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A B S T R A C T   

Testing for SARS-CoV-2 infection has been a key strategy to mitigate and control the COVID-19 pandemic. Wide 
spatial and racial/ethnic disparities in COVID-19 outcomes have emerged in US cities. Previous research has 
highlighted the role of unequal access to testing as a potential driver of these disparities. We described inequities 
in spatial accessibility to COVID-19 testing locations in 30 large US cities. We used location data from Castlight 
Health Inc corresponding to October 2021. We created an accessibility metric at the level of the census block 
group (CBG) based on the number of sites per population in a 15-minute walkshed around the centroid of each 
CBG. We also calculated spatial accessibility using only testing sites without restrictions, i.e., no requirement for 
an appointment or a physician order prior to testing. We measured the association between the social vulner
ability index (SVI) and spatial accessibility using a multilevel negative binomial model with random city in
tercepts and random SVI slopes. Among the 27,195 CBG analyzed, 53% had at least one testing site within a 15- 
minute walkshed, and 36% had at least one site without restrictions. On average, a 1-decile increase in the SVI 
was associated with a 3% (95% Confidence Interval: 2% - 4%) lower accessibility. Spatial inequities were similar 
across various components of the SVI and for sites with no restrictions. Despite this general pattern, several cities 
had inverted inequity, i.e., better accessibility in more vulnerable areas, which indicates that some cities may be 
on the right track when it comes to promoting equity in COVID-19 testing. Testing is a key component of the 
strategy to mitigate transmission of SARS-CoV-2 and efforts should be made to improve accessibility to testing, 
particularly as new and more contagious variants become dominant.   

1. Introduction 

The COVID-19 pandemic has highlighted long standing health in
equities in the US, as low-income and racial/ethnic minorities have been 
disproportionately affected in terms of COVID-19 incidence and mor
tality (Bassett et al., 2020; Bilal et al., 2021; Bryan et al., 2021; Oge
degbe et al., 2020). These disparities have emerged because these groups 
are more likely to be exposed to COVID-19 due to living or working 
conditions (McCormack et al., 2020; Benfer et al., 2021; Harris, 2021; 
Niedzwiedz et al., 2020). Moreover, these groups may also be more 
vulnerable to severe COVID-19, in part, due to higher prevalence of 
chronic conditions such as type 2 diabetes, obesity, and cardiovascular 

disease (Apicella et al., 2020; Mehra et al., 2020). As a result of higher 
rates of exposure and infections, Non-Hispanic Blacks, Hispanics, and 
American Indians and Alaska Natives have been hospitalized and have 
died at disproportionately higher rates compared to non-Hispanic 
whites (Price-Haywood et al., 2020; Artiga and Orgera, 2020; Marti
nez et al., 2020). 

Testing for SARS-CoV-2 is critical to control community transmission 
of COVID-19. Testing of individuals who do not have symptoms but may 
have been exposed to the virus helps to prevent the spread of COVID-19 
by identifying cases early on and informing decisions about isolation 
and contacts tracing (Manabe et al., 2020). In the early months of the 
COVID-19 pandemic, a series of missteps, including flawed COVID-19 
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test kits, delayed the production and distribution of COVID-19 tests in 
the US. (Temple-Raston, 2021) Due to the shortage in supply, COVID-19 
tests were being reserved for symptomatic patients under strict guide
lines. However, mass media reported on prominent personalities who 
had obtained tests without exhibiting symptoms or having known con
tact with the virus (Megan Twohey and Stein, 2020), while also high
lighting the lack of testing sites in some neighborhoods (Lubrano, 2020). 
These stories highlighted very early the emerging inequities in 
COVID-19 outcomes, including testing (Dalva-Baird et al., 2021). 

In January of 2021, approximately 2 million COVID-19 tests were 
being performed per day in the US. (Atlantic, 2021) However, distri
bution of testing location across neighborhoods and variation in criteria 
for testing are likely to perpetuate disparities (Bilal et al., 2021). In this 
paper, we examine spatial inequities in COVID-19 testing sites located in 
30 large US cities in October of 2021. 

