Article

Design, Synthesis, and Development of Pyrazolo[1,5-a]pyrimidine Derivatives as a Novel Series of Selective PI3K δ Inhibitors: Part II—Benzimidazole Derivatives

Mariola Stypik ${ }^{\mathbf{1 , 2}, *(\mathbb{D}}$, Stanisław Michałek ${ }^{1,2(\mathbb{D}}$, Nina Orłowska ${ }^{1,2}$, Marcin Zagozda ${ }^{1}$, Maciej Dziachan ${ }^{1}$, Martyna Banach ${ }^{1}$, Paweł Turowski ${ }^{1}$, Paweł Gunerka ${ }^{1(D)}$, Daria Zdżalik-Bielecka ${ }^{1}{ }^{1}$ © , Aleksandra Stańczak ${ }^{1}$, Urszula Kędzierska ${ }^{1}$, Krzysztof Mulewski ${ }^{1}$, Damian Smuga ${ }^{1}$, Wioleta Maruszak ${ }^{1}$, Lidia Gurba-Bryśkiewicz ${ }^{1}{ }^{1(D)}$, Arkadiusz Leniak ${ }^{1}{ }^{(\mathbb{D}}$, Wojciech Pietruś ${ }^{1}{ }^{(\mathbb{D}}$, Zbigniew Ochal ${ }^{2}$, Mateusz Mach ${ }^{1}{ }^{\mathbb{D}}$, Beata Zygmunt ${ }^{1}$, Jerzy Pieczykolan ${ }^{1}$, Krzysztof Dubiel ${ }^{\mathbf{1}}$ and Maciej Wieczorek ${ }^{1}$

Citation: Stypik, M.; Michałek, S.; Orłowska, N.; Zagozda, M.; Dziachan, M.; Banach, M.; Turowski, P.; Gunerka, P.; Zdżalik-Bielecka, D.; Stańczak, A.; et al. Design, Synthesis, and Development of Pyrazolo[1,5-a] pyrimidine Derivatives as a Novel Series of Selective PI3K δ Inhibitors: Part II—Benzimidazole Derivatives. Pharmaceuticals 2022, 15, 927. https://doi.org/10.3390/ph15080927

Academic Editor: Paweł Kafarski

Received: 22 June 2022
Accepted: 18 July 2022
Published: 27 July 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1 Celon Pharma S.A., ul. Marymoncka 15, 05-152 Kazun Nowy, Poland; stanislaw.michalek@celonpharma.com (S.M.); orlowska.nina@gmail.com (N.O.); marcin.zagozda@celonpharma.com (M.Z.); maciejdziachan@gmail.com (M.D.); martyna.banach@celonpharma.com (M.B.); tupaw@wp.pl (P.T.); pgunerka@gmail.com (P.G.); dzdzalik@iimcb.gov.pl (D.Z.-B.); apstanczak@gmail.com (A.S.); ulak54@gmail.com (U.K.); kmulewski91@gmail.com (K.M.); damian.smuga@celonpharma.com (D.S.); wioleta.maruszak@celonpharma.com (W.M.); lidia.gurba@celonpharma.com (L.G.-B.); arkadiusz.leniak@celonpharma.com (A.L.); wojciech.pietrus@celonphamra.com (W.P.); mateusz.mach@celonpharma.com (M.M.); beata.zygmunt@celonpharma.com (B.Z.); jerzy.pieczykolan@celonpharma.com (J.P.); krzysztof.dubiel@celonpharma.com (K.D.); maciej.wieczorek@celonpharma.com (M.W.)
2 Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland; zbigniew.ochal@pw.edu.pl

* Correspondence: mariola.stypik@celonpharma.com

Abstract

Phosphoinositide 3-kinase (PI3K) is the family of lipid kinases participating in vital cellular processes such as cell proliferation, growth, migration, or cytokines production. Due to the high expression of these proteins in many human cells and their involvement in metabolism regulation, normal embryogenesis, or maintaining glucose homeostasis, the inhibition of PI3K (especially the first class which contains four subunits: $\alpha, \beta, \gamma, \delta$) is considered to be a promising therapeutic strategy for the treatment of inflammatory and autoimmune diseases such as systemic lupus erythematosus (SLE) or multiple sclerosis. In this work, we synthesized a library of benzimidazole derivatives of pyrazolo[1,5-a]pyrimidine representing a collection of new, potent, active, and selective inhibitors of PI3K δ, displaying IC_{50} values ranging from 1.892 to $0.018 \mu \mathrm{M}$. Among all compounds obtained, CPL302415 (6) showed the highest activity (IC_{50} value of 18 nM for PI3K δ), good selectivity (for PI3K δ relative to other PI3K isoforms: $\mathrm{PI} 3 \mathrm{~K} \alpha / \delta=79 ; \mathrm{PI} 3 \mathrm{~K} \beta / \delta=1415 ; \mathrm{PI} 3 \mathrm{~K} \gamma / \delta=939$), and promising physicochemical properties. As a lead compound synthesized on a relatively large scale, this structure is considered a potential future candidate for clinical trials in SLE treatment.

Keywords: PI3K δ inhibitors; anti-inflammatory therapy; 5-benzimidazole-pyrazolo[1,5-a]pyrimidine; CPL302415

1. Introduction

Phosphoinositide 3-kinase delta (PI3K δ), the lipid kinase, is a member of the family of PI3K enzymes divided into three classes: I (PI3K $\alpha, \mathrm{PI} 3 \mathrm{~K} \beta, \mathrm{PI} 3 \mathrm{~K} \gamma, \mathrm{PI} 3 \mathrm{~K} \delta$), II, and III. Due to their involvement in catalyzing the phosphorylation of phosphatidylinositol-4,5-diphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3), PI3Ks start a cascade of downstream activities to induce various types of biological processes such as cell growth, survival, proliferation, or differentiation [1-6]. All class I PI3K isoforms occur as a heterodimer of one regulatory subunit (p85) with the corresponding catalytic subunit
($\mathrm{p} 110 \alpha, \mathrm{p} 110 \beta$, and $\mathrm{p} 110 \delta$). The p110 subunits of PI3K isoforms have been thoroughly characterized [7]. The ATP-binding site of $\mathrm{p} 110 \delta$ in PI3K δ comprises a few functionalities such as a hinge pocket, an affinity pocket, and a hydrophobic region, which lies below a non-conserved rim of the active site. Interaction with the large and flat hydrophobic face of a conserved tyrosine residue (Tyr-876) was reported for most PI3K inhibitors. Moreover, many of them also have additional hydrophobic interactions with the affinity pocket for the enzyme, where they can form hydrogen bonds with Lys-833 or other hydrophilic residues caused by the presence of adequate heteroatom [8,9]. Most selective PI3K δ inhibitors exhibit interaction between crucial amino acids (Trp-760 and Met-752) while entering the active pocket [9-11]. Interaction with the tryptophan shelf (Trp-760) impacts the PI3K δ selectivity. Steric blockage in the tryptophan region leads to selectivity for PI3K δ because of the disfavored binding to other PI3K isoforms. It has been proven that these structural determinants are crucial in the activity and selectivity of PI3K δ and thus are used for designing PI3K δ inhibitors [5,8,10,11].

In this study, we designed, developed, and described a family of PI3K δ inhibitor structures, based on the pyrazolo[1,5-a]pyrimidine core with different modifications, which can occupy the affinity pocket of the enzyme.

The basis for inflammatory and autoimmune diseases, such as systemic lupus erythematosus (SLE) or rheumatoid arthritis (RA), is dysregulation, including overactivity of the immune system [8]. These alterations are typically progressive and cause much burdensomeness for the patients. The overproduction of autoantibodies manifests in SLE due to uncontrolled cellular action in which T lymphocytes and B lymphocytes play a crucial role [4,12-17]. The activity of PI3K δ in T cells of SLE diagnosed patients is risen by approximately 70% [15]. Due to the engagement of the p 110δ subunit of the PI3K δ in human Th17 cells for the production of IL-17, this PI3K subfamily can be viewed as a promising molecular target for future therapies, including SLE [18-21]. Moreover, a well-recognized mechanism of the PI3K δ interaction at the molecular level can be efficiently utilized for the rational design, synthesis, and development of new anti-inflammatory drugs [18-20,22].

Selective PI3K δ inhibitors can be obtained by appropriate modifications of a heterocycle that occupies the affinity pocket of the enzyme $[5,10,23]$. Despite the formation of hydrogen bonds between the indazole group of well-known inhibitor GDC-0941 (Figure 1) [24] and two amino acids Asp-787 and Tyr-813, the $\mathrm{PI} 3 \mathrm{~K} \gamma / \delta$ selectivity was poor [10]. It was reported that changing the indazole group of GDC-0941 for 2-methylbenzimidazole group helped to obtain a more selective inhibitor of $\operatorname{PI} 3 \mathrm{~K} \delta(\mathrm{PI} 3 \mathrm{~K} \gamma / \delta=29)$ which demonstrated good potency in cellular assays $[5,10]$. Moreover, it was shown that optimization of interactions with Trp-760 helped to improve the selectivity of PI3K δ inhibitors as candidates for further development with good pharmacokinetic properties [10,11,25,26]. The new compounds with different substituents at the benzimidazole ring's $C(2)$ position were obtained and described [10]. It was reported that the inclusion of large, bulky groups at the benzimidazole's $\mathrm{C}(2)$ position could reduce the inhibition of PI3K δ [10]. These structureactivity relationships highlight the crucial role of the amine and benzimidazole subunit in determining PI3K δ activity and selectivity for an obtained series of compounds.

Many bicyclic cores-based compounds were reported as effective and active PI3K inhibitors. Most of them, including thienopyrimidines [23,27] or pyridopyrimidines [10,23,24], were described as pan-PI3K inhibitors. Due to the problems with time-dependent CYP inhibition $[5,23]$, selectivity, bioavailability, or solubility [23,28], other bicyclic cores such as isoxazolopyrimidines [23,29], imidazopyrimidines [23,30], or pyrazolopyrimidines [23,31] have also been designed, synthesized, and reported. A large number of PI3K inhibitors showed the potential of applying morpholine moiety as a H-bond acceptor in the hingebinding motif [23,24]. In our docking studies in the previous paper [25], the crucial role of binding between the morpholine system and Val-828 was observed. Since 2012, many morpholine-based inhibitors of the PI3K kinase have been published [23]. Moreover, in 2012, a group of 2-(difluoromethyl)-1H-benzimidazole derivatives enriched a library of known PI3K inhibitors [23,32-34]. These structures are based on the 1,3,5-triazine monocyclic core
and a morpholine ring in the hinge region. Evaluation of mono-, bi-, or higher-cyclic cores with a different arrangement of the substituents allowed for more active and selective compounds [10,23,28].

In our work, we focused on the pyrazolo[1,5-a]pyrimidine core with various amine substituents in position $C(2)$ and different benzimidazole groups in the $C(5)$ position at the core region. It was reported that pyrazolo[1,5-a]pyrimidines are promising medical pharmacophores in structures as potential drugs in the treatment of cancer, as well as inflammatory or viral diseases [35,36]. Our previous study [25] described the development of pyrazolo[1,5-a] pyrimidine derivatives with different substituents (heteroaromatic systems) at position 5 of the mentioned core. It was reported that 5-indole-pyrazolo [1,5-a] pyrimidines as inhibitors of $\mathrm{PI} 3 \mathrm{~K} \delta$ were the most selective structures of the obtained series. On the other hand, we identified a 2-difluoromethylbenzimidazole derivative $\mathbf{1}$ as the most active compound (Figure 1). It was identified as a moderate PI3K δ inhibitor ($\mathrm{IC}_{50}=475 \mathrm{nM}$) with poor selectivity toward the alpha isoform. We reported that modifications of a mentioned core with many different substituents could contribute to inhibitors' activity and selectivity enhancement. In this work, we synthesized and described more than thirty new, active, and potent selective $\mathrm{PI} 3 \mathrm{~K} \delta$ inhibitors in the extended structure-active relationship (SAR) study, keeping the scaffold of $\mathbf{1}$ as a starting point.

1
$\mathrm{IC}_{50} \mathrm{PI} 3 \mathrm{~K} \delta=475 \mathrm{nM}$ $\mathrm{IC}_{50} \mathrm{PI} 3 \mathrm{~K} \alpha=1060 \mathrm{nM}$

GDC-0941

Figure 1. Structure of the PI3K δ active inhibitor and GDC-0941.

2. Results and Discussion

2.1. Chemistry

2.1.1. Synthesis of Compounds 5-9 and 11-12

Our research shows that modifications of benzimidazole groups and amine subunits play a crucial role in the activity and selectivity of PI3K δ inhibitors. During the SAR exploration and docking calculations, we found two amine subunits at the $C(2)$ position of the pyrazolo[1,5-a]pyrimidine core, N-tert-butylpiperazin-1-ylmethyl and 2-(4-piperidin-1-ylmethyl)-2-propanol, have the most promising potency in PI3K δ inhibition. Due to the observed high activity of the mentioned families of compounds against PI3K δ and unexplored chemical space, new benzimidazole derivatives were synthesized according to Scheme 1.

Scheme 1. Synthesis of benzimidazole derivatives. Reagents and conditions: (i) CaCl_{2}, $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, reflux, $3 \mathrm{~h}, 99 \%$; (ii) Dess-Martin periodinane, DMF, RT, $2 \mathrm{~h}, 46 \%$; (iii) 1-tertbutylipiperazine, sodium triacetoxyborohydride, DCM, RT, $18 \mathrm{~h}, 84 \%$; (iv) benzimidazole derivative, tris(dibenzylideneacetone)dipalladium(0), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, $150^{\circ} \mathrm{C}, 6 \mathrm{~h}, 200 \mathrm{~W}$, MW, 4-93\%; (v) 2-(4-piperidyl)-2-propanol, sodium triacetoxyborohydride, DCM, RT, 63%; (vi) benzimidazole derivative, tris(dibenzylideneacetone)dipalladium(0), 9,9-Dimethyl-4,5-bis(diphenylphosphino)xanthene, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, toluene, $150^{\circ} \mathrm{C}, 6 \mathrm{~h}, 200 \mathrm{~W}, \mathrm{MW}, 52-66 \%$.

Starting from ethyl 5-chloro-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carboxylate, structures 5-9 and 11-12 were obtained after four-step synthesis. In the first step, alcohol 2 was synthesized by the ester group reduction with sodium borohydride and an almost quantitative yield (99%, Scheme 1). Next, alcohol 2 was oxidized into the corresponding aldehyde 3 using Dess-Martin periodinane (46% yield). Subsequently, the amine subunits derivatives $\mathbf{4}$ and $\mathbf{1 0}$ were obtained in reductive amination reactions by engaging appropriate amine in the presence of sodium triacetoxyborohydride (good, 84%, and 63% yields, respectively). In the last step, the received substituted 5-chloro-pyrazolo[1,5-a]pyrimidines 4 and 10 were transferred into the final structures by utilizing the Buchwald-Hartwig reaction conditions with corresponding benzimidazoles. This palladium-catalyzed reaction, conducted under microwave irradiation, gave compounds 5-9 and 11-12 (un-optimized yields in the range of $34-93 \%$).

2.1.2. Synthesis of Compounds 16-38 and 40-54

Benzimidazole derivatives were prepared in a multistep synthesis that branched into two pathways depending on the group selected in the core $C(2)$ position (Scheme 2).

Structures 16-38 and 40-57 were synthesized according to the general pathway depicted in Scheme 2. Compounds 16-38 were obtained after four-step synthesis from 5-chloro-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carboxylate (commercially available) which was coupled with 2-(difluoromethyl)- 1 H -benzimidazole in the presence of tetraethylammonium chloride and potassium carbonate to provide ethyl 5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carboxylate (13) as a crucial intermediate (89% yield). Then, the resulting product 13 was reduced to alcohol 14 under treatment with a lithium aluminum hydride solution (89% yield). We observed that the double bond within the imidazole ring of benzimidazole substituent was reduced concomitantly with the ester group. Interestingly, the oxidation of alcohol 14 to aldehyde 15 with Dess-Martin periodinane (or with activated manganese(IV) oxide) was accompanied by full restoration of aromaticity within the benzimidazole heterocycle. Final structures

16-38 were obtained by reductive amination reactions (Scheme 2) with different amines such as N-tert-butylpiperazine, morpholine, or 4-methylpiperidin-4-ol (see tables below for details) with un-optimized yields (38-93\%). Based on our previous SAR studies, we observed that the carbonyl group in position $C(2)$ of pyrazolo[1,5-a]pyrimidine derivatives may enhance the activity of the obtained structures. While keeping this in mind, further research focused on the replacement of the $\left(-\mathrm{CH}_{2}\right)$ group with a (- CO) group leading to structures 40-57 in two steps from intermediate 13. Unlike for compounds 16-38 synthesis, the ester group of 13 was hydrolyzed with the lithium hydroxide to 5-[2-(difluoromethyl)- 1 H -benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carboxylic acid (39, 98\% yield). Subsequently, carboxyl derivatives were converted into a series of final amides 40-57 (see tables below to trace the selection of substituents) using 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) and triethylamine as a base (un-optimized 33-81\% yields).

