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Abstract: Weather conditions can affect sensors’ readings when sampling outdoors. Although sensors
are usually set up covering a wide range of conditions, their operational range must be established.
In recent years, depth cameras have been shown as a promising tool for plant phenotyping and other
related uses. However, the use of these devices is still challenged by prevailing field conditions.
Although the influence of lighting conditions on the performance of these cameras has already been
established, the effect of wind is still unknown. This study establishes the associated errors when
modeling some tree characteristics at different wind speeds. A system using a Kinect v2 sensor and
a custom software was tested from null wind speed up to 10 m·s−1. Two tree species with contrasting
architecture, poplars and plums, were used as model plants. The results showed different responses
depending on tree species and wind speed. Estimations of Leaf Area (LA) and tree volume were
generally more consistent at high wind speeds in plum trees. Poplars were particularly affected by
wind speeds higher than 5 m·s−1. On the contrary, height measurements were more consistent for
poplars than for plum trees. These results show that the use of depth cameras for tree characterization
must take into consideration wind conditions in the field. In general, 5 m·s−1 (18 km·h−1) could be
established as a conservative limit for good estimations.
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1. Introduction

Plant reconstruction by non-destructive methods is of high value for decision making processes [1].
The use of sensors for plant characterization may lead to a better knowledge of the processes involved
in plant development all over throughout the life cycle and may improve the decisions taken for plant
production, contributing to create new protocols to enhance the profitability of crops [2].

Current techniques for plant characterization vary from manual to fully automatic, using a great
variety of imaging to non-imaging technologies [3]. Plant characterization using machine vision
by portable imaging and analysis software is the most investigated technique [4]. RGB cameras
have been widely used for phenology monitoring [5], plant geometric characterization [6], nitrogen
application [7], yield monitoring [8] and weed/crop discrimination [9]. These cameras can acquire
images with a high resolution and at a low cost. However, their limited capacity to provide spectral
and structural information is a deterrent to their usage in plant reconstruction. In addition, under
outdoor conditions, the variable and uncontrolled illumination and the presence of shadows may
represent a serious problem [10].
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Although various systems can be used to estimate plant parameters, the third dimension is
usually missing. Distance sensors, which measure the distance from the sensor to an object, allow
one to create 3D models, increasing the effectiveness in plant description [11]. There are two main
types of distance sensors available: ultrasonic and light detection and ranging (LiDAR). Both of them
can be used for plant height and volume estimation. The ultrasonic sensors measure the reflected
echo that the sensor transmits as sound waves of high frequency toward an object. They have been
used for tree canopy characterization [12] and for discrimination between plant types (grasses and
broad-leaved) [13,14]. Distance measurements may be improved by using a terrestrial laser scanner
(TLS). This is a simple device that is able to provide 2D or 3D plant models by displacing the sensor
along the row and storing the relative position of the sensor. The sensor measures the distance to
the impacted object with a laser beam by time-of-flight method or phase-shift measurement. Llorens
et al. [15] used a dual methodology of LiDAR and ultrasonic sensors in the characterization of tree
canopies, concluding that LiDAR assessments were the most accurate. Andújar et al. [16] obtained
promising results using a TLS to characterize the profile of poplar trees. Various other systems have
also been explored for plant characterization in precision agriculture, including radar systems [17],
hemispherical photography [18], stereo-vision [19], and magnetic resonance or X-ray visualization [20].

In the last few years, a new geometric reconstruction concept based on the use of depth cameras
has arisen [21]. The Kinect device, originally designed by Microsoft to track body position and
movement for video-games and digital entertainment, has also been used for plant characterization in
agriculture. Paulus et al. [22] compared two low-cost 3D imaging systems (a Kinect device and a David
laser scanning system) with a high precision laser scanner to estimate volumetric shape of sugar beet
leaves and taproots and of wheat ears. They concluded that the two low-cost sensors could replace the
expensive laser scanner in some of the plant phenotyping scenarios. Chéné et al. [23] developed an
algorithm to segment depth images of plant obtained from top view. They showed the potential of
this sensor for volume estimation, leaf curvature and morphology, or the use for pathogens detection.
Similarly, Andújar et al. [24] proposed the use of depth cameras for determining the weed volume and
defining herbicide spraying date [25]. Wang and Li [26] used volume estimation from Kinect models
for onions, showing that volume and fruit density were directly related with Kinect measurements.

