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Abstract

Chronic diseases impose a tremendous global health problem of the 21st century. Epidemiological and public health
models help to gain insight into the distribution and burden of chronic diseases. Moreover, the models may help to plan
appropriate interventions against risk factors. To provide accurate results, models often need to take into account three
different time-scales: calendar time, age, and duration since the onset of the disease. Incidence and mortality often change
with age and calendar time. In many diseases such as, for example, diabetes and dementia, the mortality of the diseased
persons additionally depends on the duration of the disease. The aim of this work is to describe an algorithm and a flexible
software framework for the simulation of populations moving in an illness-death model that describes the epidemiology of
a chronic disease in the face of the different times-scales. We set up a discrete event simulation in continuous time involving
competing risks using the freely available statistical software R. Relevant events are birth, the onset (or diagnosis) of the
disease and death with or without the disease. The Lexis diagram keeps track of the different time-scales. Input data are
birth rates, incidence and mortality rates, which can be given as numerical values on a grid. The algorithm manages the
complex interplay between the rates and the different time-scales. As a result, for each subject in the simulated population,
the algorithm provides the calendar time of birth, the age of onset of the disease (if the subject contracts the disease) and
the age at death. By this means, the impact of interventions may be estimated and compared.
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Introduction

Chronic diseases impose a tremendous global health problem of

the 21st century. The World Health Organization estimates that

63% of all deaths in 2008 were caused by chronic diseases [1].

Besides taking measures in politics and society, research efforts are

needed to oppose this threat. In studying the characteristics of

chronic diseases from a public health perspective, it is often

important to consider different time-scales [2]. The age of the

subjects in a population is a risk factor for many diseases. Changes

in life-style and medical care influence the risk of contracting and

dying from the disease on a secular scale. Thus, the incidence rate

of the chronic disease as well as the mortality rates (with and

without the disease) depend on the calendar time. Moreover, the

mortality of people with the disease often depends on the duration

since its onset. Examples are diabetes [3,4], dementia [5],

depression [6], and systemic lupus erythematosus [7]. For

decision-makers all time-scales may be important.

As a hypothetical example, consider the question which health

programme to choose from two possibilities A and B if the

outcome of interest is the gain of life-years. Possibility A is known

to decrease the incidence of the disease by 15%, and possibility B

lowers the mortality of those having the disease for more than ten

years by 50%. The decision depends on several factors. If, on the

one hand, the incidence rate is non-zero for children only and the

birth rate in the population is low, possibility A may have little

effect with respect to the gain of life-years. If, on the other hand,

the chronic disease has very few people reaching ten-year survival

after onset, programme B can be nearly useless. In problems

similar to the example, the decision-maker may face a complex

interplay of epidemiological and demographical considerations.

The aim of this work is to describe an algorithm and a flexible

software framework for simulation of populations moving in a

multi-state model (illness-death model) that describes a chronic

disease. The simulation takes into account the different time-

scales: calendar time, age, and duration of the disease. Although

simulations using multi-state models are subject to recent

textbooks [8], to our knowledge no algorithm has been described

that incorporates the effects of all the different time-scales.

Methods

A popular framework for studying irreversible diseases is the

illness-death model (IDM) consisting of the three states Normal,
Disease and Death, [9–11]. The associated transition rates,

synonymously densities (in units ‘‘per person-time’’, not to be

confused with risks or probabilities [12]), are the incidence i, and

the mortality rates m0 and m1 (Figure 1). In general, these rates
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depend on calendar time (t), age (a) and in case of m1 on the

duration of the disease (d).

This article presents a method for simulating populations

moving in the IDM. The motivation for the algorithms comes

from analytical epidemiology where relations between common

epidemiological measures are studied. Examples for those

measures are the prevalence, the duration of a disease, the age

of onset (or diagnosis), and lost life-years (due to the disease). A

typical question may be: what is the mean age of diagnosis of

subjects born in a certain time period? What is their mean age at

death? Another interesting aim is the estimation of the incidence

rate i from cross-sectional information. At a specific point in time

t’, each of the subjects j~1, . . . ,n, has a unique ‘‘status’’.

Neglecting those who are unborn or dead at t’, the status in the

IDM is either normal (non-diseased) or diseased. Thus, the status

can be seen as a binary random variable, and data of this kind are

typically called current status data [13]. The current status is

closely linked with the incidence i and the mortalities m0 and m1

before t’. Estimating the incidence from current status data, for

example, has been a topic in research for decades [14]. The

framework presented here may be useful in this field.

