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ent-Kaurenoic acid (KA) is a key intermediate connected to a phytohormone gibberellin. To date, the
general procedure for quantifying KA is by using traditional gas chromatography–mass spectrometry
(GC–MS). In contrast, gibberellins, which are more hydrophilic than KA, can be easily quantified by liquid
chromatography-tandem mass spectrometry (LC–MS/MS). In this study, we have established a new
method to quantify KA by LC–MS/MS by taking advantage of a key feature of KA, namely the lack of
fragmentation that occurs in MS/MS when electrospray ionization (ESI) is in the negative mode. Q1 and
Q3 were adopted as identical channels for the multiple reaction monitoring of KA. The method was
validated by comparing with the results obtained by selected ion monitoring in GC–MS. This new
method could be applicable for the quantification of other hydrophobic compounds.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

ent-Kaurenoic acid (KA) is a key intermediate of gibberellin
(GA), a diterpene phytohormone, which regulates various aspects
of plant growth, such as germination, stem elongation, and flow-
ering. As shown in Fig. 1, GA biosynthesis in flowering plants is
initiated by the conversion from geranylgeranyl diphosphate
(GGDP) to ent-kaurene by two kinds of diterpene cyclases [1,2].
ent-Kaurene is then converted to gibberellin A12 (GA12) via KA,
catalyzed by two P450 enzymes, ent-Kaurene oxidase (KO) and KA
oxidase (KAO) [3,4]. Finally, GA12 is converted to bioactive GA4 by
two kinds of 2-oxoglutarate-dependent dioxygenases, 20-oxidase
and 3-oxidase [5,6].

In general, endogenous levels of GAs in a plant are quite low, in a
range of 10�15–10�9 g g�1 fresh weight. However, a few quantitative
methods exist to elucidate the relationships between fluctuations in
GAs and various changes in plants, such as gas or liquid chromato-
graphy combined with mass spectrometry (GC–MS or LC–MS). After
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tandem mass spectrometry (MS/MS) was developed, some groups
reported that GAs could also be quantified from a smaller amount of
plant material and more easily pre-purified by using solid-phase
extraction with LC–MS/MS [7–9]. Unlike GAs, GC–MS is now fre-
quently used to quantify its hydrophobic intermediates such as ent-
kaurene and KA.

In this study, we show that endogenous KA in plant material
can also be quantified by LC–MS/MS with multiple reaction
monitoring (MRM). Our method is expected to be a useful tool for
the quantification of many hydrophobic compounds that are not
easily analyzed by LC–MS/MS.
2. Materials and methods

2.1. Chemicals and reagents

Both authentic KA and deuterium-labeled KA (d2-KA) were pur-
chased from the laboratory of Prof. L.N. Mander (Australian National
Univ., Canberra, Australia). Formic acid (FA) and methanol (MeOH)
were purchased from Kanto Chemical Co. Ltd. (Tokyo, Japan).

2.2. Plant materials

Hypnum plumaeforme collected in Okayama (Japan) was used
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Proposed biosynthetic pathway of phytoalexin in rice and GA biosynthetic pathway. The biosynthetic pathways of gibberellins (open arrows) and diterpene phy-
toalexins (solid arrows) are shown. Dashed arrows indicate multiple enzymatic reactions. The products of the biosyntheses, including momilactones, phytocassanes and
oryzalexin S, could be analyzed by LC–MS/MS, whereas the hydrocarbon and its oxide (indicated by box) are usually analyzed by GC–MS.
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[10]. The moss cultures were grown on BCD-ATG medium [1 mM
MgSO4, 1.84 mM KH2PO4, 10 mM KNO3, 45 μM FeSO4, 1 mM CaCl2,
0.22 μM CuSO4, 0.19 μM ZnSO4, 10 μM H3BO3, 0.10 μM Na2MoO4,
2 μM MnCl2, 0.23 μM CoCl2, 0.17 μM KI, 5 mM [NH4]2C4H4O6, 0.5%
(w/w) glucose and 0.8% (w/w) agar] at 25 °C under continuous
white light (60 μmol m�2 s�1). Protonemal cells were retrieved
and then immediately immersed in liquid nitrogen. Samples were
stored at �80 °C.