The use of sensors located on field platforms may allow monitoring plant growth under natural
environments. However, these sensors may be influenced by different environmental conditions
present throughout the growing season. Recent studies have showed the influence of light on sensors
measurements [27]. Although daytime light contamination has limited the potential use of Kinect v1
(projected light pattern and triangulation) sensors in open spaces [28], the new version (Kinect v2) uses
a completely different measurement principle (time-of-flight) that should overcome, at least partially,
this problem [29–31]. Other parameters such as wind can modify the captured information related to
the plant structure. When a plant is moving due to wind conditions sensor readings can differ along the
time. Decision making requires standardized conditions when the information is captured. Since wind
speed cannot be controlled outdoors, the influence of its effect should be quantified. The overall
objective of this work was to assess the effect of wind speed on measurements recorded by a Kinect
v2 sensor related to plant height, volume and leaf area, as well as to establish the limits and errors in
these parameters measured in cultivated plants and associated with different wind speeds.

2. Materials and Methods

2.1. Hardware, Software and Other Equipment

Microsoft Kinect is a RGB-D camera that uses the time-of-flight method for the calculation of
the camera distance to an object. The Kinect one is composed by an RGB camera of 1080 p, a depth
camera, an infrared (IR) camera and an array of microphones. Kinect v2 has a self-adaptation of the
exposure time of the RGB image. Thus, by automatically adapting this parameter the sensor obtains
brighter images. However, this limits the number of frames that are captured in a time interval to
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a minimum frame rate of 15 fps. The time-of-flight system modulates a camera light source with a
square wave. It uses phase detection to measure the time it takes light to travel from the light source to
the object and back to the sensor, estimating distance from the results. The system calculates distance
from the speed of light in air by estimating the received light phase at each pixel with knowledge of the
modulation frequency. The RGB camera creates raw color images with a 1920 × 1080 resolution. Kinect
only provides an array of pixel RGB values that are converted into a proper Windows Presentation
Foundation (WPF) representation. The IR camera can take a clear view into the dark. It has a resolution
of 512 × 424 pixels. The sensor allows tracking of IR reflective objects while filtering out IR lights.
The Kinect v2 has a wider field of view in the IR being able of acquiring depth information at 70 degrees
horizontally and 60 degrees vertically. This effect allows to capture objects closer to the camera and still
in its field of view. The camera is effective at distances from 0.5 m to 4.5 m. The use of reconstruction
tools allows the creation of bigger models by displacing the sensor and using custom software based
on the Iterative Closest Point (ICP) algorithm [32].

The acquisition process was based on an Intel desktop computer with Windows 8 supported
by Kinect SDK, which helped to acquire data by classes, functions and structures that also provided
options to combining more than one sensor. The SDK provides the necessary drivers for the sensor,
and some sample functions that were implemented for the measurements combined with some
OpenCV functions [33]. The RGB, depth and infrared images use classes and functions to the
camera acquisition process and, if applicable, also coordinate the images acquired by different sensors.
The software creates a point cloud by detecting the overlapping areas in sequential frames taken during
the acquisition process by assessing the relative position of the sensor for each frame. The overlapped
areas allow the creation of the final 3D model and removal of outliers in the mesh.

The assessment of the influence of wind speed was conducted by placing the sensor at 1 m height
and at 1 m of distance from the tree. The sensor was located on a tripod and turned from 45◦ to
−45◦, allowing a full view of the tree. The time to complete the acquisition was 10 s from the top
(45◦) to the ground view (−45◦). The system was supplied with electric power by a field vehicle that
allows field measurement and also the storage of the additional devices needed during the process
(Figure 1). A set of measurements were conducted at different wind speeds: 0, 2.5, 5, 7.5, and 10 m·s−1.
Measurements were performed on a sunny cloudless day without natural wind, to avoid the influence
of meteorological parameters other than the purpose of this study, i.e., wind speed in a fix direction.
In order to create the wind draft a hand-held blower-vacuum (StihlTM model SH 86, Stihl Inc., Virginia
Beach, VA, USA) equipped with a plastic tube was used to artificially create the windy conditions.
The wind speed was assessed with a portable anemometer (Testo model 410-1, Testo, Lenzkirch,
Germany) at each measurement with a precision of ±0.2 m·s−1. Consequently, under these artificial
but controlled conditions we assessed the isolate effect of wind on the 3D models created with a
RGB-D camera.
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Figure 1. Schematic design of the portable system electrically powered at 220 V by an electric car.