2. Conceptual framework 

The concept of access to healthcare resources is multidimensional. 
Access can be defined in terms of spatial accessibility, affordability, 
acceptability, and availability (Frenk and White, 1992). Access can also 
be defined according to two dimensions: potential or revealed, and 
spatial or non-spatial (Luo and Wang, 2003; Andersen and Aday, 1978; 
Guagliardo, 2004). Potential accessibility refers to the possible utiliza
tion of services and revealed accessibility refers to the actual utilization 
of services. Spatial accessibility refers to the absence of geographical 
barriers and non-spatial accessibility refers to organizational, social, or 
historical factors that constitute barriers to access. These may include 
factors such as costs, excessive bureaucracy to obtain services, language 
barriers, and mistrust in the health care system. Low-income and 
minoritized racial/ethnic groups often experience a number or barriers 
to access health care, such as financial and transportation barriers, and 
mistrust in the health care system (Syed et al., 2013; Moore et al., 2013; 
Guadagnolo et al., 2009; Glied et al., 2020). 

In this study, we examined potential accessibility, with a focus on the 
spatial dimension in isolation or combined with non-spatial barriers. We 
used two indicators of non-spatial barriers, i.e., requiring a physician 
order and requiring a prior appointment. Physician order requirement is 
a barrier to testing for people without regular access to a primary care 
physician (PCP). Individuals with PCP visits have declined over time, 
especially for individuals living in lower income areas (Ganguli et al., 
2020). Requiring a prior appointment is an extra step that may 
discourage some from seeking a test, especially in a context of high 
demand for testing that may require several call attempts and/or access 
to internet. These types of non-spatial barriers are more likely to be 
experienced by disadvantaged populations (DeVoe et al., 2007). 

We measured inequities in neighborhood- and city-level spatial 
accessibility to COVID-19 testing sites using a metric that takes into 
account street network data. In order to combine spatial and non-spatial 
components, we also calculated the same metric including only sites that 
required neither an appointment nor a physician order prior to testing. 
We conduct these analyses for each city in our sample, as the unique 
segregation patterns and availability of testing sites of each city are 
socially determined factors (Riley, 2022). As such, understanding which 
areas have wider or narrower inequities in testing site accessibility 
would provide hints as of what features of cities promote equity (Riley, 
2022). 

3. Methods 

3.1. Study design, setting, and data sources 

This is a cross-sectional descriptive study of inequities in COVID-19 
testing access in 27,469 census block groups (CBG) in 30 US cities 
whose health departments are members of the Big Cities Health Coali
tion (BCHC). These cities include consolidated city-counties (e.g., 

Philadelphia), collections of counties (e.g., New York City), independent 
cities (e.g., Baltimore), or incorporated places, generally smaller in size 
than counties (e.g., Los Angeles), and represent the largest metropolitan 
areas in the US. Health departments in these cities have the capacity to 
make policy designed to address the needs of the population they serve. 

We used data from Castlight Health Inc. (henceforth, Castlight), 
current as of October 19, 2021, containing data on 3154 testing sites in 
the 30 cities studies. We did not include testing sites outside of the city. 
This approach assumes that if someone needs to leave the city or 
metropolitan area to get tested somewhere else, that also indicates a 
barrier to access. Castlight data include location (latitude and longitude) 
and several characteristics of each testing site. Castlight collects data 
from numerous provider systems to automatically add their testing sites 
based on data feeds (Castlight Health, 2021). They also gather feedback 
from users of their website; users may note any changes in the site 
directory information. Any new information added by users is then 
verified before updating the database. Information on testing sites is 
updated twice a week (Castlight Health, 2021). We also obtained total 
population and sociodemographic data at the CBG level from the 
American Community Survey (2015–2019 ACS 5-year estimates), all 
based on 2010 census boundaries. CBG and incorporated places (cities) 
boundaries were obtained from the US Census (US Census, 2018). CBG is 
the smallest level of data aggregation used in the American Community 
Survey 5-year estimates. We chose this unit because it represents a more 
granular spatial level to characterize heterogeneity within cities. A CBG 
was part of a city if it overlapped at all with the extent of each city. We 
used street network data from ESRI Business Analyst 2018 (Redlands, 
CA). 

3.2. Access metrics 

To measure spatial accessibility, we used the number of testing sites 
per population in the CBG and surrounding areas. We constructed this 
metric in three steps. First, we calculated the area defined by a 15-min 
walking distance, a threshold commonly used in walkability studies 
(Gaglione et al., 2022; Hosford et al., 2022), from the population 
weighted centroid of each CBG (BureauUSC, 2021) (i.e., 15-min walk
sheds), using 2018 street network data from the Network Analyst 
Extension, Service Area Tool of ArcGISPro 2.8.2. Walksheds and 2010 
CBG boundaries were projected in the USA Contiguous Albers Equal 
Area Conic USGS projection, North American Datum (NAD) 1983. Sec
ond, we redefined the walkshed such that the borders of the walkshed 
would coincide with the limits of the surrounding CBGs. As part of that 
process, CBGs that overlapped with the walkshed by less than 25% were 
excluded from the redefined area, whereas CBGs that had >25% of their 
area within the walkshed were fully included in the walkshed. This was 
done to facilitate the calculation of the population covered by the 
walkshed, which was accomplished by adding up the population of the 
CBGs included in the redefined area. Supplemental Fig. 1 shows an 
example of a walkshed area. Third, we calculated the number of sites per 
1000 people in the redefined walkshed. We excluded walksheds with 
very small resident population (bottom 1% of distribution, or those with 
population smaller than 265 residents) to remove extreme outliers. To 
examine a combination of spatial and non-spatial barriers, we repeated 
steps two and three using only testing sites that required neither an 
appointment nor a physician order prior to testing. 