Scheme 2. Synthesis of 5-(2-difluoromethylobenzimidazo-1-yl)pyrazolo[1,5-a]pyrimidine derivatives. Reagents and conditions: (i) 2-(difluoromethyl)- 1 H -benzimidazole, $\mathrm{TEACl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMA}, 160^{\circ} \mathrm{C}$, $3 \mathrm{~h}, 89 \%$; (ii) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}, 89 \%$, (iii) Dess-Martin periodinane, DMF, RT, $1 \mathrm{~h}, 78 \%$ or MnO_{2}, toluene:buthyl acetate, reflux $1.5 \mathrm{~h}, 68 \%$; (iv) amine, sodium triacetoxyborohydride, DCM, 18 h , $38-93 \%$; (v) LiOH, MeOH, $\mathrm{H}_{2} \mathrm{O}, 98 \%$; (vi) amine, HATU, TEA, RT, $2 \mathrm{~h}, 33-81 \%$.

2.2. Docking Study

Crystal structure analysis, combined with data from biochemical and cellular assays, has been used to understand the molecular basis of observed inhibitors' activities and selectivities. Utilizing the Auto-Dock Vina program for docking studies [35], we wished to investigate the binding mode of our compounds with the PI3K δ isoform. Based on the available crystallographic structures of PI3K (for example PDB ID: 2WXL) and reference papers regarding in silico calculations [5,8,10,23,24], we gained valuable information about protein-ligand interactions in the active site and chose to focus on the pyrazolo[1,5a]pyrimidine core.

Over the course of our computer-assisted studies, we found that the morpholine ring at position 7 of pyrazolo[1,5-a]pyrimidine core is required for interaction with PI3K at the catalytic site. More specifically, the most crucial interaction is the critical hydrogen bond between the oxygen atom of the morpholine group and Val-828 in the hinge region of the enzyme. In our previous work [25], we observed an existing hydrogen bond between the C(5)-indole pyrazolo[1,5-a]pyrimidine derivatives and the Asp-787. However, benzimidazole derivatives, presented in this work, lack that interaction when targeted toward
this region. Instead, we observed the possibility of hydrogen bond formation between the nitrogen atom at the third position of the benzimidazole ring system and Lys-779.

In addition, several regions have been identified in the active site of the enzyme that have a profound impact on the activity and selectivity toward PI3K δ. Due to critical structural determinants, depending on the substituent type ($\mathrm{R}^{1}, \mathrm{R}^{2}$, Schemes 1 and 2, respectively), we observed different interactions of our structures with the tryptophan shelf (Trp-760) and selected amino acids within the active pocket. For example, 2-hydroxypropyl residue of compound 11 keeps close proximity to Trp-760 (the tryptophan shelf interaction, Figure 2A) by locating the hydroxyl group conformationally away from the amino acid. On the other hand, the piperazine fragment of compound 17 (Figure 2B) takes the most distant position from the tryptophan shelf, supported by the polar amide group bond with aspartic acid (Asp-897). Moreover, among some structures showing no Trp-760 interaction, due to different types of the amine substituents, a shift towards other amino acids, e.g., Ser-831, was observed.

Compounds containing a donor fragment, such as hydroxyl, amine, or the amide group near the piperazine or piperidine ring (such as 11, 35, or 36), are found to have higher IC_{50} values and therefore lower potential for activity due to the poor interaction between the aliphatic fragment and the tryptophan shelf (Trp-760). A similar situation is observed for structure 30 (Figure 2C), in which the aliphatic component targets the Trp-760 indole ring, but the hydroxyl group is too far to form a hydrogen bond with the polar amino acids located at the opposite side of the enzyme pocket.

A shift beyond the tryptophan region of the piperidine ring was also observed for compound 49, with the carboxyl group introduced in place of the methylene group. Such arrangement is additionally supported by the formation of a hydrogen bond between the hydroxyl group of the 4-hydroxy-4-methylpiperidinyl subunit and aspartic acid (Asp-832, Figure 2D).

In connection with the described dependencies, our research suggests that due to the shift of the amine ring relative to the $\operatorname{Trp}-760$ and the formation of a hydrogen bonding with the aforementioned Asp-832 and Asp-897, compounds with a carboxyl group in the $C(2)$ position of the pyrazolo[1,5-a]pyrimidine (linking the amine group) are more preferred in terms of kinase activity and selectivity than compounds with a methylene group at the same position.

Compound 6 (Figure 2E), containing the tert-butyl piperazine ring, gave different outcomes in our docking studies. Interaction between that aliphatic fragment and Trp-760 translates into the properties of this compound, such as potency, activity, and selectivity towards PI3K δ. Moreover, in this structure, we observed the characteristic bond between the oxygen atom located at the morpholine ring (playing the role of an H -bond acceptor in the hinge-binding motif) and Val-828. Interaction of the benzimidazole residue nitrogen atom and Lys-779 has also been recognized.

A mix of conformational interactions was assigned to compound 40 (Figure 2F), which binds to Val-828 and Lys-779, including compound 6. However, the replacement of the methylene bridge with the carbonyl function was associated with the loss of Trp-760 interaction and the simultaneous loss of biological activity.

As a result of all relationships described, compound 6 turned out to be the most active and promising structure of the entire library obtained.

2.3. Biological Evaluation

In Vitro PI3 Kinase Inhibition Assays
All compounds were tested in a biochemical assay that measured the inhibition of phosphatidylinositol (4,5)-bisphosphate (PIP2) production by PI3K isoforms using the ADP-Glo kinase assay (Promega). In addition, the effects of synthesized compounds on B cell proliferation were measured.

All newly synthesized compounds proved to be active PI3K δ inhibitors $\left(\mathrm{IC}_{50}=1.892-0.018 \mu \mathrm{M}\right)$ and, additionally, eleven of obtained structures turned out to be highly active, reaching the value of IC_{50} below 100 nM . For this reason, $\mathrm{PI} 3 \mathrm{~K} \delta$ final
inhibitors, which are very potent with drug-like physical properties, are considered drug candidates in SLE and other autoimmune and inflammatory diseases.

Figure 2. The most important interactions in the PI3K binding site for selected structures. An example of 3D modeling possible interaction found for selected compounds (PDB ID:2WXL): (A)-compound 11; (B)—compound 17; (C)—compound 30; (D)—compound 49; (E)—compound 6; (F)-compound 40. No protons were added, but the appropriate state of protonation was maintained.

Two positions of the pyrazolo[1,5-a]pyrimidine core: $C(2)\left(R^{1}\right)$ and $C(5)\left(R^{2}\right)$ were optimized and described in this paper. Regarding the first $C(2)$ optimization, many benzimidazole derivatives (for two chosen amine subunits: piperazines and piperidines) were designed and synthesized (Table 1). It was observed that within the nano- and micro-molar IC_{50} value range, the potency of obtained inhibitors is different despite the substituent size at the $C(2)$ position, for example in pairs 5 and 8 or 6 and 9 . On the other hand, a selected pair of examples (compounds 11 and 12) indicates that the selectivity against PI3K δ activity is relatively insensitive to the steric bulkiness of the substituent placed at the $C(5)$ core's position. Of the whole series of PI3K δ inhibitors obtained, compounds $\mathbf{6}$ and 11 turned out to be the most potent, with IC_{50} values of 18 and 52 nM , respectively. Moreover, structure 6 shows the best selectivity towards other PI3K isoforms among all the compounds tested. For the above reasons, 2-(difluoromethyl)- $1 H$-benzimidazole was selected as the most optimal and promising R^{1} substituent in pyrazolo[1,5-a]pyrimidine ring. The next step of our studies was the expansion of the compound library with the determination of R^{2} groups keeping the constant 2-(difluoromethyl)-1H-benzimidazole R^{1} substituent at $\mathrm{C}(5)$ position.

Table 1. Activity and selectivity of benzimidazole derivatives (5-12).

IC_{50} values were determined as the mean based on two independent experiments.
The R^{2} substituent has been optimized using different substituents which aim to simultaneously increase selectivity and activity. Optimization focused on modifying the amine subunit; thus, piperazines, piperidines, five-member rings, bulky amine groups, and other available amines were used (Table 2). Among all modifications, we found the piperazine and piperidine derivatives as the most promising. Compounds containing an amine group with a five-membered ring showed the IC_{50} values in the $1892-1896 \mathrm{nM}$ range; however, their $\mathrm{PI} 3 \mathrm{~K} \gamma / \delta$ selectivities remained lower than for the other amine groups with
a six-member ring in their structure (Table 2). This observation suggests that replacing the five- with a six-membered ring is more favorable for PI3K δ inhibition. Moreover, heterocycles based on the six-membered ring as R^{2}, with a nitrogen atom in the 1- or 1- and 4 -position(s), are generally more active and selective. As an excellent example, this thesis can serve compound 27 , with the nitrogen atom shifted outside the six-membered ring. In this individual case, a significant potency drop against PI3K δ below 1000 nM threshold was noted (Table 2). Modifications of substituted amine heterocycles are significant because they directly affect the PI3K δ enzyme's affinity pocket interactions. Our preliminary research suggested that the presence of the 2-(4-piperidyl)-2-propanol hydroxylic group could play a crucial role in gaining the inhibition of PI3K δ. We believed, based on in silico studies, that the bond formed between the hydroxyl group and amine group of Ser-831 within the selectivity pocket of the enzyme should increase both the activity and selectivity. Therefore, a set of compounds containing proton donor groups was synthesized. Unfortunately, this rationale failed, as it can be clearly seen while searching the IC_{50} values of compounds: 29-31 and 34-36 (Table 2). The observed loss of potency could be explained by the conformational freedom provided by the methylene linkage, allowing the escape from the tryptophan shelf position and simultaneous polar interactions with side amino acids within the active pocket. To confront this possibility, the methylene bridge was converted into carbonyl function, leading to conformationally restrained cyclic amide derivatives which lack possible conformational changes in the $C(2)$ position of pyrazolo[1,5-a]pyrimidine.

Table 2. PI3K δ and PI3K g activity of pyrazolo[1,5-a]pyrimidine derivatives with $\left(-\mathrm{CH}_{2}\right)$ groups.

Compound	$\mathbf{R}^{\mathbf{2}}$	$\begin{gathered} \mathrm{IC}_{50} \mathrm{PI} 3 \mathrm{~K} \delta \\ {[\mathrm{nM}]} \end{gathered}$	$\begin{gathered} \mathrm{IC}_{50} \mathrm{PI} 3 \mathrm{~K} \gamma \\ {[\mathrm{nM}]} \end{gathered}$	Fold Selectivity γ / δ
16		43	111	2.6
17		31	2197	71
18		24	156	6.5
19		1070	4474	4.2
20		1892	22,134	12
21		956	10,944	11
22		979	8420	8.6
23		135	1380	10

Table 2. Cont.

$\overline{\mathrm{IC}}_{50}$ values were determined as the mean based on two independent experiments.

For that reason, a library of compounds with multiple amine substituents was designed and synthesized (Table 3). Within this set, the lowest IC_{50} values were observed for examples 40, 42, 43, and 55, (measured at $84,74,63$, and 82 nM , respectively). These structures also had good PI3K γ / δ selectivity.

Table 3. PI3K δ and PI3Kg activity of pyrazolo[1,5-a]pyrimidine derivatives with (-CO) groups.

Compound	$\mathbf{R}^{\mathbf{2}}$	$\begin{gathered} \mathrm{IC}_{50} \mathrm{PI} 3 \mathrm{~K} \delta \\ {[\mathrm{nM}]} \end{gathered}$	$\begin{gathered} \mathrm{IC}_{50} \mathrm{PI} 3 \mathrm{~K}_{\gamma} \\ {[\mathrm{nM}]} \end{gathered}$	Fold Selectivity γ / δ
40		84	48,777	581
41		101	2483	25
42		74	3593	48
43		63	3831	61
44		459	2024	4.4
45		1704	23,290	14
46		226	8536	38
47		801	35,750	45
48		314	2793	9
49		213	1818	8.5
50		90	1782	20
51		344	1629	4.7
52		92	5946	65
53		195	2081	11
54		141	1689	12
55		82	2170	26
56		768	11,397	94
57		271	25,527	15

[^0]The consequence of the methylene bridge to carbonyl group interchange can be tracked separately in groups of compounds divided into those with or without hydrogen bond donor (HBD) capabilities within the R^{2} substituent.

The compounds lacking the HBD functionally tend to have better potency when the methylene bridge at the $C(2)$ core position is present within a stable substituent environment. Although some exceptions have been found, including the pairs 33 and 52 or 37 and 56 , for all other pairs, such as 6 and 40 or 38 and 57 , the PI3K δ activity drops when the methylene bridge is replaced with its carbonyl structural equivalent (Scheme 3). The measured potency is positively correlated with the increasing spherical lipophilic volume present at position 4 in the six-membered heterocyclic ring of the amino substituent. As an example, compounds 37, 38 (Table 2), and 6 (Table 1), bearing methyl, iso-propyl, and tert-butyl motif, can be named, for which the IC_{50} value at concentrations of 351,38 , and 18 nM was measured, respectively.

Compounds without HBD

Scheme 3. The correlation of the potencies given for the compounds lacking HBD interaction within the heterocyclic system.

The activity dependence on the relationship between the methylene bridge and carbonyl interchange is not so clear for the compounds with structural capabilities of HBD interaction within the R^{2} substituent. Since it is challenging to isolate the bulkiness of the substituent alone and the accompanying HBD interplay with the surrounding polar environment, both those elements might affect the IC_{50} value. As seen in Scheme 4, there is only a slight prevalence of increased activity toward the carbonyl (amide) functionality. Therefore, both structural motifs (the methylene bridge and the carbonyl function) should be considered equally essential modifications for SAR exploration.

A detailed analysis of the entire library of synthesized compounds led to the selection of five the most promising structures: $\mathbf{6}, \mathbf{1 1}, \mathbf{1 6}, \mathbf{1 7}$, and $\mathbf{1 8}$ (Table 4). All of them turned out to be the derivatives of 2-(difluoromethyl) $-1 H$-benzimidazole at the $C(5)$ position of pyrazolo[1,5-a] pyrimidine core bearing amines of the six-membered ring as the R^{2} can substitute a methylene bridge $\left(\mathrm{CH}_{2}\right)$ as a linkage (Table 4). Their IC_{50} values against PI3K δ were found in the nanomolar range ($18-52 \mathrm{nM}$), good selectivity in relation to other PI3K isoforms, and preserved CD19 cellular activity (for details see Table 4).

Compounds with HBD

Scheme 4. The correlation of the potencies given for the compounds lacking HBD interaction within the heterocyclic system.

Table 4. Activity and selectivity of the most promising compounds.

IC_{50} values were determined as the mean based on two independent experiments.

Besides the best enzymatic and cellular activity, compound 6 was chosen for further development based on acceptable solubility, microsomal stability, permeability, and the plasma protein binding range (for details see Table 5). Attempts to scale up the synthesis turned out to be chemically and economically viable. As a result, the lead compound 6 (CPL302415) was obtained in the amount exceeding one kilogram and purity suitable for future toxicological studies.

Due to the prediction of metabolism, the calculation of in vitro clearance, or the identification of the correlation of metabolites with hepatic stability in the ADMET studies [37,38], many important parameters were determined for our lead compound CPL302415 (Table 5). The metabolic stability was evaluated by measuring the intrinsic clearance and $t_{1 / 2}$ in mice and human liver microsomes (MLM and HLM), which were reported as very promising for CPL302415 (details in Table 5). Moreover, this structure has good solubility, permeability, and optimistic plasma protein binding parameters ((PPBs) in the range of 79-83\% depending on the species; Table 5). Additionally, CPL302415 (6) was checked for bioavailability in mice ($\mathrm{F}>55 \%$) and dogs ($\mathrm{F}>90 \%$), depending on the formulation form. All these parameters make CPL302415 ready for toxicological studies and, hopefully, for future clinical trials.

Table 5. Selected parameters measured for CPL302415 (6).