2.2. Site Study and Field Measurements

Field experiments were conducted on tree plantations located at the experimental farm
“La Poveda” (Arganda del Rey, Madrid, Central Spain) during May 2016 and April 2017. Measurements
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were taken at direct sunlight in a sunny day (approx. 40,000 lux) and without any shading structure.
Two tree species with contrasting shape and plant structure were considered: poplar (Populus spp.)
and plum (Prunus domestica L.).These two species were selected for their agronomic importance in the
study area, which were naturally available on the experimental farm. The first study was conducted
on poplar grown as short rotation coppice, with 1-year old trees, scanning a total of fourteen trees at
different wind speeds. The distance between trees was 0.5 m. Trees were selected randomly within the
field, but including a representative sample of the population (within 95% confidence interval of mean
plant height; data not shown). The adjacent trees were separated with solid wooden sheets in order
to avoid interferences from neighboring tree leaves in the model. At sampling time, poplar heights
ranged from 0.4 m to 0.6 m. A second study was conducted on a 2-year old plum orchard following the
same procedures described previously. Fourteen trees were randomly selected covering the variability
in height present within the field.

After the Kinect measurements, the actual height of every tree was manually measured. Thereafter,
trees were cut for determination biomass and Leaf Area (LA). Biomass values were determined
by drying the samples (stems plus leaves) of the ten trees in an oven at 78 ◦C during 48 h and
weighting the dry biomass. The LA was calculated from the set of images by placing all the leaves
on a white surface. As a reference surface, a standard 100 cm2 black square was also placed in the
image in order to calculate, by correlation, the leaf area of each sample (Figure 2). The images
were obtained with a Canon EOS 7D (Canon, Tokyo, Japan) camera fitted with a 50 mm lens.
The RGB images were transformed to binary images. A linear combination of the RGB planes with
coefficients (r = − 0.884, g = 1.262, b = − 0.311) was performed. The applied coefficients were obtained
by a genetic algorithm optimization process [34] that proved to perform better than Excess Green
coefficients (ExG = 2G-R-B) [35]. In the resulting grey level image, the green objects (plants) appear
bright, in contrast to objects with a different color which appear dark. Then, the Otsu’s thresholding
method [36] was applied to separate the objects pixel-wise into foreground (plants) and background in
a binary image. From this image, the values marked as black denoted leaf area and those pixels off the
range, which corresponded to white, denoted the background.

Sensors 2017, 17, 914 4 of 12 

 

Measurements were taken at direct sunlight in a sunny day (approx. 40,000 lux) and without any 
shading structure. Two tree species with contrasting shape and plant structure were considered: 
poplar (Populus spp.) and plum (Prunus domestica L.).These two species were selected for their 
agronomic importance in the study area, which were naturally available on the experimental farm. 
The first study was conducted on poplar grown as short rotation coppice, with 1-year old trees, 
scanning a total of fourteen trees at different wind speeds. The distance between trees was 0.5 m. 
Trees were selected randomly within the field, but including a representative sample of the 
population (within 95% confidence interval of mean plant height; data not shown). The adjacent trees 
were separated with solid wooden sheets in order to avoid interferences from neighboring tree leaves 
in the model. At sampling time, poplar heights ranged from 0.4 m to 0.6 m. A second study was 
conducted on a 2-year old plum orchard following the same procedures described previously. 
Fourteen trees were randomly selected covering the variability in height present within the field. 