Overview of the simulation algorithm
The simulation is a microsimulation, i.e., it treats each person in

the population as an autonomous unit. For each person, indexed

j, j~1, . . . ,n, the relevant events diagnosis and death are

simulated. This is accomplished in two steps:

1. Contracting the disease or dying without the disease is

modelled as competing risk [11]. Given the time t
(j)
0 of birth

of person j, the cumulative distribution function F
(j)
1 of the first

failure time T
(j)
1 is

F
(j)
1 tð Þ~1{exp {

ðt

0

i t
(j)
0 zt,t

� �
zm0 t

(j)
0 zt,t

� �
dt

� �
: ð1Þ

The term first failure time T
(j)
1 refers to the time of diagnosis or

death without disease and is measured in time units after birth

of person j. Thus, T
(j)
1 is the age at which the first transition

from the state Normal occurs. Given that a transition occurs at

T
(j)
1 for person j, then the odds of moving into state Disease

versus moving into state Death is

i t
(j)
0 zT

(j)
1 ,T

(j)
1

� �

m0 t
(j)
0 zT

(j)
1 ,T

(j)
1

� � :

2. If the event at T
(j)
1 is the death (without the disease), the

simulation for person j is finished. If, however, the event is the

diagnosis of the disease, the ‘‘second failure time’’ T
(j)
2 to death

(with disease) has the distribution function F
(j)
2 :

F
(j)
2 tDT (j)

1

� �
~1{exp {

ðt

0

m1 t
(j)
0 zT

(j)
1 zt,T

(j)
1 zt,t

� �
dt

� �
:ð2Þ

The next section describes in detail how the integrals in

calculating the integrals, the question arises how the times T1 and

T2 can be obtained from F1 and F2. This is done by the inverse
transform sampling method: Let F be a cumulative distribution

function and u[(0,1). For F{1(u) : ~inf fxDF (x)§ug it holds: If

U is a uniform random variable on (0,1), then F{1(U) follows the

distribution F . Thus, the simulation of T1 and T2 is easy, if a

random number generator for U such as runif in R is available.

For each of the n persons in the population we store four pieces

of data:

1. a unique identifier j,

2. the date t
(j)
0 of birth (dob) of person j,

3. the age at diagnosis (adi) of person j, and

4. the age at death (ade) of person j:

If the person j does not contract the disease, the age at diagnosis

adi is set to NA (missing). In summary, we get the Algorithm 1.

Algorithm 1 Simulation of populations moving in the IDM

1: for j~1 to n do

2: dob /t
(j)
0

3: calculate event time T
(j)
1 according to Equation (1)

4: simulate type of event that has happened at T
(j)
1 by

Equation (1)

5: if event is diagnosis then

6: adi /T
(j)
1

7: calculate time T
(j)
2 of death using Equation (2)

8: ade /T
(j)
1 zT

(j)
2

9: else
10: adi / NA

11: ade /T
(j)
1

12: end if
13: write j, dob, adi, ade to file

14: end for

Calculating line integrals

for these integrals exist, is straightforward. The first simulation in

the next section is an example. However, in real world

applications, analytical expressions for the integrals are rarely

given. For convenience, mathematical functions (e.g., splines) may

be fitted to the data and integration is accomplished with the fitted

functions. Since the aim of this work is a flexible way of treating

the incidence and mortality rates, we assume that the rates are

given as numerical values on a regular grid. Here we focus on the

most general case, which is characterized by:

1. None of the time-scales t,a, and d is negligible, and

2. the values of i,m0,m1 are given as data points only.

For many chronic diseases, we think this is the most relevant

case: The mortality rates m0 and m1 depend on a and t. Since age

is a risk factor for many diseases, the dependency on age is

Figure 1. Three states model of normal (healthy), diseased and
dead subjects. The transition rates may depend on calender time t,
age a, and in case of m1 also on the duration d of the disease.
doi:10.1371/journal.pone.0106043.g001

Lexis Diagram and Illness-Death Model
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Equations (1) and (2) may be calculated in the simulation. After

and (2) is described. The situation in which analytical expressions
In this section the calculation of the integrals in Equations (1)



obvious. Healthier life-style and medical progress in many

countries lead to secular trends in m0 and m1. In addition, disease

duration d is likely to have an impact on m1 in many chronic

diseases. Thus, none of the time-scales is negligible, which is

covered in the second and third example.