	Kinetic Solubility pH 7.4 [mM]	Metabolic Stability				PAMPA$\left[10^{-6} \mathbf{c m} \times \mathbf{s}^{-1}\right]$	Plasma Protein Binding [\%]			
		$\begin{gathered} \mathbf{M L M ~}_{1 / 2} \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { MLM CL } \\ {\left[\mathbf{m L} \times \mathbf{m n}^{-1} \times \mathbf{m g}^{-1}\right]} \end{gathered}$	$\begin{gathered} \text { HLM } \mathbf{t}_{1 / 2} \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { HLM CL } \\ {\left[\mathbf{m L} \times \mathbf{m i n}^{-1} \times \mathbf{m g}^{-1}\right]} \end{gathered}$		Human	Monkey	Mice	Rat
6	>500	378	3.7	145	9.6	13.3	79	81	83	82

3. Materials and Methods

3.1. Chemistry

3.1.1. General Information

Chemicals (at least 95\% purity) were purchased from ABCR (Dallas, TX, USA), Acros (Geel, Belgium), Alfa Aesar (Haverhill, MA, USA), Combi-Blocks (San Diego, CA, USA), Fluorochem (Hadfield, UK), (Buchs, Switzerland), Merck (Darmstadt, Germany), and Sigma Aldrich (Saint Louis, MI, USA), and were used without additional purification. Solvents were purified according to standard procedures if required. Air- or moisture-sensitive reactions were carried out under an argon atmosphere. All reaction progresses were routinely checked by thin-layer chromatography (TLC). TLC was performed using silica-gel-coated plates (Kieselgel F254) and visualized using UV light. Flash chromatography was performed using Merck silica gel 60 (230-400 mesh ASTM). ${ }^{1} \mathrm{H}$ NMR spectra were acquired using a Varian Inova 300 MHz NMR spectrometer, a JOEL JNMR-ECZS 400 MHz spectrometer, a JOEL JNMR-ECZR 600 MHz spectrometer, and a Bruker DRX 500 NMR spectrometer with ${ }^{1} \mathrm{H}$ being observed at $300 \mathrm{MHz}, 400 \mathrm{MHz}, 600 \mathrm{MHz}$, and 500 MHz , respectively. ${ }^{13} \mathrm{C}$ NMR spectra were recorded similarly at $75 \mathrm{MHz}, 101 \mathrm{MHz}, 151 \mathrm{MHz}$, and 126 MHz frequencies for ${ }^{13} \mathrm{C}$, respectively. Due to the poor solubility of some final compounds, usual characterization was omitted using ${ }^{13} \mathrm{C}$ NMR. Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were reported in $\delta(\mathrm{ppm})$ using tetramethylsilane as an internal standard or according to the residual undeuterated solvent signal (2.50 ppm for DMSO- d_{6} and 7.26 ppm for CDCl_{3}). The abbreviations for spin interaction coupled ${ }^{1} \mathrm{H}$ signals are as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), dt (doublet of triplet), and q (quartet). Coupling constants (J) are expressed in Hertz. The ${ }^{13} \mathrm{C}$ NMR spectrum was recorded with the use of the JEOL Royal HFX probehead that allows measurements to be taken with the simultaneous decoupling of both ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ nuclei [39]. Mass spectra (atmospheric pressure ionization electrospray (API-ES) and electrospray ionization (ESI-MS)) were obtained using the Agilent 6130 LC/MSD spectrometer or Agilent 1290 UHPLC coupled with the Agilent QTOF 6545 mass spectrometer. All spectra of final compounds are in Supplementary Materials.

3.1.2. Synthesis

Procedure for 5-chloro-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-2-yl]methanol (2)
Calcium chloride ($10.4 \mathrm{~g}, 93.6 \mathrm{mmol}$) and sodium borohydride $(7.56 \mathrm{~g}, 190 \mathrm{mmol})$ were added to the suspension of ethyl 5-chloro-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2carboxylate $(10.0 \mathrm{~g}, 31.2 \mathrm{mmol})$ in $\mathrm{EtOH}(150 \mathrm{~mL})$. The mixture was stirred and heated to
reflux for 3 h . Then, the reaction was cooled to RT and quenched with $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}(150 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$. The aqueous phase was extracted three times with AcOEt. The combined extracts were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give 2 as a white solid ($8.36 \mathrm{~g}, 31.1 \mathrm{mmol}$) with a 99% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $6.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.32(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}), 4.59(\mathrm{dd}, J=5.9,0.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.82-3.80 (m, 4H, morph.), 3.78-3.77 (m, 4H, morph.).

Procedure for 5-chloro-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carbaldehyde (3)
To a solution of compound $2(3.00 \mathrm{~g}, 10.9 \mathrm{mmol})$ in DMF $(30.0 \mathrm{~mL})$ in argon atmosphere, Dess-Martin periodinane ($97 \%, 5.74 \mathrm{~g}, 13.1 \mathrm{mmol}$) was added. The resulting mixture was stirred at room temperature for 2 h . The solvent was evaporated. The residue was washed with AcOEt and filtered. The filtrate was concentrated and the crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) to give 3 ($1.34 \mathrm{~g}, 5.02 \mathrm{mmol}$) with a 46% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.09$ ($\mathrm{s}, 1 \mathrm{H},-\mathrm{CHO}$), 6.97 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.63 (s, 1H, Ar-H), 3.90-3.85 (m, 4H, morph.), 3.86-3.78 (m, 4H, morph.).

General Procedure for the Reductive Amination Reaction

Amine derivative (1.2 eq) was added to the solution of the corresponding aldehyde (1.0 eq) in dry DCM ($10 \mathrm{~mL} / 1 \mathrm{~g}$ corresponding aldehyde) and then stirred at room temperature. After 1 h , sodium triacetoxyborohydride (1.5 eq) was added and the mixture was stirred at room temperature for a further 15 h . Water was added to the reaction mixture and phases were separated. The aqueous phase was extracted three times with DCM. Combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography.
4-\{2-[(4-tert-butylpiperazin-1-yl)methyl]-5-chloropyrazolo[1,5-a]pyrimidin-7-yl\}morpholine (4)
Compound 4 was prepared from aldehyde $3(1.70 \mathrm{~g}, 2.15 \mathrm{mmol})$, 1-tert-butylpiperazine $(0.36 \mathrm{~g}, 2.58 \mathrm{mmol})$, and $\mathrm{DCM}(17.0 \mathrm{~mL})$ with sodium triacetoxyborohydride $(0.68 \mathrm{~g}$, $3.22 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give $4(1.42 \mathrm{~g}, 3.61 \mathrm{mmol})$ as a white solid with a 84% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 6.38$ (s, 1H, Ar-H), 6.36 (s, 1H, Ar-H), 3.83-3.80 (m, 4H, morph.), 3.80-3.78 (m, 4H, morph.), $3.59\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 2.50-2.46(\mathrm{~m}, 4 \mathrm{H}$, piperaz.), 2.45-2.37 (m, 4H, piperaz.), $0.98(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}$.$) .$

General Procedure for the Buchwald-Hartwig Reaction

To a pressure, microwave vessel 5-chloro-pyrazolo[1,5-a]pyrimidine (1.0 eq), amine (1.5 eq), tris(dibenzylideneacetone)dipalladium (0.05 eq), 9,9-dimethyl-4,5-bis(diphenyl phosphino)xanthene (0.1 eq), cesium carbonate (2.0 eq), and solvent ($10 \mathrm{~mL} / 1 \mathrm{~g}$ pyrazolo[1,5a]pyrimidine) were simultaneously added. The reaction vessel was then sealed and heated to $150^{\circ} \mathrm{C}$ for 6 h in a microwave (power 200 W). Then, the reaction mixture was filtered through Celite ${ }^{\circledR}$ and concentrated, and the crude product was purified using flash chromatography.
1-\{2-[(4-tert-butylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl\}-2-methyl-1H-benzimidazole (5)

Compound 5 was synthesized from $4(0.22 \mathrm{~g}, 0.56 \mathrm{mmol})$ and 2-methyl-benzimidazole ($0.11 \mathrm{~g}, 0.83 \mathrm{mmol}$) as an amine, tris(dibenzylideneacetone)dipalladium ($26.3 \mathrm{mg}, 0.027 \mathrm{mmol}$), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene ($33.9 \mathrm{mg}, 0.055 \mathrm{mmol}$), cesium carbonate $(0.37 \mathrm{~g}, 1.11 \mathrm{mmol})$, and o-xylene (2.20 mL), according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) to give the title compound 5 as a white solid (0.19 g , $0.38 \mathrm{mmol})$ with a 69% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.50-7.43 (m, 1H, Ar-H), 7.35-7.21 (m, 2H, Ar-H), 6.60 (s, 1H, Ar-H), 6.17 (s, 1H,Ar-H), 4.02-3.95 (m, 4H, morph.), 3.90-3.83 (m, 4H, morph.), $3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.71-2.59 (m, 8H, piperaz.), 1.08 (s, 9H, t-Bu.). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1$,
$151.4,151.2,151.0,150.2,148.5,142.7,134.5,122.9,119.4,110.3,96.5,87.6,66.1,56.3,53.6$, 48.4, 45.5, 25.8, 15.6. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 489.3084$ found 489.3088 .

1-\{2-[(4-tert-butylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl\}-2-(difluoromethyl)-1H-benzimidazole (6)

Compound 6 was synthesized from 4 ($0.27 \mathrm{~g}, 0.68 \mathrm{mmol}$), 2-(difluoromethyl)benzimidazole ($0.17 \mathrm{~g}, 1.01 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium ($31.8 \mathrm{mg}, 0.033 \mathrm{mmol}$), $9,9-$ dimethyl-4,5-bis(diphenylphosphino)xanthene ($39.0 \mathrm{mg}, 0.067 \mathrm{mmol}$), cesium carbonate ($0.44 \mathrm{~g}, 1.35 \mathrm{mmol}$), and o-xylene $(2.70 \mathrm{~mL})$, according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane; amino-functionalized gel column) and crystallization (AcOEt) to give $6(0.33 \mathrm{~g}, 0.63 \mathrm{mmol})$ as a white solid with a 93% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.65-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.43-7.38$ (m, 2H, Ar-H), $7.25\left(\mathrm{t}, \mathrm{J}=53.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.29$ (s, 1H, Ar-H), 3.99-3.97 (m, 4H, morph.), 3.90-3.89 (m, 4H, morph.), 3.80 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.64 ($\mathrm{s}, 8 \mathrm{H}$), 1.07 ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}.\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.5,151.3,150.0,147.5,144.7,141.8,134.6,125.7$, 124.1, 121.5, 111.7, $109.2\left(\mathrm{CF}_{2}\right), 96.7,87.2,66.2,56.3,53.9,53.6,48.5,45.6,25.9$ (t-Bu.). HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 525.2896$ found 525.2904.

1-\{2-[(4-tert-butylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl\}-2-ethyl-1H-benzimidazole (7)

Compound 7 was synthesized from $4(0.17 \mathrm{~g}, 0.42 \mathrm{mmol})$, 2-ethyl-benzimidazole ($93.0 \mathrm{mg}, 0.64 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium ($20.0 \mathrm{mg}, 0.021 \mathrm{mmol}$), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene ($25.8 \mathrm{mg}, 0.042 \mathrm{mmol}$), cesium carbonate $(0.28 \mathrm{~g}, 0.85 \mathrm{mmol})$, and o-xylene $(1.7 \mathrm{~mL})$, according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane; amino-functionalized gel column) to give the title compound 7 as a white solid ($85.0 \mathrm{mg}, 0.17 \mathrm{mmol}$) with a 40% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{dd}, J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.42(\mathrm{dd}, J=6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.26(\mathrm{qd}$, $J=7.3,3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.57$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.16 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.00-3.94$ (m, 4H, morph.), $3.87-3.79(\mathrm{~m}, 6 \mathrm{H}), 3.10\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77(\mathrm{~s}, 8 \mathrm{H}), 1.40\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.17 (s, 9H, t-Bu.). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,154.9,151.2,150.3,148.6,142.7$, 134.6, 122.9, 119.5, 110.2, 99.8, $96.4,87.9,66.1,56.0,52.5,48.4,45.6,25.4,22.1,11.9$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 503.3241$ found 503.3242.

1-\{2-[(4-tert-butylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl\}-2-cyclopropyl-1H-benzimidazole (8)

Compound 8 was synthesized from 4 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2-cyclopropyl-benzimidazole ($59.2 \mathrm{mg}, 0.37 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium ($11.8 \mathrm{mg}, 0.012 \mathrm{mmol}$), 9,9 -dimethyl-4,5-bis(diphenylphosphino)xanthene ($15.2 \mathrm{mg}, 0.025 \mathrm{mmol}$), cesium carbonate ($168 \mathrm{mg}, 0.51 \mathrm{mmol}$), and o-xylene (1.0 mL), according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-20 \% \mathrm{MeOH}$ gradient in AcOEt) to give the title compound 8 as a white solid $(93.0 \mathrm{mg}$, $0.18 \mathrm{mmol})$ with a 72% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.53-7.51 (m, 1H, Ar-H), 7.29-7.20 (m, 2H, Ar-H), 6.61 (s, 1H, Ar-H), 6.28 (s, 1H, Ar-H), 3.99-3.97 (m, 4H, morph.), 3.87-3.84 (m, 4H, morph.), 3.82 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.66 (s, 8 H), 2.39-2.32 (m, 1H, CH), 1.39-1.35 (m, 2H, CH2), 1.12-1.06 (m, 11H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 156.4,155.1,151.2,150.4,148.8,142.7,134.9,123.0,122.8,119.2,110.6,96.6,88.4,66.2$, $56.3,53.7,48.5,45.7,25.8$ (t-Bu.), 9.8, 8.9. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}$ $[M+H]^{+} 515.3241$ found 515.3239.

1-\{2-[(4-tert-butylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl\}-2-(trifluoromethyl)-1H-benzimidazole (9)

Compound 9 was synthesized from $4(0.20 \mathrm{~g}, 0.51 \mathrm{mmol})$, 2-(trifluoromethyl)benzimidazole ($0.14 \mathrm{~g}, 0.76 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium (24.1 mg ,
0.025 mmol), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene ($29.5 \mathrm{mg}, 0.051 \mathrm{mmol}$), cesium carbonate $(0.34 \mathrm{~g}, 1.02 \mathrm{mmol})$, and toluene $(2.0 \mathrm{~mL})$, according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane; amino-functionalized gel column) to give the title compound 9 as a white solid ($12.0 \mathrm{mg}, 0.02 \mathrm{mmol}$) with a 4% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94-7.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.55-7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.42(\mathrm{~m}$, 2H, Ar-H), 6.63 (s, 1H, Ar-H), 6.16 (s, 1H, Ar-H), 3.98-3.97 (m, 4H, morph.), 3.90-3.89 (m, 4 H , morph.), $3.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.13-1.06(\mathrm{~m}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}.) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right.$, $\left.{ }^{19} \mathrm{~F}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 151.2,150.2,147.0,141.0,139.9,135.4,126.3,124.5,121.7,119.7$, 118.0, 111.9, 97.2, 88.1, 66.2, 56.3, 53.8, 48.6, 45.7, 45.0, 29.7, 25.9, 25.8. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 543.2802$ found 543.2806.
2-(1-\{[5-chloro-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-2-yl]methyl\}piperidin-4-yl) propan-2-ol (10)

Compound 10 was prepared from 3 ($3.4 \mathrm{~g}, 12.5 \mathrm{mmol}$), 2-(4-piperidyl)-2-propanol $(2.24 \mathrm{~g}, 15.0 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(34.0 \mathrm{~mL})$, and sodium triacetoxyborohydride (4.09 g , $18.7 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give $10(3.1 \mathrm{~g}, 7.87 \mathrm{mmol})$ with a 63% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.48(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), $6.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.94(\mathrm{dd}, J=5.9,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.78(\mathrm{dd}, J=5.9,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.72(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.11-3.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.09-1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.78-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.21(\mathrm{~m}$, $4 \mathrm{H}), 1.16\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$.

2-[1-(\{5-[2-(difluoromethyl)-1H-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)piperidin-4-yl]propan-2-ol (11)

Compound 11 was synthesized from 10 ($0.50 \mathrm{~g}, 1.24 \mathrm{mmol}$), 2-(difluoromethyl)benzimidazole ($0.31 \mathrm{~g}, 1.87 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium (58.7 mg , 0.63 mmol), 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene ($75.8 \mathrm{mg}, 0.12 \mathrm{mmol}$), cesium carbonate ($0.82 \mathrm{~g}, 2.49 \mathrm{mmol}$), and toluene $(5.0 \mathrm{~mL})$, according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-15 \% \mathrm{MeOH}$ gradient in AcOEt) and crystallization (AcOEt) to give 11 (0.43 g , 0.81 mmol) as a white solid with a 66% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.85$ (dd, $J=20.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.55(\mathrm{~s}, ~ J=54.0,1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.51-7.40(\mathrm{~m}, 2 \mathrm{H}), 6.66$ (s, 1H, Ar-H), 6.53 (s, 1H, Ar-H), 3.94 (s, 4H, morph.), 3.84 (s, 4H, morph.), 3.65 (s, 2H, CH2), 2.97 (d, $\left.J=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.93(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.10(\mathrm{~m}, 3 \mathrm{H})$, $1.02\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 155.4,150.8,149.6,146.9,144.6(\mathrm{t}$, $J=47.5 \mathrm{~Hz}), 141.1,134.0,125.4,123.8,120.6,112.3,108.5(\mathrm{t}, J=177.7 \mathrm{~Hz}), 95.2,87.6,70.1$, 65.5, 56.1, 53.8, 48.1, 46.8, 26.8, 26.5. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 526.2736$ found 526.2741.

2-(1-\{[5-(2-methyl-1H-1,3-benzimidazol-1-yl)-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-2-yl]methyl\}piperidin-4-yl)propan-2-ol (12)

Compound 12 was synthesized from $10(0.15 \mathrm{~g}, 0.38 \mathrm{mmol})$, 2-methyl-benzimidazole ($75.5 \mathrm{mg}, 0.57 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium ($18.0 \mathrm{mg}, 0.019 \mathrm{mmol}$), 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene ($23.2 \mathrm{mg}, 0.038 \mathrm{mmol}$), cesium carbonate $(0.25 \mathrm{~g}, 0.56 \mathrm{mmol})$, and o-xylene $(1.5 \mathrm{~mL})$, according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-20 \% \mathrm{MeOH}$ gradient in AcOEt) to give the title compound 12 as a white solid (97.0 mg , 0.20 mmol) with a 52% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.52-7.45 (m, 1H, Ar-H), 7.34-7.20 (m, 2H), 6.61 (s, 1H, Ar-H), 6.18 (s, 1H, Ar-H), 4.04-3.95 (m, 4H, morph.), 3.91-3.82 (m, 4H, morph.), 3.79 (s, 2H, CH2 $), 3.18-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.16-2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.82-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.55-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 1 \mathrm{H})$, $1.19\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2,151.5,151.2,150.2,148.5,142.6$, 134.4, 123.0, 119.3, 110.3, 96.5, 87.6, 72.3, 66.1, 56.4, 53.9, 48.4, 47.0, 29.6, 26.7, 15.5. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 490.2925$ found 490.2956.