After the Kinect measurements, the actual height of every tree was manually measured. 
Thereafter, trees were cut for determination biomass and Leaf Area (LA). Biomass values were 
determined by drying the samples (stems plus leaves) of the ten trees in an oven at 78 °C during  
48 h and weighting the dry biomass. The LA was calculated from the set of images by placing all the 
leaves on a white surface. As a reference surface, a standard 100 cm2 black square was also placed in 
the image in order to calculate, by correlation, the leaf area of each sample (Figure 2).The images were 
obtained with a Canon EOS 7D (Canon, Tokyo, Japan) camera fitted with a 50 mm lens. The RGB 
images were transformed to binary images. A linear combination of the RGB planes with coefficients 
(r = − 0.884, g = 1.262, b = − 0.311) was performed. The applied coefficients were obtained by a genetic 
algorithm optimization process [34] that proved to perform better than Excess Green coefficients 
(ExG = 2G-R-B) [35]. In the resulting grey level image, the green objects (plants) appear bright, in 
contrast to objects with a different color which appear dark. Then, the Otsu’s thresholding method 
[36] was applied to separate the objects pixel-wise into foreground (plants) and background in a 
binary image. From this image, the values marked as black denoted leaf area and those pixels off the 
range, which corresponded to white, denoted the background. 

 
(a) (b)

Figure 2. RGB images (a) used to quantify the leaf area, after their transformation to binary images 
(b) and subsequent application of the Otsu’s thresholding method. Upper side corresponds to a 
poplar sample. Down side corresponds to a plum-tree sample. A 100 cm2 black square was included 
in each image as reference area. 

  

Figure 2. RGB images (a) used to quantify the leaf area, after their transformation to binary images (b)
and subsequent application of the Otsu’s thresholding method. Upper side corresponds to a poplar
sample. Down side corresponds to a plum-tree sample. A 100 cm2 black square was included in each
image as reference area.
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2.3. Data Processing

The raw data were recorded using Kinect Studio in video mode during a whole period including
every wind speed. Thereafter, the file was divided in sections of time corresponding to each wind
speed. The meshes were then reconstructed using Kinect fusion algorithm (Microsoft, Redmond, WA,
USA). The parameters selected corresponded to Volume Max Integration Weight = 300, Volume Voxels
per meter = 128 and Volume Voxels Resolution = 384. From the processed mesh, the desired parameters
were calculated by offline processing using the open software Meshlab® (University of Pisa, Italy)
(Figure 3). The processing tools incorporated into the software use filters to remove duplicated points,
unreferenced vertices, and null faces. The software allows the cleaning, smoothing, visualization
and processing of the acquired data readings and plots them as new meshes. The point cloud was
processed in two steps [21,37].

(a) Data outliers and noise in the point cloud were filtered out. The filter identifies the points
with no connection (1 cm out of the grid and removes them. (b) Tree volumes were calculated from
the mesh by computation of polyhedral Mass properties [37]. The algorithm locates the body’s center
of mass and computes the moment of inertia about various axes in a dynamic simulation in rigid
bodies considering a uniform density. The algorithm is based on a reduction of the volume integrals,
minimizing the errors that result from poorly conditioned alignment of polyhedral faces. The volume
integrals of a polyhedron are simultaneously computed in a single walk over the boundary of the
polyhedron. The algorithm computed the normal, weighting the product over the k-nearest neighbors.
The obtained isosurface is approximated from the normal field, whose gradient is related to the
indicator function that describes the isosurface. Then, the mesh volume was obtained.
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Figure 3. Example of poplar (figures on top) and plum (figures at the bottom) tree models created at
different wind speeds, from 0 to 10 m·s−1.

Information extracted from models was analyzed and compared with ground truth data. From the
model, parameters regarding plant volume, maximum height and surface were extracted. These values
were correlated with actual parameters of height, dry biomass and LA. Pearson’s correlation coefficients
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were used in the evaluation on simple linear relationships between the data from models and ground
truth data. The analyses were repeated for both kinds of trees. The correlation analysis provided the
initial information for the scatter plots comparing the cited parameters. The scatter diagrams provided
the functional relationship existing between actual parameter and the models at different wind speeds.