In the most general case, the integrands i,m0, and m1 are given

by data points only. We assume that the numerical values are

located on a regular grid. The grid is two-dimensional in case of i
and m0, which depend on two time-scales t and a; and the grid is

three-dimensional in case of m1 which depends on t,a, and d:
In event history analysis [2], a useful concept is the Lexis

diagram, which is a co-ordinate system with axes calendar time t
(abscissa) and age a (ordinate). The t-dimension sometimes is

referred to as period. Each subject is represented by a line segment

from time and age at entry to time and age at exit. Entry and exit

may be birth and death, respectively, or entry and exit in a

epidemiological study or clinical trial. There are excellent and

extensive introductions about the theory of Lexis diagrams (see for

example [9,15,16] and references therein), which allows us to be

short here. In irreversible diseases, the common two-dimensional

Lexis diagram with axes in t- and a-direction may be generalized

to a three-dimensional co-ordinate system with disease duration d
represented by the applicate (i.e., the z-axis). If a subject does not

contract the disease during lifetime, the life line remains in the t-a-

plane parallel to the line bisecting abscissa and ordinate. In other

words, the life line for the time without disease is parallel to

e1 : ~(1,1,0) (where the triple (t,a,d) denotes the co-ordinates in

time, age and duration direction, respectively). However if at a

certain point in time E the disease is diagnosed, the life line

changes its direction, henceforth runs parallel to e2 : ~(1,1,1).

The situation is illustrated in Figure 2. The life lines of two

subjects are shown in the three-dimensional Lexis space. At birth

(denoted Bn,n~1,2) both subjects are disease-free; both life lines

are parallel to e1: The first subject contracts the disease at E:
Henceforth, the life line is parallel to e2 until death at D1. The

second subject remains disease-free until death at D2.

Having the concept of the Lexis diagram at hand, we observe

that F1 and F2

Lexis space. We start with calculating the first failure times T1: For

subject j the associated life line starts at (t,a)~(t
(j)
0 ,0). We chose an

age vw0, when it is certain that a transition to one of the states

Disease or Death has occurred, say v~150 (years). For calculating

F
(j)
1 , we trace the hypothetical life line from Bj : ~(t

(j)
0 ,0) to

Dj : ~(t
(j)
0 zv,v): Thus, the hypothetical life line has a repre-

sentation

Lj : Bjza:(Dj{Bj),a[½0,1�:

Following the life line is related to the method of ray-tracing in

the field of computer graphics, where efficient algorithms for this

purpose exist. In Siddon’s algorithm [17], the key idea is to follow

Lj by calculating intersections with volume elements (voxels),

which form a regular partition of the Lexis space. Let

A?
j ~fa(j)(p)Dp~1, . . . ,P(j)g

with 0~a(j)(1)v . . . va(j)(P(j))~1 be a parametrization of the

points where Lj intersects the voxel faces plus the start and end

points Bj and Dj . Details for the calculation of A?
j are described in

the supporting information to this article. The parametrization A?
j

is ideally suited for approximating the integral in Equation (1) by

the trapezoidal rule [18]. The reason lies in the fact that in

calculating F
(j)
1 (v) the values F

(j)
1 t

(j)
0 za(j)(p)v

� �
,p~1, . . . ,P(j),

are a by-product. Algorithm 2 shows the necessary steps.

Algorithm 2 Calculating F1

1: for j~1 to n do

2: calculate A?
j ~fa(j)(p)Dp~1, . . . ,P(j)g

3: ‘1/0

4: t1/0

5: f1/i t
(j)
0 ,0

� �
zm0 t

(j)
0 ,0

� �
6: F

(j)
1 (t1)/0

Figure 2. Three-dimensional Lexis diagram with two life lines. Abscissa, ordinate and applicate (z-axis) represent calendar time t, age a and
duration d , respectively. The life lines start at birth Bn and end at death Dn,n~1,2: The first subject (blue line segments) contracts the disease at E.
Then, the life line changes its direction. The second subject (red line segment) does not contract the disease, the life line remains in the t-a-plane.
doi:10.1371/journal.pone.0106043.g002
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in Equations (1) and (2) are line integrals in the



7: for p~2 to P(j) do

8: tp/a(j)(p):v

9: fp/i t
(j)
0 ztp,tp

� �
zm0 t

(j)
0 ztp,tp

� �

10: ‘p/‘p{1z
1

2
:(tp{tp{1):(fpzfp{1)

11: F
(j)
1 t

(j)
0 ztp

� �
/1{exp({‘p)

12: end for
13: end for
Since the values of i and m0 are given on the voxel grid only, the

calculation of fp,p~1, . . . ,P(j), needs bilinear interpolation of the

values of the adjacent voxels [19].