Procedure for 5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo pyrimidine-2-carboxylate (13)

Compound 13 was synthesized from ethyl 5-chloro-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carboxylate ($100 \mathrm{mg}, 0.31 \mathrm{mmol}$), 2-(difluoromethyl)-1H-benzimidazole ($79.5 \mathrm{mg}, 0.47 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium ($14.4 \mathrm{mg}, 0.015 \mathrm{mmol}$), 9,9 -dimethyl-4,5-bis(diphenylphosphino)xanthene ($19.2 \mathrm{mg}, 0.03 \mathrm{mmol}$), cesium carbonate $(0.21 \mathrm{~g}, 0.63 \mathrm{mmol})$, and toluene $(2.0 \mathrm{~mL})$, according to the general procedure for the Buchwald-Hartwig reaction. The crude product was purified by flash chromatography ($0-50 \%$ AcOEt gradient in heptane; amino-functionalized gel column) to give the title compound 13 as a light yellow solid ($65.0 \mathrm{mg}, 0.31 \mathrm{mmol}$) with a 47% yield.

Alternatively, $\mathbf{1 3}$ can be synthesized as follows. Ethyl 5-chloro-7-(morpholin-4-yl) pyrazolo[1,5-a]pyrimidine-2-carboxylate ($100 \mathrm{~g}, 312 \mathrm{mmol}$), 2-(difluoromethyl)-1 H benzimidazole ($79.5 \mathrm{~g}, 473 \mathrm{mmol}$), tetra ethyl ammonium chloride ($78.0 \mathrm{~g}, 471 \mathrm{mmol}$), potassium carbonate ($87.0 \mathrm{~g}, 623 \mathrm{mmol}$), and DMF (1000 mL) were added to a reactor (2000 mL volume). The reaction was heated at $160^{\circ} \mathrm{C}$ for 3 h . Then, the reaction was cooled to room temperature, filtered through Celite ${ }^{\circledR}$, and washed with AcOEt (1.5 1). Water (3.0 mL) was added to the filtrate and phases were separated. The organic layer was concentrated. The solid was dissolved in $20 \% \mathrm{MeOH}$ in DCM and the crude product was then purified by filtration through silica gel $(0.72 \mathrm{~kg})(20 \% \mathrm{MeOH}$ in DCM$)$ and macerated in TBME to give $13(123 \mathrm{~g}, 312 \mathrm{mmol})$ as a light yellow solid with an 89% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), $7.30\left(\mathrm{t}, J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), \mathrm{Ar}-\mathrm{H}, 4.48(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{22}$), 4.03-3.99 (m, 4H, morph.), 3.98-3.93 (m, 4H, morph.), 1.45 (dd, $J=8.1,6.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$).

Procedure for \{5-[2-(difluoromethyl)-2,3-dihydro-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-2-yl\}methanol (14)

Lithium aluminum hydride solution (1 M in THF, $8.00 \mathrm{~mL}, 7.20 \mathrm{~g}, 8.00 \mathrm{mmol}$) was added to the suspension of $13(2.40 \mathrm{~g}, 5.30 \mathrm{mmol})$ in dry THF $(28.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The suspension was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with $1.0 \mathrm{M} \mathrm{HCl}(14.0 \mathrm{~mL})$. Then, water $(70 \mathrm{~mL})$ and $\operatorname{AcOEt}(90 \mathrm{~mL})$ were added and the mixture was then allowed to warm to room temperature and stirred for 0.5 h . The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed under reduced pressure. The solid was macerated with DCM to give the title compound $14(1.90 \mathrm{~g}, 4.72 \mathrm{mmol})$ as a light yellow solid with an 89% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), 6.74 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ (ddd, $J=8.7,6.9,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.12(\mathrm{~s}, J=54.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.13(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.47\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74$ ($\mathrm{t}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 3.65-3.54 (m, 4H, morph.).

Procedure for 5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carbaldehyde (15)

Dess-Martin reagent ($2.90 \mathrm{~g}, 6.63 \mathrm{mmol}$) was added to the solution of $14(1.30 \mathrm{~g}$, $3.23 \mathrm{mmol})$ in dry DMF $(33 \mathrm{~mL})$. The whole mixture was stirred at room temperature for 1 h . The solid was filtered off and then washed with ethyl acetate (25 mL). The obtained solution was concentrated under reduced pressure. The crude product was purified by flash chromatography ($0-70 \%$ ethyl acetate gradient in heptane) to give 15 ($1.02 \mathrm{~g}, 2.56 \mathrm{mmol}$) as a white solid with a 78% yield.

Alternatively, 15 can be synthesized as follows. Activated toluene:butyl acetate 1:1 $(700 \mathrm{~mL})$ manganese(IV) oxide ($58.4 \mathrm{~g}, 667 \mathrm{mmol}$) was added to the solution of $14(27.2 \mathrm{~g}$, 67.1 mmol). The mixture was stirred at reflux (set temp: $120^{\circ} \mathrm{C}$) for 1.5 h . The reaction was then filtered through Celite ${ }^{\circledR}$. Celite ${ }^{\circledR}$ was washed with DCM (200 mL). Organic phases were combined, and concentrated to give $15(18.2 \mathrm{~g}, 45.7 \mathrm{mmol})$ as a creamy solid with a 68% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 7.97-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.73-7.67 (m, 1H, Ar-H), 7.48-7.42 (m, 2H, Ar-H), $7.29\left(\mathrm{t}, J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.11$ (s,

1H, Ar-H), 6.53 (s, 1H, Ar-H), 4.03 (dd, $J=6.1,2.7 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 3.96 (dd, $J=6.3,2.9 \mathrm{~Hz}$, 4 H , morph.).

General Procedure for the Amidation Reaction

Corresponding amine (1.05 eq), 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethy luronium hexafluorophosphate (HATU) (1.1 eq), and triethylamine (1.5 eq) were added to the solution of substituted 5-chloro-pyrazolo[1,5-a]pyrimidine derivative (1.0 eq) in solvent ($10 \mathrm{~mL} / 1 \mathrm{~g}$ pyrazolo[1,5-a]pyrimidine derivative). The mixture was stirred at room temperature for 2 h . Water was added to the reaction mixture and phases were separated. The aqueous phase was extracted three times with the solvent. Combined organic phases were dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by flash chromatography.
2-(difluoromethyl)-1-\{2-[(4-methanesulfonylpiperazin-1-yl)methyl]-7-(morpholin-4-yl) pyrazolo[1,5-a]pyrimidin-5-yl\}-1H-1,3-benzimidazole (16)

Compound 16 was prepared from aldehyde 15 ($0.48 \mathrm{~g}, 1.18 \mathrm{mmol}$), 1-methanesulfonyl piperazine $(0.24 \mathrm{~g}, 1.42 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(4.80 \mathrm{~mL})$, and sodium triacetoxyborohydride ($0.38 \mathrm{~g}, 1.87 \mathrm{mmol}$), according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) and crystallization (AcOEt) to give the title compound 16 ($0.35 \mathrm{~g}, 0.63 \mathrm{mmol}$) as a white solid with a 54% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.66-7.65 (m, 1H, Ar-H), 7.45-7.40 (m, 2H, Ar-H), 7.29 (t, $J=52.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), $6.58(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 6.33 (s, 1H, Ar-H), 4.00-3.98 (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), 3.83 (s, 2H, $\left.\mathrm{CH}_{2}\right), 3.29(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1,151.4,150.2,147.7,144.6,141.9,134.6,125.7,124.2,121.6,111.7$, $109.3\left(\mathrm{CF}_{2}\right), 96.3,87.5,66.2,56.2,52.4,48.6,45.9,34.3$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 547.2045$ found 547.2048 .
2-[4-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)piperazin-1-yl]-2-methylpropanamide (17)

Compound 17 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), 2-methyl-2-(piperazin-1-yl)propanamide dihydrochloride ($0.38 \mathrm{~g}, 1.48 \mathrm{mmol}$) as an amine, DCM $(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-15 \% \mathrm{MeOH}$ gradient in AcOEt) to give $17(0.49 \mathrm{~g}, 0.88 \mathrm{mmol})$ as a light yellow solid with a 72% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.67-7.63 (m, 1H, Ar-H), 7.45-7.39 (m, 2H, Ar-H), 7.23 (t, J = 53.6 Hz, 1H, CHF 2), 7.13 (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.46(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.96$ ($\mathrm{m}, 4 \mathrm{H}$, morph.), 3.93-3.89 (m, 4H, morph.), $3.79(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 8 \mathrm{H}), 1.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 180.1, 155.5, 151.3, 150.1, 147.6, 144.7, 141.8, 134.5, 125.7, 124.2, 121.6, 111.7, $109.3\left(\mathrm{CF}_{2}\right), 96.5,87.3,66.2,63.5,56.4,53.9,48.5,46.6,20.6$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 554.2798$ found 554.2800.

2-\{2-[(4-cyclopropanecarbonylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-5-yl\}-2-(difluoromethyl)-1H-1,3-benzimidazole (18)

Compound 18 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 1-(cyclopropylcarbonyl) piperazine ($0.21 \mathrm{~mL}, 0.23 \mathrm{~g}, 1.48 \mathrm{mmol}$) as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-15 \%$ MeOH gradient in AcOEt) and crystallization (AcOEt) to give $18(0.45 \mathrm{~g}, 0.84 \mathrm{mmol})$ as a white solid with a 68% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.67-7.64 (m, 1H, Ar-H), 7.46-7.39 (m, 2H, Ar-H), 7.23 ($\mathrm{t}, J=53.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 6.61 (s , 1H, Ar-H), 6.33 (s, 1H, Ar-H), 4.00-3.96 (m, 4H, morph.), 3.93-3.89 (m, 4H, morph.), 3.82 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.73-3.69 (m, 4H), 2.60 (d, $\left.J=24.3 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.00-0.96$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.77-0.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.9,155.3$,
151.4, 150.1, 147.7, 144.6, 141.9, 134.6, 125.7, 124.2, 121.6, 111.7, $109.3\left(\mathrm{CF}_{2}\right), 96.4,87.4,66.2$, 56.4, 48.5, 10.9, 7.4. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 537.2532$ found 537.2541.
[1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)pyrrolidin-2-yl]methanol (19)

Compound 19 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), 2-pyrrolidinyl methanol ($0.14 \mathrm{~mL}, 0.15 \mathrm{~g}, 1.48 \mathrm{mmol}$) as an amine, DCM (5.0 mL), and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-20 \%$ MeOH gradient in AcOEt) to give $19(0.33 \mathrm{~g}, 0.68 \mathrm{mmol})$ as a white solid with a 55% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45-7.38$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.29\left(\mathrm{t}, \mathrm{J}=53.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.14$ (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.00-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 6 \mathrm{H}), 3.70(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{dd}, J=11.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.72(\mathrm{~m}, 1 \mathrm{H})$, 2.59-2.54 (m, 1H), 1.97-1.92 (m, 1H), 1.82-1.75 (m, 2H, CH2). $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 156.5,151.4,150.1,147.6,144.7,141.8,134.5,125.7,124.2,121.6,111.7,109.3\left(\mathrm{CF}_{2}\right)$, 96.2, 87.5, 66.2, 64.3, 62.3, 54.8, 51.7, 48.6, 27.7, 25.3, 23.5. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 484.2267$ found 484.2271.
1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)pyrrolidin-3-amine (20)

Compound tert-butyl N-[1-(\{5-[2-(difluoromethyl)-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-2-yl\}methyl)pyrrolidin-3-yl]carbamate (Boc-20) was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 3-(Boc-amino)pyrrolidine (0.27 g , 1.48 mmol) as an amine, DCM (5.0 mL), and sodium triacetoxyborohydride (0.40 g , $1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give Boc-20 ($0.50 \mathrm{~g}, 0.88 \mathrm{mmol}$) as a white solid with a 71% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23$ $\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.91-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.20$ $(\mathrm{d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.96(\mathrm{~m}, 4 \mathrm{H}), 3.93-3.82(\mathrm{~m}, 6 \mathrm{H}), 2.97(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}$.$) .$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.0,155.4,151.4,150.1,147.6,144.7,141.8,134.6$, $125.7,124.2,121.5,111.7,109.3\left(\mathrm{CF}_{2}\right), 96.2,87.4,66.2,61.0,53.4,52.8,48.5,32.7,28.4(\mathrm{t}-\mathrm{Bu})$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 569.2794$ found 569.2803.

The solution of Boc-20 ($0.40 \mathrm{~g}, 0.69 \mathrm{mmol}$) in trifluoroacetic acid ($2.08 \mathrm{~mL}, 3.09 \mathrm{~g}$, 26.9 mmol) was heated at $50^{\circ} \mathrm{C}$ for 3 h . The reaction was then cooled to room temperature, stopped with $15 \% \mathrm{NaOH}(15 \mathrm{~mL})$. The aqueous mixture was extracted with DCM $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give 20 as a white solid ($0.30 \mathrm{~g}, 0.64 \mathrm{mmol}$) with a 93% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.89-7.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.81$ (dd, $J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.59\left(\mathrm{t}, J=52.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.69(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.94-3.89(\mathrm{~m}, 6 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 5 \mathrm{H}), 3.73(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.13-2.23(1 \mathrm{H}), 1.68-1.80(1 \mathrm{H}), 1.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 158.0,150.9,149.7,147.2,144.7,141.2,134.1,125.5,124.0,120.7,117.3,112.4$, 108.6, 95.5, 88.0, 65.6, 51.9, 48.3, 29.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 469.2270$ found 469.2273.
(3S)-1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)pyrrolidin-3-ol (21)

Compound 21 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), (S)-3-pyrrolidinol $(0.16 \mathrm{~mL}, 0.17 \mathrm{~g}, 1.85 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography (0-100\% AcOEt gradient in
heptane, amino-functionalized gel column) to give $21(0.22 \mathrm{~g}, 0.47 \mathrm{mmol})$ as a light yellow solid with a 38% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.64$ (m, 1H, Ar-H), 7.45-7.39 (m, 2H, Ar-H), $7.23\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.41-4.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 4.00-3.96(\mathrm{~m}, 4 \mathrm{H}$, morph.), 3.93-3.89 (m, 6H), $3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.74(\mathrm{dd}, J=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (td, $J=8.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right.$, ${ }^{19}$ F\}NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.0,151.4,150.1,147.6,144.7,141.8,134.6,125.7,124.2$, 121.6, 111.7, $109.3\left(\mathrm{CF}_{2}\right), 96.3,87.4,71.5,66.2,62.8,53.3,52.4,48.5,35.1$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 470.2110$ found 470.2134 .
(3R)-1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)pyrrolidin-3-ol (22)

Compound 22 was prepared from aldehyde 15 ($0.50 \mathrm{mg}, 1.23 \mathrm{mmol}$), (R)-3-pyrrolidinol $(0.16 \mathrm{~mL}, 0.17 \mathrm{~g}, 1.85 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane, amine gel column) to give $22(0.34 \mathrm{~g}, 0.73 \mathrm{mmol})$ as a white solid with a 60% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.45-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23\left(\mathrm{t}, \mathrm{J}=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 4.40-4.36 (m, 1H, OH), 4.00-3.97 (m, 4H, morph.), 3.92-3.88 (m, 6H), 3.04-2.99 (m, 1H), $2.82(\mathrm{dd}, J=10.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{td}, J=8.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27-2.18 (m, 2H), 1.83-1.75 (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,151.4$, 150.1, 147.6, 144.7, 141.8, 134.6, 125.7, 124.2, 121.5, 111.7, $109.3\left(\mathrm{CF}_{2}\right), 96.3,87.4,71.5,66.2$, 62.9, 53.4, 52.4, 48.5, 35.1. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 470.2110 found 470.2115 .

2-(difluoromethyl)-1-[7-(morpholin-4-yl)-2-(morpholin-4-ylmethyl)pyrazolo[1,5-a]pyrimidin-5-yl]-1H-1,3-benzimidazole (23)

Compound 23 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), morpholine $(0.13 \mathrm{~mL}, 0.13 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.00 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-15 \%$ AcOEt gradient in heptane, amino-functionalized gel column) and crystallization) (AcOEt) to give the title compound $23(0.28 \mathrm{~g}, 0.60 \mathrm{mmol})$ as a white solid with a 50% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.89-7.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.63-7.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23$ (d, $\left.J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.92(\mathrm{dd}, J=6.0,2.9 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 3.83 (dd, $J=6.1,3.0 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 3.72 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.71-3.66$ (m, 4H, morph.), 2.58-2.49 (m, 4H, morph.). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,151.5,150.3,147.8,144.84$ $(\mathrm{t}, J=26.2 \mathrm{~Hz}), 142.1,134.8,125.0,124.3,121.7,111.9,109.5(\mathrm{t}, J=238.5 \mathrm{~Hz})\left(\mathrm{CF}_{2}\right), 96.7$, 87.5, 77.6, 77.2, 76.7, 67.1, 66.4, 57.1, 53.8, 48.7,31.0. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 470.2110$ found 470.2113 .