3. Results and Discussion

In general, variability in Kinect measurements, noise and invalid pixels increased as wind speed
increased (Figures 4–6). This was expected since the wind moved the trees during data acquisition,
changing their position. At null and low wind speeds, the actual height, LA, and biomass showed
good correlations with those estimated from the models. However, correlations decreased as wind
speed increased.
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Figure 5. Regression analysis comparing Leaf Area (LA) vs. tree volume for (a) poplar trees and
(b) plum trees at wind speeds ranging from 0 to 10 m·s−1.

Actual poplar height ranged from 43 to 58 cm (average: 50.6 cm). These values were strongly
correlated (r = 0.996) with those measured by the Kinect v2 under no wind conditions. When wind
speed increased to 2.5, 5 and 7.5 m·s−1, correlations decreased slightly (r = 0.980, r = 0.970 and r = 0.961,
respectively). In contrast, the mean absolute error (MAE) increased from 0.21 in the absence of wind
to 1.21 for 2.5 and 5 m·s−1, and to 1.14 for 7.5 m·s−1. Similarly, the root mean square errors (RMSEs)
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increased with the wind speed (2.21, 2.14, 2.00 and 5.50 cm for 2.5, 5, 7.5 and 10 m·s−1, respectively)
relative to the windless scenario (0.21 cm). Nevertheless, actual and estimated measurements of poplar
height were still significantly correlated (Figure 4a). In general, although Kinect measurements tended
to slightly underestimate plant height when wind speed increased in a fixed direction, we can conclude
that this parameter could be satisfactorily estimated by this method up to 7.5 m·s−1.
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Figure 6. Regression analysis comparing dry biomass (g) vs. tree volume for (a) poplar trees and
(b) plum trees at wind speeds ranging from 0 to 10 m·s−1.

In the case of plum trees, a good agreement was observed between actual and model estimated
tree height up to 5 m·s−1 wind speed. Actual tree height ranged from 91 to 142 cm (average: 118 cm).
The Kinect v2 measurements achieved correlations of r = 0.996, r = 0.970 and r = 0.930 for wind
speeds of 0, 2.5 and 5 m·s−1, respectively. No significant correlations were obtained with higher wind
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speeds. MAE resulted in values of 2.14, 3.71 and 4.21 cm in the absence of wind and for the two
lower wind speeds. When speeds increased to 7.5 and 10 m·s−1, MAE increased up to 12.21 and
17.07 cm. Regression analysis showed good fittings till wind speeds of 5 m·s−1 (Figure 4b). Apparently,
plum trees were more affected by high wind speeds than poplar trees. The model showed good
estimations until 5 m·s−1. In general, plum-trees compared with poplar trees were easier affected by
higher wind speeds.

The calculation of maximum height using Kinect v2 sensors may have various sources of
errors. Wind moves the top of the trunk and the small leaves located in that area affecting the
reconstruction of this parameter. This measurement could be improved by analyzing data without
filters. However, under these conditions, noise and invalid pixels increase and volume calculation
led to worse predictions. The errors associated with the Kinect sensor have been assessed for the
previous [38] and the new version [39]. The first version of Kinect was unable to detect branches
smaller than 6 mm width. The results were tested for distances of 0.5 to 1.25 m with similar results.
In the case of Kinect v2, the range of measurement is higher and error tended to decrease. Under field
and laboratory conditions and no influence of other external factors, absolute errors lower than 12 mm
were obtained when cotton plants were measured [39]. The accuracy of the system depends not only
on the sensor; the target object highly influences the accuracy of measurements. Azzary et al. [21]
compared manual and Kinect v1 measurements of plant basal diameter and plant height, concluding
that the underestimation or overestimation depends on the plant species and the characteristic of the
plant to measure. In our study, models for large leaves were more accurate than those with small
leaves. In general, solid objects create more accurate models than complex shapes such as trees. In a
study conducted to estimate the dimensions of commercial onions, a 2 mm error in diameter was
obtained [26]. The study compared the models obtained with Kinect v1 sensor and RGB cameras.
Although both sensors underestimated onion dimensions, depth images created more accurate models
than those obtained with RGB images. In a similar study, Andújar et al. [40] showed an error higher
than 1 cm when cauliflower dimensions were measured with the first version of Kinect. Those errors
could be reduced with Kinect v2, which have showed lower error. However they depend of several
parameters such as object reflection, distance object-sensor, foreground, etc. [41]. Measuring the shapes
of trees and other plants is an important challenge due to their complex shape.