2.3. Extraction and purification of KA

Three sets of frozen plant tissues (300 mg) were homogenized
five times with 1500 rpm for 30 s in 80% (v/v) MeOH containing 5%
(v/v) FA as the extraction solution containing one 10 mm stainless
bead using Shake Master NEO (Bio Medical Science, Tokyo, Japan).
d2-KA (10 ng) was added to the extraction solution as an internal
standard. The homogenized samples were spun (200 rpm) at 4 °C
overnight. The homogenates were then centrifuged ( 1570� g,
5 min, 4 °C) and endogenous KA was re-extracted from the re-
sulting pellets in the same solution twice. The combined extracts
were evaporated to a water phase using a vacuum evaporator
centrifuge (Iwaki Glass, Chiba, Japan) and purified using an Oasis
MCX cartridge column (60 mg, 3 cc, Waters) activated with MeOH
and pre-equilibrated with 5 mM FA. The evaporated samples were
dissolved in 5 mM FA and loaded onto the cartridges, which were
washed with 5 mM FA. Columns were then run to dryness, and KA
was eluted with MeOH. Elutes were evaporated to dryness. The
sample was dissolved in 25 mM NH4HCO3 before loading onto an
Oasis MAX cartridge column (60 mg, 3 cc, Waters). The column
was first activated with MeOH then equilibrated with 25 mM
NH4HCO3 before loading the sample. Columns were then washed
with MeOH and KA was eluted with 0.2 M FA in MeOH, which was
evaporated to dryness.
2.4. LC–MS/MS conditions

An Acquity UPLC™ system (Waters, Milford, MA, USA), con-
sisting of a binary solvent manager and a sample manager coupled
to a Xevo TQ MS triple-stage quadrupole mass spectrometer
(Waters MS Technologies, Manchester, UK), was equipped with an
electrospray ionization (ESI) interface. The entire UPLC-MS system
was controlled by MassLynx™ Software (version 4.1, Waters).

The dried samples were reconstituted in 100 mL of 10 mM FA in
10% (v/v) MeOH, and 10 mL of each sample was then injected onto
a reversed-phase UPLC column (Acquity UPLCs BEH C18,
2.1 mm�50 mm, 1.7 mm, Waters) with a guard column (Acquity
UPLCs BEH C18 VanGuard™ Pre-column, 1.7 mm, 2.1 mm�5 mm,
Waters) coupled to the ESI–MS/MS system. KA was analyzed in the
negative ion mode as [M–H]� . KA was analyzed by a linear gra-
dient of 1% (v/v) FA in water (A) and 1% FA in MeOH (B) at a flow
rate of 0.20 mL/min, from 80:20 A:B (v/v) to 40:60 (v/v) over
2 min. Then, gradient to 100% of solvent B in 9 min. Finally, the
column was washed with 100% of solvent B for 4 min and equili-
brated to initial conditions. The instrument was operated as fol-
lows: capillary voltage 2.5 kV, desolvation temperature 400 °C,
source temperature 150 °C, cone gas flow 50 L h�1, desolvation gas
flow 800 L h�1.

2.5. GC–MS conditions

Full-scan GC–MS analysis of KA was performed using a mass
spectrometer connected to a gas chromatograph (GCMS-QP2010
plus, Shimadzu, Kyoto, Japan). The methylated derivative of KA
was reconstituted in 5 mL of MeOH, and 1 mL of each sample was
injected (250 °C) into a DB-1 column (0.25 mm i.d.�30 m,
0.25 mm film thickness; Agilent Technology, CA, USA). The column
temperature was kept at 120 °C for 1 min, then increased at a rate
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of 50 °C min�1 to 200 °C, and then increased at a rate of
20 °C min�1 to 280 °C. The flow rate of the carrier He gas was
1.22 ml min�1, and mass spectra were acquired by scanning from
m/z 50 to 400.
3. Results and discussion

3.1. Detection of KA by LC–MS/MS

There are a few reports on the detection of KA by LC–MS or LC–
MS/MS [11,12], but no reports have quantified KA with the MRM
method. At first, we observed the fragmentation of authentic KA
A

B

C

D

Fig. 2. LC–ESI–MS/MS spectra of ent-kaurenoic acid Chromatogram of [M–H]� ion at m/z
Chromatogram using negative MRM mode for KA (301.34301.3) (C) and d2-KA (303.34
with a single scan mode of LC–MS/MS (ionization, ESI; negative
mode). As a result, LC–MS provided a profile in which no frag-
mented ions were detected except for the parental ion of KA atm/z
301 ([M–H]� , tR¼8.94 min, Fig. 2A and B). Secondly, to apply the
MS/MS function, we set selected ion monitoring (SIM) at m/z 301.3
on Q1, and then scanned its daughter ions on Q3 after charging
some energy on Q2 for the collision of the selected ion at m/z
301.3. The KA was detected similar to that shown in LC–MS, in a
range of 0–40 eV charged on Q2 (Fig. S1A). Surprisingly, no frag-
mentation of the selected ion was detected (data not shown).
These observations probably indicate that the lack of KA frag-
mentation might be a unique characteristic that could be applied
for the detection of KA using LC–MS/MS. To examine this
301 using negative SIM mode (A) and ESI–MS spectra using 54 eV cone voltage (B).
303.3) (D). Intensity of (A), (C) and (D) are 1.50 e5 as 100%.
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possibility, we set the tandem SIMs at m/z 301.3 (301.34301.3) on
both Q1 and Q3. With this unusual MRM condition, it was ex-
pected that only unfragmented ions derived from KA should be
detected on Q3 and that ions from other molecules would not be
detected because of their fragmentation on Q2. As shown in Fig.
S1B, the daughter ion of KA at m/z 301.3 was still detected after
charging its collision energy in a range of 0–20 eV on Q2. Finally, it
A

B

Fig. 3. Calibration curves of KA by using LC–MS/MS (A) and GC–MS (B) error bars
indicate standard deviation. Y indicates the peak area of the ion intensity of the
MRM mode (301.34301.3) for LC–MS and the SIM mode (m/z¼316) of KA for GC–
MS. X is ng/ml. n¼5.