2-(difluoromethyl)-1-(2-\{[(3S)-3-methylmorpholin-4-yl]methyl\}-7-(morpholin-4-yl)pyrazolo pyrimidin-5-yl)-1H-1,3-benzimidazole (24)

Compound 24 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol}),(R)-3$-methylmorpholine $(0.15 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}$, 1.85 mmol), according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) and crystallization (AcOEt) to give $24(0.32 \mathrm{~g}, 0.67 \mathrm{mmol})$ as a white solid with a 54% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45-7.39$ (m, 2H, Ar-H), $7.23\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.07$ (d, J = 14.4 Hz, 1H, CH), 4.00-3.97 (m, 4H, morph.), 3.93-3.89 (m, 4H, morph.), 3.84 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dt}, J=11.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=11.2,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78(\mathrm{dt}, J=11.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.15\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right.$, ${ }^{19}$ F\}NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1,151.2,150.0,147.6,144.7,141.9,134.5,125.7,124.2$,
121.6, 111.7, $109.3\left(\mathrm{CF}_{2}\right), 96.8,87.3,73.0,67.4,66.2,54.5,51.7,51.6,49.3,48.5,14.4$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 484.2267$ found 484.2269.

2-(difluoromethyl)-1-(2-\{[(3R)-3-methylmorpholin-4-yl]methyl\}-7-(morpholin-4-yl)pyrazolo pyrimidin-5-yl)-1H-1,3-benzimidazole (25)

Compound 25 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, ($($) -3-methylmorpholine $(0.16 \mathrm{~g}, 1.51 \mathrm{mmol})$ as an amine, DCM $(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride (0.40 g , 1.85 mmol), according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) and crystallization (AcOEt) to give $25(0.33 \mathrm{~g}, 0.68 \mathrm{mmol})$ as a white solid with a 55% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.68-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45-7.39$ (m, 2H, Ar-H), $7.23\left(\mathrm{t}, \mathrm{J}=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.07$ (d, J = 14.4 Hz, 1H, CH), 4.00-3.97 (m, 4H, morph.), 3.93-3.89 (m, 4H, morph.), 3.85 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}, J=11.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dt}$, $J=11.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.15\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}$ (101 MHz, CDCl_{3}) $\delta 155.1,151.3,150.0,147.6,144.7,141.9,134.6,125.7,124.2,121.6,111.7$, $109.3\left(\mathrm{CF}_{2}\right), 96.8,87.3,73.0,67.4,66.2,54.5,51.7,51.6,48.5,14.4$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 484.2267$ found 484.2268 .

1-(\{5-[2-(difluoromethyl)-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)piperidine-3-carboxylate (26)

Compound 26 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), ethyl piperidine-3-carboxylate ($0.23 \mathrm{~mL}, 0.24 \mathrm{~g}, 1.48 \mathrm{mmol}$) as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) to give $25(0.56 \mathrm{~g}, 1.04 \mathrm{mmol})$ as a white solid with a 84% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.45-7.40 (m, 2H, Ar-H), 7.24 (t, $J=53.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 6.59 (s, 1H, Ar-H), 6.30 (s, 1H, Ar-H), 4.15-4.10 (m, 2H, CH2), 4.00-3.98 (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), 3.80 ($\mathrm{s}, 2 \mathrm{H}$), $3.09(\mathrm{dd}, J=10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}$, $1 \mathrm{H}), 2.20(\mathrm{td}, J=10.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H})$, 1.26-1.23 (m, 3H, CH3). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1,156.0,151.3,150.0$, $147.5,144.7,141.9,134.6,125.7,124.1,121.5,111.7,109.2\left(\mathrm{CF}_{2}\right), 96.4,87.2,66.2,60.3,56.8$, 55.4, 53.8, 48.5, 41.9, 26.8, 24.6, 14.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 540.2529$ found 540.2536 .
N-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)oxan-4-amine (27)

Compound 27 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 4-aminotetrahydropyran $(0.16 \mathrm{~mL}, 0.16 \mathrm{~g}, 1.51 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride ($0.40 \mathrm{~g}, 1.85 \mathrm{mmol}$), according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography $(0-10 \% \mathrm{MeOH}$ gradient in $\mathrm{AcOEt})$ to give $27(0.45 \mathrm{~g}, 0.95 \mathrm{mmol})$ as a white solid with a 77% yield. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.82-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{t}, J=52.6 \mathrm{~Hz}, 1 \mathrm{H}$, CHF_{2}), 7.47-7.42 (m, 2H, Ar-H), $6.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $7 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 6 \mathrm{H}), 3.26\left(\mathrm{td}, J=11.4,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.71-2.66(\mathrm{~m}, 1 \mathrm{HCH}), 1.80$ (dd, $\left.J=12.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32-1.26\left(\mathrm{~m}, 2 \mathrm{HCH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $157.9,150.9,149.6,146.9,144.7,141.2,134.1,125.5,123.9,120.7,112.4,108.6,94.5,87.6,65.7$, 65.6, 52.4, 48.1, 43.6, 33.0. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 484.2267 found 484.2266 .

2-(difluoromethyl)-1-\{2-[(4,4-difluoropiperidin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl\}-1H-1,3-benzimidazole (28)

Compound 28 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 4,4-difluoropiperidine $(0.24 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride (0.40 g , 1.85 mmol), according to the general procedure for the reductive amination reaction. The
crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) and crystallization (AcOEt) to give $28(0.41 \mathrm{~g}, 0.81 \mathrm{mmol})$ as a white solid with a 66% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.39$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.23\left(\mathrm{t}, J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.00-3.98$ (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), $3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H})$, 2.09-1.99 (m, 4H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9,151.5,150.3,147.8,144.8$, 142.0, 134.7, 125.9, 124.4, 121.8, 111.9, $109.5\left(\mathrm{CF}_{2}\right), 96.5,96.4,87.6,66.4,55.9,50.2,48.7,34.2$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 504.2194$ found 504.2131.
1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)piperidine-4-carboxamide (29)

Compound 29 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 4-piperidinecarboxamide $(0.19 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$ and sodium triacetoxyborohydride $(0.40 \mathrm{~g}$, $1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by crystallization (AcOEt/DCM, 90:10, v/v) to give $29(0.40 \mathrm{~g}$, $0.78 \mathrm{mmol})$ as a white solid with a 64% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.88(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.70-7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30\left(\mathrm{t}, J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right)$, 6.59 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.31 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.98$ (m, 4H, morph.), 3.90 (m, 4H, morph.), 3.78 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.06\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.18(\mathrm{t}, J=11.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.96-1.73$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.3,156.1,151.5,150.3,147.7,144.8(\mathrm{t}, \mathrm{J}=26.2$ $\mathrm{Hz}), 142.0,134.8,125.9,124.3,121.7,111.9,109.5\left(\mathrm{t}, \mathrm{J}=237.0 \mathrm{~Hz}, \mathrm{CF}_{2}\right), 96.6,87.5,66.4,56.8$, 53.3, 48.7, 31.7, 29.1, 22.8. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 511.2376 found 511.2377.

1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)-4-methylpiperidin-4-ol (30)

Compound 30 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), 4-methylpiperidin4 -ol ($0.18 \mathrm{~g}, 1.48 \mathrm{mmol}$) as an amine, DCM $(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride ($0.40 \mathrm{~g}, 1.85 \mathrm{mmol}$), according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography (50-100\% AcOEt gradient in heptane) and crystallization (AcOEt) to give $30(0.33 \mathrm{~g}, 0.66 \mathrm{mmol})$ as a white solid with a 54% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.45-7.40 (m, 2H, Ar-H), 7.23 (t, J = $54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 6.60 (s, 1H, Ar-H), 6.30 (s, 1H, Ar-H), 4.00-3.96 (m, 4H, morph.), 3.93-3.89 (m, 4H, morph.), 3.81 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.74-2.69 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.57-2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.77-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.63\left(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,151.3,150.1,147.5,144.7$, 141.9, 134.6, 125.7, 124.1, 121.6, 111.7, $109.3\left(\mathrm{CF}_{2}\right), 96.5,87.2,67.7,66.2,56.6,49.8,48.5,38.8$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 498.2423$ found 498.2422.
[1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)piperidin-4-yl]methanol (31)

Compound 31 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 4-piperidinemethanol $(0.17 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, DCM (5.0 mL), and sodium triacetoxyborohydride (0.40 g , $1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) and crystallization $(i-\mathrm{PrOH})$ to give $31(0.34 \mathrm{~g}, 0.68 \mathrm{mmol})$ as a white solid with a 56% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.44-7.39 (m, 2H, Ar-H), $7.26\left(\mathrm{t}, \mathrm{J}=26.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 3.99-3.98 (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), 3.78 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH} 2$), 3.51 (d, J = 6.5 Hz , $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.04\left(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{CH}_{2} 2.16-2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.76-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)\right.$, $1.70-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 156.2,151.3,150.1,147.5,144.7,141.8,134.6,125.7,124.1,121.5,111.7,109.3\left(\mathrm{CF}_{2}\right), 96.5,87.2$, 67.9, 66.2, 56.9, 53.6, 48.5, 38.4, 28.8. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 498.2423$ found 498.2426.

1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)piperidine-4-carbonitrile (32)

Compound 32 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), 4-cyanopiperidine $(0.17 \mathrm{~mL}, 0.16 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride ($0.40 \mathrm{~g}, 1.85 \mathrm{mmol}$), according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane) and crystallization (AcOEt) to give $32(0.50 \mathrm{~g}, 1.01 \mathrm{mmol})$ as a white solid with a 82% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.45-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30\left(\mathrm{t}, J=53.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 4.00-3.98 (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), 3.79 (s, 2H, CH2 $)$, 2.79 (s, 2H, CH2), $2.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 2.51\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.00-1.89(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,151.4,150.2,147.7,144.7,141.9,134.6,125.7,124.2,121.7,121.6,111.7$, $109.3\left(\mathrm{CF}_{2}\right), 96.4,87.4,66.2,56.7,51.3,48.6,28.8,26.0$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 493.2270$ found 493.2281.

2-(difluoromethyl)-1-[7-(morpholin-4-yl)-2-\{[4-(morpholin-4-yl)piperidin-1-yl]methyl\} pyrazolo[1,5-a]pyrimidin-5-yl]-1H-1,3-benzimidazole (33)

Compound 33 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 4-morpholinopiperidine $(0.26 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}$, $1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-20 \% \mathrm{MeOH}$ gradient in AcOEt) and crystallization $(i-\mathrm{PrOH})$ to give $33(0.37 \mathrm{~g}, 0.66 \mathrm{mmol})$ as a white solid with a 54% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66-7.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.44-7.39 (m, 2H, Ar-H), 7.26 (t, J = $53.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 6.59 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.30$ (s, 1H, Ar-H), 3.99-3.98 (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), 3.77 (s, 2H, CH2), 3.72 (t , $J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 3.07 (d, $\left.J=11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.55(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 2.21 ($\mathrm{t}, J=11.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $2.13\left(\mathrm{td}, J=11.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.84-1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.64-1.57 (m, 2H, CH2). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,151.3,150.1,147.5$, $144.7,141.9,134.6,125.7,124.2,121.6,111.7,109.3\left(\mathrm{CF}_{2}\right), 96.5,87.3,67.3,66.2,62.1,56.5,53.2$, 49.8, 48.5, 28.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 553.2845$ found 553.2846 .

1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-2-yl\}methyl)piperidin-4-ol (34)

Compound 34 was prepared from aldehyde $15(0.50 \mathrm{~g}, 1.23 \mathrm{mmol})$, 4-hydroxypiperidine $(0.15 \mathrm{~g}, 1.48 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}$, $1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-20 \% \mathrm{MeOH}$ gradient in AcOEt) and crystallization ($i-\mathrm{PrOH}$) to give $34(0.32 \mathrm{~g}, 0.66 \mathrm{mmol})$ as a white solid with a 54% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.70-7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.36$ (m, 2H, Ar-H), $7.29\left(\mathrm{t}, J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.02-3.94$ ($\mathrm{m}, 4 \mathrm{H}$, morph.), 3.94-3.86 (m, 4H morph. 3.79 (s, 2H, CH2 $), 3.77-3.66$ (m, 1H), 2.95-2.81 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.40-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.99-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.74-1.55(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,151.5,150.3,147.7,144.8(\mathrm{t}, J=27.0 \mathrm{~Hz}), 142.0,134.8,125.8$, 124.3, 121.7, $109.4\left(\mathrm{t}, J=240.0 \mathrm{~Hz}, \mathrm{CF}_{2}\right), 96.6,87.4,67.9,66.3,56.6,51.2,48.7,34.6$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 484.2267$ found 484.2272.
N-[1-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5- a] pyrimidin-2-yl\}methyl)piperidin-4-yl]acetamide (35)

Compound 35 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), 4-acetylaminopiperidine ($0.22 \mathrm{~g}, 1.48 \mathrm{mmol}$) as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography $(0-15 \% \mathrm{MeOH}$ gradient in AcOEt) and crystallization (AcOEt) to give $35(0.51 \mathrm{~g}, 0.97 \mathrm{mmol})$ as a white solid with a 79% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$,
7.44-7.39 (m, 2H, Ar-H), $7.25\left(\mathrm{t}, \mathrm{J}=53.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right)$, $6.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 5.39 (d, J = 8.0 Hz, 1H, NH), 3.99-3.97 (m, 4H, morph.), 3.90-3.89 (m, 4H, morph.), 3.84-3.78 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 3.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.95\left(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.29-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.96$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.96-1.93 (m, 2H, CH CH_{2}), 1.52-1.45 (m, 2H, CH2). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.3,156.0,151.3,150.1,147.6,144.7,141.9,134.6,125.7,124.2,121.5,111.7,109.3$ $\left(\mathrm{CF}_{2}\right), 96.4,87.3,66.2,56.5,52.5,48.5,46.5,32.4,23.5$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 525.2532$ found 525.2890 .

2-[4-(\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)
pyrazolo[1,5-a]pyrimidin-2-yl\}methyl)piperazin-1-yl]-N-methylacetamide (36)
Compound 36 was prepared from aldehyde 15 ($0.50 \mathrm{~g}, 1.23 \mathrm{mmol}$), N-methyl-2-(1piperazinyl)acetamide ($0.24 \mathrm{~g}, 1.48 \mathrm{mmol}$) as an amine, $\mathrm{DCM}(5.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.40 \mathrm{~g}, 1.85 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-20 \%$ MeOH gradient in AcOEt) and crystallization (AcOEt) to give $36(0.44 \mathrm{~g}, 0.82 \mathrm{mmol})$ as a white solid with a 66% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.66-7.64 (m, 1H, Ar-H), 7.44-7.39 (m, 2H,Ar-H), 7.25 (t, $J=53.4$ Hz, 1H, CHF 2), 7.10-7.08 (m, 1H, NH), 6.59-6.58 (m, 1H, Ar-H), 6.32 (s, 1H, Ar-H), 3.99-3.98 (m, 4H, morph.), $3.91-3.89\left(\mathrm{~m}, 4 \mathrm{H}\right.$, morph.), $3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.83\left(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.61(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,155.6,151.3,150.1$, $147.6,144.6,141.9,134.6,125.7,124.2,121.6,111.7,109.3\left(\mathrm{CF}_{2}\right), 96.5,87.3,66.2,61.5,56.4$, 53.6, 53.2, 48.5, 25.7. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{~N}_{9} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 540.2641$ found 540.2644 .

2-(difluoromethyl)-1-\{2-[(4-methylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-5-yl\}-1H-1,3-benzimidazole (37)

Compound 37 was prepared from aldehyde 15 ($0.20 \mathrm{~g}, 0.49 \mathrm{mmol}$), 1-methylpiperazine $(0.066 \mathrm{~mL}, 59.7 \mathrm{mg}, 0.59 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(2.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(0.17 \mathrm{~g}, 0.80 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-30 \%$ AcOEt gradient in heptane, amino-functionalized gel column) to give 37 ($0.19 \mathrm{~g}, 0.40 \mathrm{mmol}$) as a white solid with a 81% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}$, Ar-H), 7.44-7.39 (m, 2H,Ar-H), 7.29 ($\mathrm{t}, \mathrm{J}=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 6.60 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.30(\mathrm{~s}$, 1H, Ar-H), 3.99-3.98 (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), 3.79 (s, 2H, CH2 $), 2.56$ (d, $J=85.2 \mathrm{~Hz}, 8 \mathrm{H}$, piperaz.), $2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $155.7,151.2,150.0,147.4,144.6,141.7,134.5,125.6,124.0,121.4,111.6,109.1\left(\mathrm{CF}_{2}\right), 96.4,87.1$, 66.1, 56.3, 55.0, 53.0, 48.4, 45.9. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 483.2426 found 483.2429.