The parameters extracted from 3D models allowed to characterize leaf area, photosynthetic active
area, leaf orientation, dynamics of plant growth, etc. These parameters are directly related with
phenotyping processes.

In poplar trees, LA was highly correlated with volume estimation in models created at 0 and
2.5 m·s−1 and correlation was still significant at 95% at 5 m·s−1. Higher wind speed resulted in not
significant correlations. The regressions between poplar volume and LA obtained from the RGB
images indicate good agreements at wind speeds below 2.5 m·s−1 (Figure 5a). Above this speed
wind impedes a good estimation of LA. Since, LA is a parameter directly related with plant growth
and productivity and it is a good indicator for nutrient application, the use of sensors in precision
applications in poplars should be avoided when wind conditions exceed 2.5 m·s−1. In plum trees,
model measurements improved significantly compared to poplar trees. Correlations were significant
under all wind conditions. However, regression results suggest a decrease in the accuracy when wind
speed exceeds 5 m·s−1 (Figure 5b). The differences in shape between poplar and plum trees created
different patterns in the models. Plum trees were more elongated and internal parts of the trees were
less occluded, improving LA estimation under windy conditions.

The actual biomass and the volume estimated using the Kinect v2 were consistent at different wind
speeds for the two tree species studied (Figure 6). Poplar trees showed correlations of r = 0.968, r = 0.851
and r = 0.848 for wind speeds of 0, 2.5 and 5 m·s−1, respectively. Regression analysis showed similar
results. Tree biomass was not properly estimated when wind speeds exceeded 5 m·s−1 (Figure 6a).
In plum trees, the relationship between actual biomass and the estimated volume was significant at
99% at all wind speeds. However, dispersion of values was greater at high wind speeds (Figure 6b).
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Volume quantification using Kinect sensors has been tested previously [32]. These studies concluded
that plant volume can be properly estimated although with some errors. However, when working with
solid objects, such as onions or cauliflowers, estimated values were more similar to real objects [26,40].
When working with whole plants, many points of the cloud impact on internal parts, introducing some
errors [2]. In order to reduce these errors, algorithms more accurate than those used for characterization
of solid plant products are required.

Structural parameters extracted from the models generated by depth cameras such as Kinect
must take into consideration the natural conditions present on the field. The used sensor should work
properly outdoors when the scene has low ambient IR light. The Time-of-Flight distance measurement
method is based on measuring the difference between two accumulators in the sensor, each one
containing a portion of the returning IR light. However, when sunlight radiation is high the captured
radiation on accumulators can be low and this limits the data output. In addition the accuracy depends
on the angle of incidence of sunlight. However, several papers have been published evaluating the
effect of sunlight in outdoors conditions [42]. Thus the study took constant values of light, time and
angle of measurements coinciding with a sunny day at midday. Deformations caused by wind are
different from those caused by illumination and they are more difficult to correct by software. In our
study, we set up the Kinect Fusion algorithm for a good plant reconstruction at different wind speeds
and we extracted values from the created model. The practical relevance of the information generated
at high wind speeds is conditioned by the fact that, to avoid the drift of agrochemicals, spraying
pesticides or liquid nutrients must be done when wind is almost null. This study confirms the need of
considering every weather conditions, including wind speed, when monitoring vegetation outdoors.

4. Conclusions

This study has proved that a constant one-direction wind can influence the acquisition of visual
depth information. This conclusion is supported by studies conducted with two different tree species
(poplars and plum trees) at various wind speeds (up to 10 m·s−1). Higher wind speed resulted in
higher variability in Kinect v2 height and volume measurement due to tree movement. In general,
this sensor was unable to obtain accurate 3D models when wind speed exceeded a 5 m·s−1 threshold.
Although this threshold was similar for both tree species, individual cases should be studied when
performing an outdoor study.

Branch flexibility, leave shape and size affect the fidelity of the 3D models. New algorithms
processing maximum height while reducing invalid pixels are required in order to estimate plant
volume and height from a single-shot model developed at high wind speeds.
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