After preparing F
(j)
1 ,j~1, . . . ,n, the values of the times T

(j)
1 can

be calculated by the inverse transform sampling method. Since we

have F
(j)
1 calculated at points fp : ~t

(j)
0 p ,p~1, . . . ,P(j), the

inverse transform sampling would yield only those fp. A better

accuracy can be obtained by (linear) inverse interpolation [18]. For

t[(fp{1,fp),p~2, . . . ,P(j), let j : ~
t{fp{1

fp{fp{1

: Then, it holds

F
(j)
1 (t)& 1{jð Þ:F (j)

1 fp{1

� �
zj:F (j)

1 fp

� �
:

Thus, for u[(0,1) drawn from a uniform distribution, we find

the unique p[f2, . . . ,P(j)g, such that F
(j)
1 (fp{1)ƒuvF

(j)
1 (fp), and

set

t~fp{1z u{F
(j)
1 (fp{1)

� �
: fp{fp{1

F
(j)
1 (fp){F

(j)
1 (fp{1)

as the inverse F
(j)
1

� �{1

(u):

For those subjects j’ who contract the disease, the associated

F
(j’)
2 (:DT (j’)

1 ) can be derived in a similar way as in Algorithm 2. The

associated line segment starts at (t,a,d)~(t
(j’)
0 zT

(j’)
1 ,T

(j’)
1 ,0).

Again, a hypothetical maximal disease duration v’ is assumed,

say v’~80 (years), such that the line segment ends at

(t,a,d)~(t
(j’)
0 zT

(j’)
1 zv’,T (j’)

1 zv’,v’). Thus, the line segment is

parallel to e2~(1,1,1): The Siddon algorithm computes the

corresponding set of intersections with the voxel grid accordingly.

The ages T
(j’)
2 at death with disease are obtained from Algorithm 2

mutatis mutandis. The interpolation of m1 needs to be trilinear.

Examples

This section shows the results of different simulation settings.

The associated R [20] code is provided with this article. The first

simulation is about a hypothetical chronic disease with rates

i,m0,m1 only depending on a: The corresponding age-specific

prevalence can be calculated analytically, which allows cross-

checking the results of the simulation. In the second example,

another hypothetical disease is treated with mortality rates

depending on t,a, and d: Here we use the ray-tracing approach

in the Lexis diagram. Again, the outcomes of the simulation are

compared with analytical results. The third simulation is about a

relatively rare rheumatic disease. A hypothetical birth cohort of

100000 women is followed from birth to death and examined if the

disease is diagnosed. Finally, the last simulation demonstrates

applicability in the context of medical decision-making. Two

interventions are compared with respect to the outcome life-years
gained.

Simulation 1: Analytical example
In the first simulation, only one time-scale is involved. Assuming

m0(a)~m1(a)~exp({10z0:1a), and

i(a)~

0 for av20
0:005

1{0:005 (a{20)
for a§20,

8<
:

one can show that the age-specific prevalence p(a) is given by

p(a)~0:005(a{20)z [21]. The notation xz means the positive

part of x : xz~max(0,x): The integrals of i(a),m0(a), and m1(a)
can easily be expressed analytically. Figure 3 shows the age-

specific prevalence in a simulated cohort with n~200000 subjects.

For comparison, the true (analytical) prevalence is depicted as a

solid line. The result of the simulation agrees very well with the

analytical age profile of the prevalence, which indicates the

correctness of the implemented R code.

Simulation 2: Mortality depends on duration
The second simulation is about a hypothetical disease with all

time-scales t,a and d playing a role. We aim at calculating

epidemiological measures that describe the population of the

diseased. For example, age of onset, mean duration of the disease

and age at death may be important to plan resource allocation

(e.g., inpatient facilities).