2-(difluoromethyl)-1-[7-(morpholin-4-yl)-2-\{[4-(propan-2-yl)piperazin-1-yl]methyl\}pyrazolo pyrimidin-5-yl]-1H-1,3-benzimidazole (38)

Compound 38 was prepared from aldehyde $15(1.50 \mathrm{~g}, 3.69 \mathrm{mmol})$, 1-isopropylpiperazine $(0.65 \mathrm{~mL}, 0.58 \mathrm{~g}, 4.43 \mathrm{mmol})$ as an amine, $\mathrm{DCM}(15.0 \mathrm{~mL})$, and sodium triacetoxyborohydride $(1.25 \mathrm{~g}, 5.90 \mathrm{mmol})$, according to the general procedure for the reductive amination reaction. The crude product was purified by flash chromatography ($0-30 \%$ AcOEt gradient in heptane, amino-functionalized gel column) and crystallization (AcOEt) to give 38 (1.30 g, 3.45 mmol) as a white solid with a 93% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.89-7.87(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.82-7.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.60\left(\mathrm{t}, \mathrm{J}=52.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 6.65 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 6.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 3.94-3.92 (m, 4H, morph.), 3.84-3.82 (m, 4H, morph.), $3.66\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.58(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.44(\mathrm{~s}, 8 \mathrm{H}$, piperaz.), $0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.2 \mathrm{xCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 155.0,150.9,149.6,147.0,144.7,141.2$, 134.0, 125.4, 123.9, 120.7, 112.4, 108.5, 108.5, 95.4, 87.8, 65.6, 55.9, 53.5, 53.1, 48.2, 47.9, 18.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 511.2739$ found 511.2743.

Procedure for 5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carboxylic acid (39)

The solution of lithium hydroxide monohydrate ($28.4 \mathrm{~g}, 678 \mathrm{mmol}$) was added to the suspension of $13(60.0 \mathrm{~g}, 136 \mathrm{mmol})$ in $\mathrm{MeOH}(1000 \mathrm{~mL})$ in water $(200 \mathrm{~mL})$. The mixture was stirred at room temperature for 18 h . The solvent was removed under reduced pressure and the reaction was quenched with water $(600 \mathrm{~mL})$ and $2.5 \mathrm{M} \mathrm{HCl}(60 \mathrm{~mL})$. The solid was collected by filtration and dried to give $39(52.1 \mathrm{~g}, 126 \mathrm{mmol})$ as a white solid with a 93% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.93-7.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.56(\mathrm{t}, J=54.0 \mathrm{~Hz}, 1 \mathrm{H}$, CHF_{2}), 7.47 (ddd, $\left.J=10.4,5.2,3.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 4 \mathrm{H}$, morph.), 3.90-3.77 (m, 6H), 3.57 (s, 1H).
1-[2-(4-tert-butylpiperazine-1-carbonyl)-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl]-2-(difluoromethyl)-1H-1,3-benzimidazole (40)

Compound 40 was prepared from 39 ($0.20 \mathrm{~g}, 0.48 \mathrm{mmol}$), N-t-butylpiperazine (0.10 g , $0.72 \mathrm{mmol})$, HATU ($0.21 \mathrm{~g}, 0.57 \mathrm{mmol}$), TEA ($0.13 \mathrm{~mL}, 96.5 \mathrm{mg}, 0.75 \mathrm{mmol}$), and DMF $(2.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-100 \%$ AcOEt gradient in heptane, aminofunctionalized gel column) to give $40(0.13 \mathrm{~g}, 0.23 \mathrm{mmol})$ as a white solid with a 51% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.88$ (dd, $\left.J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.61\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $3.93-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.86-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 4 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.5,151.2,150.4,149.2,147.8,144.7,141.2,134.0$, 125.6, 124.1, 120.7, 112.4, 108.5, 108.5, 96.7, 89.3, 65.6, 59.7, 48.5, 46.1, 25.6, 20.7, 14.1. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 539.2689$ found 539.2736.
2-(4-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperazin-1-yl)propan-2-ol (41)

Compound 41 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), 2-(4-piperidyl)-2-propanol $(0.57 \mathrm{~g}, 3.83 \mathrm{mmol})$, HATU ($1.51 \mathrm{mg}, 3.98 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55,5.44 \mathrm{mmol}$), and DCM $(15.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give $41(0.66 \mathrm{~g}$, 1.22 mmol) as a light yellow solid with a 34% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94-7.89$ (m, 1H, Ar-H), 7.69-7.65 (m, 1H, Ar-H), 7.46-7.39 (m, 2H, Ar-H), 7.29 (t, J=54.0 Hz, 1H, CHF_{2}), 6.86 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.91(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00-3.95(\mathrm{~m}, 4 \mathrm{H}$, morph.), 3.94-3.86 (m, 4H, morph.), $3.08(\mathrm{t}, \mathrm{J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ $(\mathrm{td}, J=12.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.49-1.34(\mathrm{~m}, 3 \mathrm{H})$, $1.22\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.7,151.6,149.7,148.5$, $144.7(\mathrm{t}, J=27.0 \mathrm{~Hz}), 142.0,134.7,126.0,124.5,121.7,111.9\left(\mathrm{t}, J=238.5 \mathrm{~Hz}^{2}, \mathrm{CF}_{2}\right), 97.8,88.6$, $72.2,66.3,48.9,47.8,43.2,27.6(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 26.9(\mathrm{~d}, J=5.1 \mathrm{~Hz})$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 540.2529$ found 540.2533.

2-(4-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperazin-1-yl)-2-methylpropanamide (42)

Compound 42 was prepared from $39(0.20 \mathrm{~g}, 0.48 \mathrm{mmol})$, 2-methyl-2-(piperazin-1yl)propanamide dihydrochloride ($0.13 \mathrm{~g}, 0.49 \mathrm{mmol}$), HATU ($0.20 \mathrm{~g}, 0.52 \mathrm{mmol}$), TEA $(0.23 \mathrm{~mL}, 0.16 \mathrm{~g}, 1.66 \mathrm{mmol})$, and $\mathrm{DCM}(2.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-20 \%$ MeOH gradient in AcOEt$)$ to give $42(0.18 \mathrm{~g}, 0.31 \mathrm{mmol})$ as a white solid with a 67% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.82(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.58\left(\mathrm{t}, J=52.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.91$ (m, 4H, morph.), 3.85-3.84 (m, 4H, morph.), $3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.52-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.46(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.09\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xCH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}(151 \mathrm{MHz}$, DMSO-d6) $\delta 177.7,161.6$, $151.1,150.3,149.2,147.7,144.6,141.2,134.0,125.5,124.0,120.6,112.3,108.5,96.6,89.2,79.1$,
65.5, 62.6, 48.4, 47.1, 46.4, 42.2, 20.5. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~F}_{2} \mathrm{~N}_{9} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 568.2590$ found 568.2586.

1-[2-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-5-yl]-2-(difluoromethyl)-1H-1,3-benzimidazole (43)

Compound 43 was prepared from 39 ($0.30 \mathrm{~g}, 0.71 \mathrm{mmol}$), 1-(cyclopropylcarbonyl) piperazine ($0.11 \mathrm{~mL}, 0.11 \mathrm{~g}, 0.74 \mathrm{mmol}$), HATU ($0.30 \mathrm{~g}, 0.78 \mathrm{mmol}$), TEA ($0.15 \mathrm{~mL}, 100 \mathrm{mg}$, $1.06 \mathrm{mmol})$, and DCM $(3.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography $(0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give $43(0.24 \mathrm{~g}, 0.44 \mathrm{mmol})$ as a white solid with a 62% yield. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.89-7.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.59(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHF_{2}), 7.49-7.43 (m, 2H, Ar-H), 6.89 (s, 1H, Ar-H), 6.82 (s, 1H, Ar-H), 3.92 (d, J = 4.5 Hz , $4 \mathrm{H}), 3.85(\mathrm{~s}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 4 \mathrm{H}), 3.67-3.56(\mathrm{~m}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 1.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $0.77-0.73(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 MHz , DMSO- d_{6}) δ 171.3, 151.2, 150.1, 149.3, 147.8, 144.7, 141.2, 134.0, 125.6, 124.1, 120.7, 112.4, 108.5, 97.0, 89.4, 65.6, 48.5, 45.8, 10.4, 7.1. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 551.2332$ found 551.2333.
(1-\{5-[2-(difluoromethyl)-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}pyrrolidin-2-yl)methanol (44)

Compound 44 was prepared from 39 ($0.50 \mathrm{~g}, 1.18 \mathrm{mmol}$), pyrrolidin-2-ylmethanol $(0.13 \mathrm{~mL}, 0.13 \mathrm{~g}, 1.31 \mathrm{mmol})$, HATU ($0.49 \mathrm{~g}, 1.30 \mathrm{mmol})$, TEA ($0.25 \mathrm{~mL}, 0.18 \mathrm{~g}, 1.79 \mathrm{mmol}$), and $\mathrm{DCM}(5.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give $44(0.16 \mathrm{~g}, 0.33 \mathrm{mmol})$ as a white solid with a 28% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ $\delta 7.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.60\left(\mathrm{t}, J=52.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right)$, 7.49-7.42 (m, 2H, Ar-H), 6.92-6.90 (m, 1HAr-H) 6.81 (s, 1H, Ar-H), 4.85-4.81 (m, 1H, OH), 4.24-4.17 (m, 1H), 3.96-3.90 (m, 4H, morph.), 3.87-3.83 (m, 4H, morph.), 3.68-3.59 (m, 1H), 3.54-3.45 (m, 1H), 3.37-3.35 (m, 2H, CH 2), 2.09-1.82 (m, 4H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 MHz , DMSO- d_{6}) $\delta 161.0,160.7,151.2,149.0,144.7,141.2,134.0,125.6,124.1,120.7,112.4,108.5$, 97.3, 89.2, 65.7, 60.8, 59.7, 59.1, 49.1, 48.5, 26.3, 24.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 498.2059$ found 498.2066 .

1-\{5-[2-(difluoromethyl)-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5- a] pyrimidine-2-carbonyl\}pyrrolidin-3-amine (45)

Compound N-(1-\{5-[2-(difluoromethyl)-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl) pyrazolo[1,5-a]pyrimidine-2-carbonyl\}pyrrolidin-3-yl)carbamate (Boc-45) was prepared from 39 ($0.50 \mathrm{~g}, 1.18 \mathrm{mmol}$), 3-(Boc-amino)pyrrolidine ($0.24 \mathrm{~g}, 1.30 \mathrm{mmol}$), HATU (0.49 g , $1.30 \mathrm{mmol})$, TEA $(0.25 \mathrm{~mL}, 0.18 \mathrm{~g}, 1.79 \mathrm{mmol})$, and $\mathrm{DCM}(5.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give Boc-45 ($0.37 \mathrm{~g}, 0.64 \mathrm{mmol}$) as a light yellow solid with a 55% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.93-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.56(\mathrm{t}$, $\left.J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.52-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.92(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 4.87-4.79 (m, 1H), 4.71-4.16 (m, 1H), 3.99-3.77 (m, 11H), 3.71-3.58 (m, 1H), 3.58-3.32 (m, 2H), 2.14-1.79 (m, 9H, t-Bu).

The solution of Boc-45 ($0.35 \mathrm{~g}, 0.60 \mathrm{mmol}$) in trifluoroacetic acid ($2.09 \mathrm{~mL}, 3.11 \mathrm{~g}$, $27.0 \mathrm{mmol}, 45.0 \mathrm{eq}$) was heated at $50^{\circ} \mathrm{C}$ for 3 h . The reaction was then cooled to room temperature, and stopped with $15 \% \mathrm{NaOH}(15.0 \mathrm{~mL})$. The aqueous mixture was extracted with DCM $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography (50-100\% AcOEt gradient in heptane, amino-functionalized gel column) to give $45(0.14 \mathrm{~g}, 0.29 \mathrm{mmol})$ as a white solid with a 48% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) $\delta 7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.84-7.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.60(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHF_{2}), 7.47-7.42 (m, 2H,Ar-H), $6.91(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.00-3.93$ $(\mathrm{m}, 5 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 5 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=12.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}$, 2H), 3.24-3.15 (m, 1H, CH), 2.03-1.94 (m, 1H, CH), 1.73-1.61 (m, 1H, CH). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$

NMR (151 MHz, DMSO- d_{6}) $\delta 160.5,151.1,148.9,147.6,144.6,141.1,133.9,125.4,123.9,120.6$, 112.3, 108.4, 97.1, 89.1, 65.5, 56.7, 54.8, 51.3, 48.9, 46.7, 45.0, 34.7, 32.0. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 483.2063$ found 483.2063.
2-(difluoromethyl)-1-[7-(morpholin-4-yl)-2-(morpholine-4-carbonyl)pyrazolo[1,5-a] pyrimidin-5-yl]-1H-1,3-benzimidazole (46)

Compound 46 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), morpholine ($0.34 \mathrm{~mL}, 0.34$ $\mathrm{g}, 3.90 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM $(15.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($50-100 \%$ AcOEt gradient in heptane) to give 46 ($937.0 \mathrm{mg}, 1.94 \mathrm{mmol}$) as a light yellow solid with a 53% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28(\mathrm{t}$, $J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 6.91 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.98-3.96$ (m, 4H, morph.), 3.92-3.86 (m, 8H, morph.), 3.84-3.82 (m, 2H, morph.), 3.73-3.72 (m, 2H, morph.). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right.$, $\left.{ }^{19} \mathrm{~F}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,151.7,150.9,149.9,148.7,144.7,142.1,134.7,126.2$, 124.6, 121.8, 112.0, $109.7\left(\mathrm{CF}_{2}\right), 98.4,89.0,67.2,66.4,48.9,43.1$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 484.1903$ found 484.1912.
2-(difluoromethyl)-1-[2-(4,4-difluoropiperidine-1-carbonyl)-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl]-1H-1,3-benzimidazole (47)

Compound 47 was prepared from $39(1.50 \mathrm{~g}, 3.62 \mathrm{mmol})$, 4,4-difluoropiperidine (0.63 g , $3.99 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($1.31 \mathrm{~mL}, 0.95 \mathrm{~g}, 9.35 \mathrm{mmol}$), and DCM $(15.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-50 \%$ AcOEt gradient in heptane, aminofunctionalized gel column) to give $47(934.0 \mathrm{mg}, 1.80 \mathrm{mmol})$ as a light yellow solid with a 50% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.48-7.41 (m, 2H, Ar-H), 7.29 (t, $J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 6.93 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 6.47$ ($\mathrm{s}, 1 \mathrm{H}$, Ar-H), 4.03-3.95 (m, 8H), 3.93-3.87 (m, 4H, morph.), 2.22-1.98 (m, 4H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3,152.1,150.3,149.1,145.1(\mathrm{t}, J=27.0 \mathrm{~Hz}), 142.5,135.2,126.5,125.0$, $122.0(\mathrm{t}, J=240.7 \mathrm{~Hz}), 112.4,110.1(\mathrm{t}, J=238.5 \mathrm{~Hz}), 98.9,89.6,66.7,49.3,44.4,40.1,35.6$ $(\mathrm{t}, J=24.7 \mathrm{~Hz}), 34.5(\mathrm{t}, J=22.5 \mathrm{~Hz})$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{4} \mathrm{~N}_{7} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 518.1922$ found 518.1924.

1-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperidine-4-carboxamide (48)

Compound 48 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol})$, 4-piperidinecarboxamide $(0.51 \mathrm{~g}, 3.90 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM (15.0 mL), according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography $(0-20 \% \mathrm{MeOH}$ gradient in AcOEt$)$ to give 48 ($0.73 \mathrm{~g}, 1.39 \mathrm{mmol}$) as a light yellow solid with a 39% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta 7.89-7.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.59\left(\mathrm{t}, \mathrm{J}=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.49-7.42$ (m, 2H), 7.31 (s, 1H, Ar-H), 6.83 (s, 1H, Ar-H), $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.93-3.91(\mathrm{~m}, 4 \mathrm{H}$, morph.), $3.84(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 3.18 (s, 2H), $2.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 MHz , DMSO- d_{6}) $\delta 175.8,161.8,151.2,150.6,149.2,147.7,144.7,141.2,134.0,125.5,124.0,120.7$, 112.4, 108.5, 96.4, 89.3, 65.6, 48.4, 46.2, 41.4, 29.0, 28.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 525.2168$ found 525.2171.
1-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}-4-methylpiperidin-4-ol (49)

Compound 49 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), 4-methylpiperidin-4-ol $(0.47 \mathrm{~g}, 3.89 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM (15.0 mL), according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give $49(0.90 \mathrm{~g}, 1.76 \mathrm{mmol})$ as a light yellow solid with a 49% yield. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.67(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$,
7.29 (t, J = 54.0 Hz, 1H, CHF 2), 6.87 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.42$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.45-4.41$ (m, 1H), 4.12-4.09 (m, 1H), 3.98-3.96 (m, 4H, morph.) 3.91-3.90 (m, 4H, morph.), 3.65-3.61 (m, 1H), $3.42-3.38(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.62\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.36(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,151.7,149.8,148.5,144.8,142.1,134.8,126.1$, 124.5, 121.8, 112.0, $109.7\left(\mathrm{CF}_{2}\right), 97.9,88.8,68.4,66.4,48.9,43.8,39.5,39.1,38.6,30.6$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 512.2216$ found 512.2222.
(1-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperidin-4-yl)methanol (50)

Compound 50 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), 4-piperidinemethanol (0.46 g , $3.95 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM $(15.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography $(0-10 \% \mathrm{MeOH}$ gradient in AcOEt) to give $50(0.76 \mathrm{~g}$, 1.54 mmol) as a light yellow solid with a 43% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) δ $7.90-7.87$ (m, 1H, Ar-H), 7.83 (dd, $J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.61\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right)$, 7.49-7.41 (m, 2H, Ar-H), 6.81 (s, 1H, Ar-H), $6.80(\mathrm{~s}, 1 \mathrm{H}), 4.53\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.24$ (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.91(\mathrm{~m}, 4 \mathrm{H}$, morph.), 3.85-3.83 (m, 5H), 3.30-3.28 (m, 2H), 3.15-3.08 $(\mathrm{m}, 1 \mathrm{H}), 2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.12-1.09(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 MHz, DMSO- d_{6}) $\delta 170.6,161.9,151.4,149.5,148.0,144.9,141.4$, $134.2,125.8,124.3,120.9,112.7,108.7,96.6,89.4,65.8,60.0,49.0,46.9,42.0,38.6,29.5,28.7$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 512.2216$ found 512.2218.