Fig. 4. Extraction and purification of ent-kaurenoic acid in moss. LC chromatogram of M
acid) using 54 eV of cone voltage and 6 eV of collision voltage (A). Intensity is 1.00 e7

(303.34303.3) were indicated from independent experiments. n¼3.
was elucidated that the daughter ion of KA could be detected most
efficiently after charging with 6.0 eV of collision energy (Fig. S1B).

We also optimized the cone voltage on Q1: the SIM atm/z 301.3
on Q1, after charging cone voltage by 54 eV, showed the highest
sensitivity for the detection of KA, in the range of 0–70 eV (Fig. S2).
Hence, we established the so-called “pseudo MRM” condition for
the detection of KA with an LC–MS/MS (Fig. 2C). To confirm this
MRM method, we applied tandem SIMs at m/z 303.3 on both Q1
and Q3 to detect d2-KA, which was successfully detected by LC–
MS/MS (Fig. 2D).

3.2. Validation of the method for KA quantification

To validate this newly developed method, various concentra-
tions of authentic KA solutionwere prepared. The detection of these
concentrations of KA was compared by two analytical procedures:
GC–MS and LC–MS/MS. To detect KA with GC–MS, we derivatized
KA to its methyl ester just prior to its injection into the GC column.
Fig. 3 shows calibration curves of KA; for the GC–MS analysis, the
curve became linear in the range of 800–13,000 ng ml�1. On the
other hand, it became linear in the range of 0.8–13 ng ml�1 for the
LC–MS/MS analysis. The precision of both methods was determined
as 7.20 for GC–MS and 2.87 for LC–MS/MS by calculating relative SD
values for each spiking level. In addition, the accuracy of both
methods was also assessed as 7.65 for GC–MS and 2.69 for LC–MS/
MS on a percentage basis (Table S1). The limits of detection (LOD)
and quantitation (LOQ) were evaluated by using 3� sy/x/a and
10� sy/x/a, respectively [13] where the sy/x value indicates the SD
value of the calibration curve and a indicates the slope of the re-
gression curve. The LOD and LOQ for GC–MS were 1400 ng ml�1

and 4400 ng ml�1, respectively and those for LC–MS/MS were
0.59 ng ml�1 and 1.8 ng ml�1, respectively (Table S1). Based on
these values, the method employing LC–MS/MS was evaluated as
being ca. 2000 times more sensitive than the traditional GC–MS
method.

To confirm the analytical accuracy of LC–MS/MS, the quantifi-
cational data obtained was compared directly with data obtained
from GC–MS by spiking a mixture of KA (800 ng ml�1) and d2-KA
(400 ng ml�1). The methylated derivatives of KA and d2-KA were
analyzed by GC–MS and the same compounds diluted 2000-fold
RM mode (301.34301.3 for ent-kaurenoic acid, 303.34303.3 for d2-ent-kaurenoic
as 100%. The peak area of the ion intensity of the MRM mode (301.34301.3) and
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were analyzed by LC–MS/MS. Analytical recovery (measured va-
lue/true amount) of LC–MS/MS and GC–MS was 99.8% and 98.5% of
the true amount, respectively (Table S1).

3.3. Quantification of KA in a moss

A moss H. plumaeforme has a high amount of ent-kaurene, a
direct precursor of KA (unpublished data). We applied our devel-
oped method to quantify endogenous KA in this moss after ex-
traction and semi-purification with two solid-phase cartridge
columns as described in Section 2. As an internal KA standard,
10 ng of d2-KA was used in each analysis. As shown in Fig. 4, no
interfering substances such as chlorophyll or other natural pig-
ments were observed in both the MRM transitions for KA
(301.34301.3) or for d2-KA (303.34303.3). As a result, the en-
dogenous KA in H. plumaeforme was shown to be 75.7 ng g�1 FW
with LC–MS/MS.

3.4. Closing remarks

In this study, we showed that endogenous KA in plant materials
could be quantified by using LC–MS/MS. This method is unique in
that identical SIMs are set for both Q1 and Q3. To develop this
method, we took advantage of a key characteristic of KA: the
parental ion is not easy to fragment even after charging collision
energy on Q2. This method may be applicable for substances with
a similar characteristic as KA such as many diterpenes oxidized
from a hydrocarbon, as shown in Fig. 1 [10,14–18].
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