In each of sixty consecutive years t~0, . . . ,59, 2000 persons are

born and followed from birth to death. The incidence of a

hypothetical chronic disease is assumed to be i(t,a)~
(a{30)z

3000
,

the age-specific mortality rate of the non-diseased is chosen to be

m0(t,a)~exp({10:7z0:1azt ln(0:998)) and the mortality of the

diseased is m1(t,a,d)~m0(t,a):(0:04(d{5)2z1): In total, 42299

of the 120000 simulated persons contract the disease. The

simulated data allows the derivation of important epidemiological

measures. For example, the histograms of the age of onset and age

at death are shown in Figure 4.

Figure 3. Theoretical and simulated age-specific prevalence.
Simulation 1 comprises n~200000 persons. The resulting age-specific
prevalence (black crosses) is compared to the analytically calculated
prevalence (blue solid line). The example shows the very good
agreement between the simulation and the theoretical results.
doi:10.1371/journal.pone.0106043.g003

Lexis Diagram and Illness-Death Model
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The median age at death of those who contracted the disease is

77.20 (years) whereas the median age at death of those without the

disease is 79.67 (years). The median duration of the disease in the

42299 ill subjects is 12:69, the interquartile range is 7.46–17.60

(years).

Finally, we can cross-check the results of the simulation by

comparison with an analytical calculation. In year t~100, exactly

76548 persons are alive, 8802 of those having the hypothetical

disease. Figure 5 shows the age-specific prevalence at t~100: The

black lines indicate the prevalence of several age groups together

with 95% confidence bounds as given by the simulation. The blue

line represents the prevalence calculated analytically by the exact

formula in ([9], Section 7.2). The results agree quite well within

the confidence bounds.

Simulation 3: Systemic lupus erythematosus in the UK
The third simulation is about a hypothetical cohort of 100000

women born in the United Kingdom in 1945. The disease under

consideration is systemic lupus erythematosus (SLE), which is an

autoimmune disorder with significant morbidity and increased

mortality. Women are more often affected than men; in terms of

age-standardized incidence, the ratio is 5:1 [22]. The peak of the

age-specific incidence in British women is located at the age of

about 50. Since Somers et al. could not find a significant secular

trend in the age-standardized incidence in 1990–1999, we assume

that the incidence does not depend on t, [22]. The aim of this

example is to study the interplay between age of onset and the

mortality of the diseased women in a realistic setting.

Figure 4. Histograms of the age of onset and age at death in a hypothetical chronic disease. In Simulation 2 the empirical distributions of
the age of onset (left) and the age at death of the diseased persons (right) are estimated.
doi:10.1371/journal.pone.0106043.g004

Figure 5. Calculated and simulated prevalence in Simulation 2.
If we mimic a cross-sectional study at year t~100, we obtain the age-
specific prevalence as indicated by the black bars (with 95% confidence
bounds). For comparison the analytically calculated age-specific
prevalence is shown as blue line.
doi:10.1371/journal.pone.0106043.g005

Lexis Diagram and Illness-Death Model
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Mortality m0 has been taken from the official life tables of the

British Office for National Statistics [23]. The calendar time trend

in m0 has been simplified by assuming that the yearly decrease in

mortality is 0:36% for all age groups. This is the geometric mean

of the decrease in female mortality taken over all reported age

groups in the past 60 years. Mortality m1 of the women with SLE

has been modelled according to [7], which takes into account

several covariables: sex, age, duration of SLE, calendar time of

diagnosis and geographical region. Unfortunately, an interaction

analysis of these factors has not been reported, which forces us to

make assumptions. We assume a multiplicative model of the

impact of sex, age, region and SLE duration:

m1(t,a,d)~c:m0(t,a):Hage(a):Hdur(d):

The constant c reflects the impact of sex and the region, Hage

and Hdur are hazard ratios. The hazard ratio Hdur of SLE

duration has been interpolated affine-linearly on a logarithmic

scale from the published values and backtransformed. The age

dependency of Hage(a) has been treated similarly. Due to the weak

(and possibly insignificant) effect, the impact of the calendar time

of diagnosis has been neglected.

From the 100000 women in the simulation, 513 contract SLE.

This corresponds to a lifetime risk of about 0.5%. For comparison,

a recent publication about women in the US estimated 0.9% [24].

The study [24] included women with African ancestors, who are

known to have a higher risk. The median age of onset in the

simulation is 46.07 years, which is in nearly perfect agreement

with the result of 46.1 years based on another simulation using the

same data but a different method [25]. Table 1 shows the

interplay between age of diagnosis and duration of SLE in the

simulation.