1-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperidine-4-carbonitrile (51)

Compound 51 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), 4-cyanopiperidine (0.44 mL , $0.43 \mathrm{~g}, 3.96 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM (15.0 mL), according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($50-100 \%$ AcOEt gradient in heptane) to give $51(0.86 \mathrm{~g}, 1.69 \mathrm{mmol})$ as a light yellow solid with a 47% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28(\mathrm{t}$, $\left.J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.08-3.97(\mathrm{~m}, 6 \mathrm{H}), 3.91-3.83$ $(\mathrm{m}, 6 \mathrm{H}), 3.02-2.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.08-1.92(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 162.6,151.5,150.6,149.7,148.5,144.5,141.8,134.5,126.0,124.4,121.6,120.6,111.8,109.5$ $\left(\mathrm{CF}_{2}\right), 98.1,88.9,66.1,48.7,45.1,40.4,29.3,28.3,26.4$. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 507.2063$ found 507.2068 .

2-(difluoromethyl)-1-[7-(morpholin-4-yl)-2-[4-(morpholin-4-yl)piperidine-1-carbonyl] pyrazolo[1,5-a]pyrimidin-5-yl]-1H-1,3-benzimidazole (52)

Compound 52 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), 4-morpholinopiperidine $(0.68 \mathrm{~g}, 3.90 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM $(15.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-20 \% \mathrm{MeOH}$ gradient in AcOEt) to give 52 $(0.70 \mathrm{~g}, 1.23 \mathrm{mmol})$ as a light yellow solid with a 34% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.90-7.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.83(\mathrm{dd}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.61\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right)$, 7.49-7.44 (m, 2H), $6.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.21-4.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.92(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}, 5 \mathrm{H}), 3.86-3.84(\mathrm{~m}, 5 \mathrm{H}), 3.66-3.61$ (m, 4H, morph.), 3.15-3.07 (m, 4H, morph.), $2.86(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 1.78-2.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-1.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.6,151.2,149.2,147.8,144.7,141.2,134.0,125.5,124.1,120.7$, 112.4, 108.5, 108.5, 89.3, 65.6, 48.7, 48.4, 45.7, 26.8, 8.6. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 567.2638$ found 567.2643 .

1-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperidin-4-ol (53)

Compound 53 was prepared from $39(1.50 \mathrm{~g}, 3.62 \mathrm{mmol})$, 4-hydroxypiperidine (0.41 g , $4.06 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM $(15.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product
was purified by flash chromatography ($0-15 \% \mathrm{MeOH}$ gradient in AcOEt) to give 53 (0.86 g , 1.72 mmol) as a light yellow solid with a 48% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) δ 7.90-7.88 (m, 1H, Ar-H), 7.84-7.82 (m, 1H, Ar-H), 7.59 ($\mathrm{t}, \mathrm{J}=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}$), 7.49-7.43 $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.83(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.08-4.03$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 4.02-3.97 (m, 2H, CH ${ }_{2}$), 3.93-3.92 (m, 4H, morph.), 3.85-3.84 (m, 4H, morph.), 3.81-3.77 (m, 1H, CH), 3.44-3.37 (m, 2H, CH ${ }_{2}$), 3.32-3.28 (m, 2H, CH C_{2}). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 162.0,151.5,150.9,149.5,148.0,145.0,141.5,134.3,125.8,124.3,121.0$, 112.7, 108.8, 96.7, 89.5, 65.9, 65.7, 48.7, 44.3, 35.0, 34.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 498.2059$ found 498.2060 .
N-(1-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperidin-4-yl)acetamide (54)

Compound 54 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), 4-acetylamino-piperidine $(0.57 \mathrm{~g}, 3.89 \mathrm{mmol})$, HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and DCM (15.0 mL), according to the general procedure for amidation reaction. The crude product was purified by flash chromatography $(0-20 \% \mathrm{MeOH}$ gradient in AcOEt$)$ to give $54(0.80 \mathrm{~g}, 1.48 \mathrm{mmol})$ as a light yellow solid with a 41% yield. ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29(\mathrm{t}$, $\left.J=54.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 6.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, $4.74\left(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.43\left(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{CH}_{2} 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.98-3.96\right.$ (m, 4H, morph.), 3.91-3.89 (m, 4H, morph.), 3.31-3.27 (m, 1H), 3.03-2.99 (m, 1H), 2.10-2.05 $(\mathrm{m}, 1 \mathrm{H}), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.55-1.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3$, $162.6,151.4,150.9,149.5,148.3,144.4,141.7,134.4,125.8,124.2,121.5,111.7,109.4\left(\mathrm{CF}_{2}\right)$, 97.8, 88.6, 66.1, 48.6, 46.7, 45.9, 41.4, 32.9, 31.7, 23.3. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 539.2352$ found 539.2325.
2-(4-\{5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidine-2-carbonyl\}piperazin-1-yl)- N -methylacetamide (55)

Compound 55 was prepared from 39 ($1.50 \mathrm{~g}, 3.62 \mathrm{mmol}$), N-methyl-2-(1-piperazinyl) acetamide ($0.65 \mathrm{~g}, 3.97 \mathrm{mmol}$), HATU ($1.52 \mathrm{mg}, 3.99 \mathrm{mmol}$), TEA ($0.76 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.44 \mathrm{mmol}$), and $\operatorname{DCM}(15.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-15 \% \mathrm{MeOH}$ gradient in AcOEt) to give $55(0.66 \mathrm{~g}, 1.18 \mathrm{mmol})$ as a light yellow solid with a 33% yield. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.89-7.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.83-7.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.79$ (s, 1H, Ar-H), $7.59\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81$ (s, 1H, Ar-H), 3.92-3.91 (m, 4H, morph.), 3.85-3.83 (m, 4H), 3.80-3.73 (m, 4H), 2.98 (s, 2H), 2.62 $\left(\mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 MHz , DMSO- d_{6}) $\delta 161.6,151.0,150.1,149.1,147.6,144.5,141.1,133.9,125.4,123.9,120.6,112.3$, 108.4, 96.6, 89.2, 71.9, 65.4, 53.0, 52.4, 48.6, 48.3, 45.7, 26.6, 25.2. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{~N}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 554.2434$ found 554.2434 .

2-(difluoromethyl)-1-[2-(4-methylpiperazine-1-carbonyl)-7-(morpholin-4-yl)pyrazolo[1,5-a] pyrimidin-5-yl]-1H-1,3-benzimidazole (56)

Compound 56 was prepared from $39(0.20 \mathrm{~g}, 0.48 \mathrm{mmol})$, 1-methylpiperazine (0.05 mL , $50.2 \mathrm{mg}, 0.49 \mathrm{mmol})$, HATU ($0.20 \mathrm{~g}, 0.52 \mathrm{mmol}$), TEA ($0.09 \mathrm{~mL}, 72.2 \mathrm{mg}, 0.71 \mathrm{mmol}$), and DCM (2.0 mL), according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-35 \% \mathrm{MeOH}$ gradient in AcOEt) to give $56(0.13 \mathrm{~g}, 0.27 \mathrm{mmol})$ as a white solid with a 57% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.83-7.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58\left(\mathrm{t}, J=52.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.49-7.42$ (m, 2H, Ar-H), $6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.92(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}$, morph.), 3.84 ($\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}$, morhp.), 3.76-3.69 (m, 4H, morph.), 2.43-2.37 (m, 4H, morph.), 2.23 (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right\}$ NMR (151 MHz, DMSO- d_{6}) $\delta 161.7,151.1,150.3,149.2,147.7,144.6$, 141.2, 134.0, 125.5, 124.0, 120.6, 112.3, 108.5, 96.6, 89.2, 65.5, 54.8, 48.4, 46.5, 45.5, 41.7, 30.8. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 497.2219$ found 497.2229.

2-(difluoromethyl)-1-[7-(morpholin-4-yl)-2-[4-(propan-2-yl)piperazine-1-carbonyl]pyrazolo pyrimidin-5-yl]-1H-1,3-benzimidazole (57)

Compound 57 was prepared from 39 ($0.20 \mathrm{~g}, 0.48 \mathrm{mmol}$), 1-isopropylpiperazine $(0.07 \mathrm{~mL}, 65.7 \mathrm{mg}, 0.49 \mathrm{mmol})$, HATU ($0.20 \mathrm{~g}, 0.52 \mathrm{mmol}$), TEA ($0.09 \mathrm{~mL}, 72.2 \mathrm{mg}, 0.71 \mathrm{mmol}$), and DCM $(2.0 \mathrm{~mL})$, according to the general procedure for the amidation reaction. The crude product was purified by flash chromatography ($0-30 \% \mathrm{MeOH}$ gradient in AcOEt) to give $57(0.20 \mathrm{~g}, 0.38 \mathrm{mmol})$ as a white solid with a 81% yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.89-7.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.83-7.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58\left(\mathrm{t}, J=52.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHF}_{2}\right), 7.49-7.42$ (m, 2H, Ar-H), 6.83 ($\mathrm{s}, 1 \mathrm{H}$, Ar-H), 6.80 (s, 1H, Ar-H), 3.93-3.91 (m, 4H, morph., morph.), 3.85-3.84 (m, 4H, morph.), 3.73-3.71 (m, 2H, CH2), 3.67-3.66 (m, 2H, CH2 $), 2.72-2.68(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 2.53-2.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.2 \mathrm{xCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 161.6,151.1,150.4,149.2,147.7,144.6,141.2,134.0$, 125.5, 124.0, 120.6, 112.3, 108.4, 96.6, 89.2, 65.5, 53.6, 48.5, 48.4, 47.9, 47.0, 42.2, 18.0. HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{2} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 525.2532$ found 525.2544.

3.2. Docking Study

The docking procedure was performed using the PI3K δ protein from the Protein Data Bank (PDB: 2WXL) with the Auto-Dock Vina program [40]. All figures with examples of 3D modeling of a possible binding mode of selected compounds were prepared based on the calculated pK_{a} from the Instant JChem 21.13 .0 program [39]. More specifically, all structures depicted in the respective figures have not had protons added, but the appropriate state of protonation has been maintained.

3.3. Biology

3.3.1. In Vitro PI3K Inhibition Assays

The potency and selectivity of compounds were assessed by measuring the ability of PI3K kinases to convert ATP to ADP during an enzymatic reaction in the presence of decreasing doses of tested compounds. The experiments were carried out using the ADP-Glo kinase assay kit (Promega), according to the manufacturer's protocol. PI3K α, PI3K β, PI3K δ, and PI3K γ have been purchased from Merck Millipore and phosphoinositol-4,5-bisphosphate (PIP2) lipid vesicles with phosphoserine from ThermoFisher Scientific were used as a substrate in the enzymatic reaction. The composition of the reaction mixture and reaction conditions for individual kinases are listed in the table below (Table 6).

Table 6. Reaction conditions and compositions of mixtures for individual kinases.

KINASE	Kinase Concentration [ng per Reaction]	Reaction Temperature and Time	Substrate PIP2 [Final Concentration $\mu \mathbf{M}$]	Reaction Buffer
PI3K α				
(Carna Biosciences)	7.5 ng			50 mM
PI3K δ				

After the reaction, the ADP-Glo reagent and the kinase detection reagent were added sequentially with 40 min of incubation $\left(25^{\circ} \mathrm{C}, 600 \mathrm{rpm}\right)$ after adding each reagent. Finally, the luminescence intensity was measured and the IC_{50} was calculated using GraphPad Prism 7 software. The presented results are the mean value of IC_{50} from at least two independent experiments.

3.3.2. Influence of Selected Compounds on B Cells Proliferation

CD19 cells were isolated from PBMCs using magnetic beads (Stem Cell (Vancouver, Canada)) and then labeled with $2 \mu \mathrm{M}$ of CFSE (Invitrogen (Waltham, MA, USA)).

Then, 1×105 cells were seeded on 96 -well plates, activated by $2 \mu \mathrm{~g} / \mathrm{mL}$ of $\alpha \mathrm{IgM}$ (Jackson ImmunoResearch (West Grove, PA, USA)) and $1 \mu \mathrm{~g} / \mathrm{mL}$ of ODN2006 (InvivoGen (San Diego, CA, USA)), and incubated with increasing concentrations of drugs (0.1, 0.3, $1.0,3.3,10,33,100,333,1000,3333$, and 10000 nM$)$. After 4 days, cells were stained with LIVE/DEAD ${ }^{\text {TM }}$ kit (Invitrogen (Waltham, MA, USA)). Samples were acquired using Attune NxT flow cytometer (Invitrogen) and analyzed using FlowJo software. Each biological assay was performed with cells isolated from a different donor. The presented results constitute the average percentage values of proliferating cells from 3 independent experiments.

3.4. Metabolic Stability and Solubility

3.4.1. Metabolic Stability Assay

The metabolic phase I stability in mouse (CD-1 ${ }^{\mathrm{TM}}$) and human microsomes (ThermoFisher Scientific (Waltham, MA, USA)) was assessed on 96-well non-binding plates (Greiner (Kremsmuster, Austria)) at a $1 \mu \mathrm{M}$ concentration for verapamil (positive control) and donepezil (negative control) and tested compounds. Unless otherwise stated, all chemicals and materials were ordered from Merck Life Science (Sheboygan, WI, USA). Each biological replicate was prepared in triplicates [40,41]. Briefly, compounds were incubated in 100 mM potassium phosphate buffer with microsomes $(0.5 \mathrm{mg} / \mathrm{mL})$ and NADPH ($1-1.2 \mathrm{mM}$) on a plate shaker (500 rpm) in the dark at $37{ }^{\circ} \mathrm{C}$. On a $4 \times$ solution of NADPH, the cofactor for metabolic enzymes was prepared directly prior to the experiment by reducing NADP with G6P dehydrogenase ($13.2 \mathrm{mM} \mathrm{MgCl} 2,13.2 \mathrm{mM}$ G6P, 5.2 mM NADP, $3.2 \mathrm{U} / \mathrm{mL}$ G6P dehydrogenase, 20 min at $30^{\circ} \mathrm{C}, 500 \mathrm{rpm}$). The negative control contained buffer instead of NADPH solution. Samples were collected at 0,10,20, and 40 min or 0 and 40 min for the negative and double negative controls. The reaction was stopped by protein precipitation in 2 volumes of ice-cold MeOH with 200 nM of imipramine (as an internal standard for LC-MS analysis). Then, the extract was mixed ($1 \mathrm{~min}, 1000 \mathrm{rpm}$), filtered through a $0.22 \mu \mathrm{~m}$ filter on a 96 -well plate vacuum manifold, and subjected to LC-MS analysis.

3.4.2. Lymphocyte B Proliferation Assessment

Human PBMCs were isolated from buffy coats of healthy donors obtained from the Regional Blood Donation and Blood Medicine Center in Warsaw. Lymphocytes B: CD19+ cells were isolated from PBMCs on magnetic beads (Stem Cell), labeled with $2 \mu \mathrm{M}$ CFSE (Invitrogen), and seeded on a 96-well plate (1×10^{5} cells/well). B cells were activated by $2 \mu \mathrm{~g} / \mathrm{mL}$ of $\alpha \mathrm{IgM}$ (Jackson ImmunoResearch) and $1 \mu \mathrm{~g} / \mathrm{mL}$ of ODN2006 (InvivoGen). Cells were incubated with increasing concentrations of compounds (range 0.03-10,000 nM). After 4 days, B cells were stained with LIVE/DEAD ${ }^{\text {TM }}$ kit (Invitrogen), acquired using the Attune NxT flow cytometer (Invitrogen), and analyzed using FlowJo10 software. For data normalization, the percentage value of proliferating cells in each sample was divided by the average percentage value of positive control in a single experiment. IC_{50} values were calculated using a three-parameter dose-response inhibition function in GraphPad Prism.

3.4.3. Kinetic Stability Assay

The kinetic solubility was determined using the shake-flask protocol [42,43]. The appropriate compounds ($500 \mu \mathrm{M}$) were incubated in an aqueous buffer (0.1 M phosphatebuffered saline pH 7.4) at $25^{\circ} \mathrm{C}$ with stirring at 500 rpm . The samples were taken at the
start time and after 24 h of incubation, filtered through $0.22 \mu \mathrm{~m}$ filters, and diluted with 2 volumes of acetonitrile. Sample concentrations were determined by UHPLC-UV/Vis. A calibration curve was prepared in order to quantify the contents of the compound in the test solution.

