, “potassium ion transport”, and “regulation of heart contraction”, etc. 

 

Table 1. The lists of prioritized drug- and ADE- genes that are statistically significant (p<0.05) based on PPI 

network analysis for the use case “Long QT Syndrome induced by Tricyclic Antidepressive Agents”. 

Prioritized Drug-Associated Genes 

(Antidepressive Agents, Tricyclic|C0023976) 
Prioritized ADE-Associated Genes 

(Long QT Syndrome|C0023976) 

Gene ID 

Gene 

Symbol 

Average 

Distance p-value Gene ID 

Gene 

Symbol 

Average 

Distance p-value 

146 ADRA1D 3.125 0.0000 6331 SCN5A 3.4909 0.0001 

3757 KCNH2 2.125 0.0000 3753 KCNE1 3.6 0.0019 

22953 P2RX2 3.625 0.0009 3751 KCND2 3.8364 0.003 

2890 GRIA1 2.625 0.0011 9992 KCNE2 4.4727 0.0083 

28954 REM1 3 0.0034 50488 MINK1 3.4909 0.014 

3358 HTR2C 3.375 0.0043 6640 SNTA1 3.3636 0.02 

928 CD9 3 0.0059 3757 KCNH2 3.6 0.0203 

41 ACCN2 3.25 0.0072 3784 KCNQ1 4 0.022 

2904 GRIN2B 2.75 0.0136         

3777 KCNK3 3 0.014         

760 CA2 3.375 0.02         

3763 KCNJ6 3.625 0.0211         

3350 HTR1A 4 0.0318         

3351 HTR1B 5 0.032         

3356 HTR2A 3.25 0.0452         

 

Table 2. The results of gene functional classification of prioritized drug- and ADE- genes.  

Gene Cluster Gene ID 

Gene 

Symbol Gene Name Category 

Gene Cluster 1 - 
Enrichment Score: 

7.75238507542537 

3751 KCND2 potassium voltage-gated channel, Shal-related subfamily, member 2 ADE-Gene 

3753 KCNE1 potassium voltage-gated channel, Isk-related family, member 1 ADE-Gene 

9992 KCNE2 potassium voltage-gated channel, Isk-related family, member 2 ADE-Gene 

3777 KCNK3 potassium channel, subfamily K, member 3 Drug-Gene 

3784 KCNQ1 potassium voltage-gated channel, KQT-like subfamily, member 1 ADE-Gene 

41 ACCN2 amiloride-sensitive cation channel 2, neuronal Drug-Gene 

6331 SCN5A sodium channel, voltage-gated, type V, alpha subunit ADE-Gene 

3763 KCNJ6 potassium inwardly-rectifying channel, subfamily J, member 6 Drug-Gene 

3757 KCNH2 

potassium voltage-gated channel, subfamily H (eag-related), 

member 2 

ADE-Gene 

Drug-Gene 
Gene Cluster 2 - 

Enrichment Score: 
4.571038563001669 

3350 HTR1A 5-hydroxytryptamine (serotonin) receptor 1A Drug-Gene 

3351 HTR1B 5-hydroxytryptamine (serotonin) receptor 1B Drug-Gene 

3358 HTR2C 5-hydroxytryptamine (serotonin) receptor 2C Drug-Gene 

3356 HTR2A 5-hydroxytryptamine (serotonin) receptor 2A Drug-Gene 

146 ADRA1D adrenergic, alpha-1D-, receptor Drug-Gene 

 

    We retrieved the PubMed IDs linked with the drug genes (KCNK3, ACCN2, KCNJ6 and KCNH2) in the first 

cluster and manually reviewed all the original abstracts. Among 16 PubMed IDs retrieved, 12 abstracts are true 

positive (75%), i.e. correctly reflecting the association between a tricyclic antidepressant  and a target gene.  Of the 

12 abstracts, 8 abstracts (linked with KCNH2 ) mentioned of the target drug genes that are related to long QT 

syndrome whereas 4 abstracts (linked with ACCN2 and KCNJ6) did not mention of. The results indicate that 

KCNH2 is a well-studied gene across the target drug and the target ADE while ACCN2 and KCNJ6 are potential 

candidates for the pharmacogenomics-target predication.  
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4 Discussions and Concluding Remarks 

    In this study, we have built a framework of knowledge integration and discovery for supporting 

pharmacogenomics-target predication of ADEs. We utilized a ternary relation domain model to guide the knowledge 

integration for genetic associations of severe ADEs. In the current prototype implementation, we successfully 

integrated a semantically annotated literature corpus Semantic MEDLINE with a normalized ADE knowledgebase 

ADEpedia using a semantic web-based data integration approach. The semantic web-based approach is increasingly 

used for drug-related data integration studies. For instance, Bio2RDF (http://bio2rdf.org/) integrated a number of life 

science datasets (including DrugBank - http://www.drugbank.ca/) using a semantic web linked open data approach 

for biological knowledge discovery. For another instance, there is an effort to convert AERS dataset into RDF-based 

linked data (http://aers.data2semantics.org/). Comparing with these efforts, our ADEpedia project mainly focused on 

the standardization of ADE knowledge using standard drug and ADE terminologies (e.g., RxNorm, MedDRA, 

SNOMED CT and UMLS). We found that the normalization of the drugs and the ADEs using the UMLS is 

extremely important for both data integration and aggregation. For example, the UMLS enables us to retrieve all the 

descendants of the drug class “Antidepressive Agents, Tricyclic|C0003290”, which provided the aggregation power 

for collecting genetic associations of the drug class. In addition, we added a module in our framework to extract the 

severe ADE knowledge since the clinical applications of pharmacogenomics on ADEs are usually focused on the 

clinically severe ADEs. However, we found that identifying the severity information of an ADE remains a 

challenging task. We are exploring a semi-automatic approach for identifying the severity information of ADEs 

utilizing a number of existing knowledge resources such as CTCAE, FDA structured product labels and FDA AERS 

reporting data [16]. 

    For the knowledge discovery, we have developed a network analysis-based approach to prioritize target genes 

related to ADEs. As gene lists derived from text mining could be very general and contain many false-positives, we 

proposed to apply network analysis to filter out less-relevant genes through additional evidence. The prioritization of 

closely related genes could shed some lights on potential mechanism regarding how drug- and ADE-associated 

genes affect each other. In addition, the gene functional classification and enrichment analysis provided further 

evidence for the prioritized genes identified from the network analysis, which, we believe, was validated by a 

manual review of related PubMed abstracts. In the future, we will explore how to represent and aggregate all these 

evidence from various knowledge resources in order to improve the performance of the knowledge discovery model 

for predicting the pharmacogenomics-targets of severe ADEs. 
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