From Table 1 it is apparent that ten-year survival is not easy to

reach. Substantial loss of life time is also indicated by the age at

death: Median age at death for the diseased and the non-diseased

women is 61.4 and 77.1 (years), respectively. This indicates a

considerable loss of lifetime in the population of the diseased

compared to the non-diseased. Fortunately, this situation has

changed in the last years with better medical care for SLE patients.

Especially the introduction of optimized treatment regimes in the

last decade lead to an enormous reduction of mortality [26]. These

effects have not been included in the simulation.

Simulation 4: Effectiveness of two interventions
We take Simulation 2 as the basecase and compare the

effectiveness of two hypothetical intervention programmes A and

B with respect to the total gain of life-years. Assume that the

primary prevention programme A gradually lowers the incidence

rate for all a§30 in the calendar years t[½0,10� by 15% and

remains at the 85% level for tw10. Programme B is assumed to

reduce the mortality m1 of the diseased people gradually by 50%

starting after six years with the disease. B could be achieved, for

example, by listing a new drug on the formulary. After running the

simulation, we find that in total the 120000 simulated persons in

the basecase, in intervention A, and intervention B, have 9275008,

9348941, and 9351338 life-years, respectively. Hence, intervention

A and B yield about 73900 and 76300 life-years more than the

basecase. With respect to the chosen outcome parameter, gain of

life-years, programme B turns out to be superior to programme A.

Thus, primary prevention by programme A, in this example, is less

effective than lowering the mortality of the diseased. This result is T
a
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hardly predictable without a simulation and demonstrates the

usefulness of our algorithm in decision making.

To obtain the empirical distributions of the total gain of life-

years in both interventions, 5000 random samples of size 120000

have been drawn (with replacement from the simulated 120000

persons) [27]. Figure 6 shows the resulting densities and the

superiority of programme B.

Conclusions

This article is about simulating populations in an illness-death

model consisting of the three states Normal, Disease, and Death.

The relevant events, diagnosis and death, in the most general case

depend on three time-scales: calendar time, age and disease

duration.

After birth of a subject in the population, two cases may occur:

1. the subject dies without the disease, or

2. the subject contracts the disease and dies with the disease.

Both situations can be represented in the Lexis space, a

common tool in event history analysis. In the first case, the life line

is solely located in the time-age-plane. In the second case, the life

line changes its direction after onset of the disease, which allows to

model the duration of the disease. In many diseases, the duration

plays an important role for the mortality. Beside systemic lupus

erythematosus as treated above, other diseases such as diabetes

[3,4], depression [6] and dementia [5] may serve as examples.

In the most general case, the simulation requires to numerically

solve line integrals. Therefore, a synthesis between a ray-tracing

technique and numerical integration is exploited. The method

provides a fast way to follow the individual life lines in the Lexis

diagram. Computation time is an issue, because the number of

simulated subjects in the population may be large (several

thousands). For example, Simulation 4 takes almost nine minutes

(525 seconds) on an Intel i3 personal computer with 3.3 GHz and

8 GB RAM. Simulations 1, 2, and 3 take 40, 170 and 85 seconds,

respectively.

Beside the areas mentioned above, we think the method may be

applicable in following the fields:

N In epidemiology, the simulation may be used to study the

interplay between characteristics in chronic diseases: preva-

lence, mean disease duration, age of onset, age at death of the

non-diseased and diseased population.

N The algorithms may serve as a test bench for estimation

methods. For example, in [21] the age-specific incidence is

derived from prevalence data. The simulation may be used to

study the performance of this and related methods.

N In health economics, the result of our simulation allow the

application of cost weights to each subject of the population.

For example, in diabetes it is well-known that disease related

costs depend on the duration since onset [28]. For each

individual the disease related costs may be calculated at a

specific point in time. By summing over all subjects, the total

costs may be estimated easily.

N Similarly, for many chronic diseases, the health related quality

of life depends on the duration of the disease [29]. By assigning

utility weights to each individual and summing them up, the

total quality-adjusted life-years (QALY) may be calculated.

The last two points are related to health economic modelling.

We think that our algorithm may yield a contribution in that

domain, because often health economic models are Markov

models. Due to memoryless property of Markov models, the

dependency of the relevant outcomes on the duration cannot be

included directly ([30], Sec. 4.2.3). In the field of diabetes, for

example, at least six out of ten important economic models are not

capable to accurately account for diabetes duration [31]. This may

not be necessary in every research question, but if highly accurate

results are needed, modelling the disease duration should be

considered.
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