4. Conclusions

A new family of substituted pyrazolo[1,5-a]pyrimidines was prepared in multi-step synthesis utilizing the Buchwald-Hartwig reaction or reductive amination as the crucial synthetic steps. The SAR studies were performed firstly at the C(5) position of the pyrazolo[1,5a]pyrimidine and then the final optimization was turned up using a careful sterical amino group at the $C(2)$ position adjustment. The biological activities were measured for each new compound against four PI3K isoforms: α, β, γ, and δ, providing comprehensive information on the selectivity of the obtained structures. Eleven compounds with an IC_{50} value below the 100 nM threshold within the new compounds' library were synthesized in this work. Five of them, with an IC_{50} value below or equal to 52 nM , were assumed as hits. Molecular modeling studies provide a rational explanation for the interaction of active structures within the PI3K δ ATP binding site. CPL302415 (1-\{2-[(4-tert-butylpiperazin-1-yl)methyl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-5-yl\}-2-(difluoromethyl)-1H-benzimidazole, compound 6) proved to be the most potent structure with excellent activity ($\mathrm{IC}_{50}=18 \mathrm{nM}$), good selectivity $(\mathrm{PI} 3 \mathrm{~K} \alpha / \mathrm{PI} 3 \mathrm{~K} \delta=79 ; \mathrm{PI} 3 \mathrm{~K} b / \delta=1415 ; \mathrm{PI} 3 \mathrm{~K} \gamma / \mathrm{PI} 3 \mathrm{~K} \delta=939)$, and other promising parameters (Table 5). Therefore, CPL302415 was selected as a lead compound for toxicological studies and as a candidate for further development in phase I clinical trials in SLE treatment. More detailed biological and physicochemical studies and their outcomes are the subjects of a separate paper under preparation.

Supplementary Materials: The following supporting information can be downloaded at: https: / /www.mdpi.com/article/10.3390/ph15080927/s1, 1H NMR, 13C NMR and HRMS supplementary figures of the final compounds 5-9, 11-12, 16-38, and 40-54.

Author Contributions: Synthesis, M.S., M.Z., S.M., N.O. and M.D.; biological evaluation M.B., P.T., P.G., D.Z.-B., A.S., U.K. and B.Z.; analytical evaluation K.M., D.S., W.M., L.G.-B. and A.L.; investigation, M.S., M.Z., P.G., D.Z.-B. and B.Z.; writing-original draft preparation, M.S., M.Z. and S.M.; writing—review and editing, M.M., P.G., D.Z.-B. and Z.O.; visualization, W.P.; supervision, M.W. and Z.O.; project administration, M.Z., P.G., A.S., B.Z., K.D., J.P., M.W. and Z.O.; funding acquisition, M.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was co-financed by Celon Pharma S.A. and the National Centre for Research and Development "Narodowe Centrum Badan i Rozwoju", project "KICHAI—Pre-clinical and clinical development of an innovative PI3 delta kinase inhibitor of as a candidate for the treatment of inflammatory disorders", grant number POIR.01.02.00-00-0085/18.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data is contained within the article and supplementary material.
Acknowledgments: We would like to thank Aleksandra Świderska (Celon Pharma S.A.) for NMR analyses and practical suggestions. This work was supported by The National Centre for Research and Development (POIR.01.01.01-00-1341/15) in Poland.

Conflicts of Interest: The authors declare the following financial interest/personal relationships which may be considered as potential competing interests. All contributors to this work at the time of their direct involvement in the project were the full-time employees of Celon Pharma S.A. A patent application WO 2016/157091 A1, based on the present observations, has been filed. M. Wieczorek is the CEO of Celon Pharma S.A. Some of the authors are the shareholders of Celon Pharma S.A. This work was financially supported by The National Centre for Research and Development (POIR.01.01.01-00-1341/15).

References

1. Saurat, T.; Buron, F.; Rodrigues, N.; de Tauzia, M.-L.; Colliandre, L.; Bourg, S.; Bonnet, P.; Guillaumet, G.; Akssira, M.; Corlu, A.; et al. Design, Synthesis, and Biological Activity of Pyridopyrimidine Scaffolds as Novel PI3K/MTOR Dual Inhibitors. J. Med. Chem. 2014, 57, 613-631. [CrossRef] [PubMed]
2. Parker, P.J. The Ubiquitous Phosphoinositides. Biochem. Soc. Trans. 2004, 32, 893-898. [CrossRef] [PubMed]
3. Engelman, J.A.; Luo, J.; Cantley, L.C. The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nat. Rev. Genet. 2006, 7, 606-619. [CrossRef] [PubMed]
4. Foster, J.G.; Blunt, M.D.; Carter, E.; Ward, S.G. Inhibition of PI3K Signaling Spurs New Therapeutic Opportunities in Inflammatory / Autoimmune Diseases and Hematological Malignancies. Pharmacol. Rev. 2012, 64, 1027-1054. [CrossRef] [PubMed]
5. Safina, B.S.; Baker, S.; Baumgardner, M.; Blaney, P.M.; Chan, B.K.; Chen, Y.-H.; Cartwright, M.W.; Castanedo, G.; Chabot, C.; Cheguillaume, A.J.; et al. Discovery of Novel PI3-Kinase δ Specific Inhibitors for the Treatment of Rheumatoid Arthritis: Taming CYP3A4 Time-Dependent Inhibition. J. Med. Chem. 2012, 55, 5887-5900. [CrossRef]
6. Cantley, L.C. The Phosphoinositide 3-Kinase Pathway. Science 2002, 296, 1655-1657. [CrossRef]
7. Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the Phosphoinositide 3-Kinase Pathway in Cancer. Nat. Rev. Drug Discov. 2009, 8, 627-644. [CrossRef]
8. Cushing, T.D.; Metz, D.P.; Whittington, D.A.; McGee, L.R. PI3K δ and PI3K γ as Targets for Autoimmune and Inflammatory Diseases. J. Med. Chem. 2012, 55, 8559-8581. [CrossRef]
9. Knight, Z.A.; Gonzalez, B.; Feldman, M.E.; Zunder, E.R.; Goldenberg, D.D.; Williams, O.; Loewith, R.; Stokoe, D.; Balla, A.; Toth, B.; et al. A Pharmacological Map of the PI3-K Family Defines a Role for P110 α in Insulin Signaling. Cell 2006, 125, 733-747. [CrossRef]
10. Murray, J.M.; Sweeney, Z.K.; Chan, B.K.; Balazs, M.; Bradley, E.; Castanedo, G.; Chabot, C.; Chantry, D.; Flagella, M.; Goldstein, D.M.; et al. Potent and Highly Selective Benzimidazole Inhibitors of PI3-Kinase Delta. J. Med. Chem. 2012, 55, 7686-7695. [CrossRef]
11. Berndt, A.; Miller, S.; Williams, O.; Le, D.D.; Houseman, B.T.; Pacold, J.I.; Gorrec, F.; Hon, W.-C.; Ren, P.; Liu, Y.; et al. Erratum: Corrigendum: The P110 Structure: Mechanisms for Selectivity and Potency of New PI(3)K Inhibitors. Nat. Chem. Biol. 2010, 6, 244. [CrossRef] [PubMed]
12. Puri, K.D.; Gold, M.R. Selective Inhibitors of Phosphoinositide 3-Kinase Delta: Modulators of B-Cell Function with Potential for Treating Autoimmune Inflammatory Diseases and B-Cell Malignancies. Front. Immunol. 2012, 3, 256. [CrossRef] [PubMed]
13. Suárez-Fueyo, A.; Rojas, J.M.; Cariaga, A.E.; García, E.; Steiner, B.H.; Barber, D.F.; Puri, K.D.; Carrera, A.C. Inhibition of PI3K δ Reduces Kidney Infiltration by Macrophages and Ameliorates Systemic Lupus in the Mouse. J. Immunol. 2014, 193, 544-554. [CrossRef] [PubMed]
14. Haselmayer, P.; Camps, M.; Muzerelle, M.; el Bawab, S.; Waltzinger, C.; Bruns, L.; Abla, N.; Polokoff, M.A.; Jond-Necand, C.; Gaudet, M.; et al. Characterization of Novel PI3KÎ' Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies. Front. Immunol. 2014, 5, 1-15. [CrossRef]
15. Banham-Hall, E. The Therapeutic Potential for PI3K Inhibitors in Autoimmune Rheumatic Diseases. Open Rheumatol. J. 2012, 6, 245-258. [CrossRef] [PubMed]
16. Stark, A.-K.; Sriskantharajah, S.; Hessel, E.M.; Okkenhaug, K. PI3K Inhibitors in Inflammation, Autoimmunity and Cancer. Curr. Opin. Pharmacol. 2015, 23, 82-91. [CrossRef]
17. Suárez-Fueyo, A.; Barber, D.F.; Martínez-Ara, J.; Zea-Mendoza, A.C.; Carrera, A.C. Enhanced Phosphoinositide 3-Kinase δ Activity Is a Frequent Event in Systemic Lupus Erythematosus That Confers Resistance to Activation-Induced T Cell Death. J. Imтипol. 2011, 187, 2376-2385. [CrossRef]
18. Haylock-Jacobs, S.; Comerford, I.; Bunting, M.; Kara, E.; Townley, S.; Klingler-Hoffmann, M.; Vanhaesebroeck, B.; Puri, K.D.; McColl, S.R. PI3K Drives the Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting Effector T Cell Apoptosis and Promoting Th17 Differentiation. J. Autoimmun. 2011, 36, 278-287. [CrossRef]
19. Ambrosi, A.; Espinosa, A.; Wahren-Herlenius, M. IL-17: A New Actor in IFN-Driven Systemic Autoimmune Diseases. Eur. J. Immunol. 2012, 42, 2274-2284. [CrossRef]
20. Wang, Y.; Zhang, L.; Wei, P.; Zhang, H.; Liu, C. Inhibition of PI3K Improves Systemic Lupus in Mice. Inflammation 2014, 37, 978-983. [CrossRef]
21. Park, S.J.; Lee, K.S.; Kim, S.R.; Min, K.H.; Moon, H.; Lee, M.H.; Chung, C.R.; Han, H.J.; Puri, K.D.; Lee, Y.C. Phosphoinositide 3-Kinase Inhibitor Suppresses Interleukin-17 Expression in a Murine Asthma Model. Eur. Respir. J. 2010, 36, 1448-1459. [CrossRef] [PubMed]
22. Soond, D.R.; Bjørgo, E.; Moltu, K.; Dale, V.Q.; Patton, D.T.; Torgersen, K.M.; Galleway, F.; Twomey, B.; Clark, J.; Gaston, J.S.H.; et al. PI3K P110§ Regulates T-Cell Cytokine Production during Primary and Secondary Immune Responses in Mice and Humans. Blood 2010, 115, 2203-2213. [CrossRef] [PubMed]
23. Perry, M.W.D.; Abdulai, R.; Mogemark, M.; Petersen, J.; Thomas, M.J.; Valastro, B.; Westin Eriksson, A. Evolution of PI3K γ and δ Inhibitors for Inflammatory and Autoimmune Diseases. J. Med. Chem. 2019, 62, 4783-4814. [CrossRef]
24. Sutherlin, D.P.; Baker, S.; Bisconte, A.; Blaney, P.M.; Brown, A.; Chan, B.K.; Chantry, D.; Castanedo, G.; DePledge, P.; Goldsmith, P.; et al. Potent and Selective Inhibitors of PI3K Bioorg. Med. Chem. Lett. 2012, 22, 4296-4302. [CrossRef] [PubMed]
25. Stypik, M.; Zagozda, M.; Michałek, S.; Dymek, B.; Zdżalik-Bielecka, D.; Dziachan, M.; Orłowska, N.; Gunerka, P.; Turowski, P.; Hucz-Kalitowska, J.; et al. Design, synthesis, and Development of Pyrazolo [1,5-a]Pyrimidine Derivatives as a Novel Series of Selective PI3K δ Inhibitors. Part I-Indole Derivatives. Pharmaceuticals 2022, 15. in press.
26. Sutherlin, D.P.; Sampath, D.; Berry, M.; Castanedo, G.; Chang, Z.; Chuckowree, I.; Dotson, J.; Folkes, A.; Friedman, L.; Goldsmith, R.; et al. Discovery of (Thienopyrimidin-2-Yl)Aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/MTOR Inhibitors for the Treatment of Cancer. J. Med. Chem. 2010, 53, 1086-1097. [CrossRef]
27. Folkes, A.J.; Ahmadi, K.; Alderton, W.K.; Alix, S.; Baker, S.J.; Box, G.; Chuckowree, I.S.; Clarke, P.A.; Depledge, P.; Eccles, S.A.; et al. The Identification of 2-(1 H -Indazol-4-Yl)-6-(4-Methanesulfonyl-Piperazin-1-Ylmethyl)-4-Morpholin-4-Yl-Thieno [3,2-d]Pyrimidine (GDC-0941) as a Potent, Selective, Orally Bioavailable Inhibitor of Class I PI3 Kinase for the Treatment of Cancer. J. Med. Chem. 2008, 51, 5522-5532. [CrossRef]
28. Chiang, P.-C.; Sutherlin, D.; Pang, J.; Salphati, L. Investigation of Dose-Dependent Factors Limiting Oral Bioavailability: Case Study with the PI3K- Inhibitor. J. Pharm. Sci. 2016, 105, 1802-1809. [CrossRef]
29. Guo, J.; Pei, Y.; Lang, H. Pyrimidine Derivative, Cytotoxic Agent, Pharmaceutical Composition and Use Thereof. WO Patent 2,016,127,455, 18 August 2016.
30. Samby, K.; Surase, Y.; Amale, S.; Gorla, S.; Patel, P.; Verma, A. 6-Morpholinyl-2-Pyrazolyl-9h-Purine Derivatives and Their Use as Pi3k Inhibitors. WO Patent 2,016,157,074, 29 March 2016.
31. Dymek, B.; Zagozda, M.; Wieczorek, M.; Dubiel, K.; Stańczak, A.; Zdżalik, D.; Gunerka, P.; Sekular, M.; Dziachan, M. 7-(Morpholin-4-Yl)Pyrazole [1,5-a]Pyrimidine Derivatives Which Are Useful for the Treatment of Immune or Inflammatory Diseases or Cancer. WO Patent 2,016,157,091, 6 October 2016.
32. Brown, D.; Matthews, D. (Alpha- Substituted Aralkylamino and Heteroarylalkylamino) Pyrimidinyl and 1,3,5-Triazinyl Benzimidazoles, Pharmaceutical Compositions Containing Them, and These Compounds for Use in Treating Proliferative Diseases. WO Patent 2,012,135,160, 27 March 2012.
33. Brown, D.; Matthews, D. (Fused Ring Arylamino and Heterocyclylamino) Pyrimidynyl and 1,3,5-Triazinyl Benzimidazoles, Pharmaceutical Compositions Thereof, and Their Use in Treating Proliferative Diseases. WO Patent 2,012,135,166, 4 October 2012.
34. Brown, D.; Matthews, D. (Alpha-Substituted Cycloalkylamino and Heterocyclylamino) Pyrimidinyl and 1,3,5-Triazinyl Benzimidazoles, Pharmaceutical Compositions Thereof, and Their Use in Treating Proliferative Diseases. WO Patent 2,012,135,175, 4 October 2012.
35. Hassan, A.S. Synthesis, Characterization, and Cytotoxicity of Some New 5-Aminopyrazole and Pyrazolo[1,5-a]Pyrimidine Derivatives. Sci. Pharm. 2015, 83, 27-39. [CrossRef]
36. Al-Azmi, A. Pyrazolo[1,5-a]Pyrimidines: A Close Look into Their Synthesis and Applications. Curr. Org. Chem. 2019, 23, 721-743. [CrossRef]
37. Available online: https:/ / chemaxon.com/products/instant-jchem (accessed on 31 May 2022).
38. Riley, R.J.; McGinnity, D.F.; Austin, R.P. A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes. Drug Metab. Dispos. 2005, 33, 1304-1311. [CrossRef]
39. García-Pérez, D.; López, C.; Claramunt, R.; Alkorta, I.; Elguero, J. 19F-NMR Diastereotopic Signals in Two N-CHF2 Derivatives of (4S,7R)-7,8,8-Trimethyl-4,5,6,7-Tetrahydro-4,7-Methano-2H-Indazole. Molecules 2017, 22, 2003. [CrossRef]
40. Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455-461. [CrossRef] [PubMed]
41. Sugano, K.; Okazaki, A.; Sugimoto, S.; Tavornvipas, S.; Omura, A.; Mano, T. Solubility and Dissolution Profile Assessment in Drug Discovery. Drug Metab. Pharmacokinet. 2007, 22, 225-254. [CrossRef] [PubMed]
42. Guha, R.; Dexheimer, T.S.; Kestranek, A.N.; Jadhav, A.; Chervenak, A.M.; Ford, M.G.; Simeonov, A.; Roth, G.P.; Thomas, C.J. Exploratory Analysis of Kinetic Solubility Measurements of a Small Molecule Library. Bioorg. Med. Chem. 2011, 19, 4127-4134. [CrossRef] [PubMed]
43. Ackley, D.C.; Rockich, K.T.; Baker, T.R. Metabolic Stability Assessed by Liver Microsomes and Hepatocytes. In Optimization in Drug Discovery; Humana Press: Totowa, NJ, USA, 2004; pp. 151-162.

[^0]: IC_{50} values were determined as the mean based on two independent experiments.