As a secondary analysis, we also calculated 15-min drivesheds, or the 
area surrounding the CBG centroid demarcated by a 15-min driving 
distance. This accessibility metric does not account for variations in 
possession of a car across communities and is less likely to be compa
rable across cities with varying level of reliance on cars as a mode of 
transportation. We also considered the use of a metric based on public 
transportation. However, public transit schedules were often disrupted 
during parts of the pandemic and tracking all these potential disruptions 
was not feasible. 
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3.3. Social vulnerability 

To measure social vulnerability, we used the CDC’s social vulnera
bility index (SVI), defined in terms of the characteristics of a community 
that affects their capacity to anticipate or recover from a disaster (Fla
nagan et al., 2018). The SVI has been used to characterize variations 
across several COVID-19-related predictors and outcomes, and allows 
researchers to examine variation between and within jurisdictions 
(Barry et al., 2021; Hughes et al., 2021; De Ramos et al., 2022). The SVI 
has also been used to allocate resources such as COVID19 vaccines to 
communities in high need (Schmidt et al., 2021). We chose to use the SVI 
because it represents a composite measure census variables that captures 
disadvantage at a granular geographic level. The 15 variables included 
in the calculation of the SVI are grouped into four domains: socioeco
nomic status, household composition and disability, minority status and 
language, and housing type and transportation (Supplemental 
Table 1). We adapted the original CDC calculation of the SVI, done at 
the census tract level, to obtain a measure at the CBG level, using the 
2015–2019 ACS 5-year estimates. Two out the 15 SVI variables (persons 
in group quarters and civilian noninstitutionalized population with a 
disability) were not available at the CBG level; for these two variables, 
we assigned the census tract level values to their respective block group 
before calculating the SVI. To calculate the SVI, CBGs were ranked ac
cording to each of the variables in descending order – except for per 
capita income, which was ranked in ascending order – as per Flanagan 
et al. (2018) The ranking of the CBG was done separately within each 
city. After ranking the CBG, we calculated the percentile ranking for 
each variable using the formula: 

Percentile = (Rank − 1)/(N − 1)

where Rank is the position of the CBG, and N is the total number of CBGs 
in each city. Following the calculation of the percentile ranking, we 
calculated domain specific and overall SVI summary measures. The 
domain specific SVI was calculated as the sum of the percentile ranks for 
each variable comprising the domain. The overall SVI was calculated as 
the sum of the percentile ranks of the four domains. 

3.4. Analysis 

We conducted the analysis in five steps. First, we calculated 
descriptive statistics characterizing CBGs with and without sites, and the 
percent of CBGs with at least one testing site within the walkshed. We 
also constructed maps for each city showing the CBGs for which the 15- 
min walkshed overlapped with at least one testing site location (Sup
plemental Figs. 2–6). Second, we calculated inequities in spatial acces
sibility using the 90/10 ratio, i.e., ratio between CBGs at or above the 
90th percentile (high vulnerability) and CBGs at or below the 10th 
percentile (low vulnerability) of the SVI. For this, we created the two 
groups, high and low vulnerability) and then calculated the ratio of site 
per population between the two groups. We also conducted a secondary 
analysis where we used a different cut-off (75/25). 

Third, we used multilevel negative binomial models to estimate the 
strength of the association between SVI and spatial accessibility. We 
chose negative binomial models because they allowed us to model the 
outcomes as counts of sites within each CBG’s walkshed/driveshed and 
include an offset for total population in the walkshed/driveshed. In each 
model, we included the SVI or its four domains as independent variables, 
all in separate models. These models also included a random intercept 
for city and a random slope for the SVI or SVI domains. Exponentiated 
coefficients resulting from this model represent the association between 
a 1-decile difference in the SVI and the relative difference in the number 
of sites per population. Since these models include a random slope for 
the independent variable, the main results represent the association 
between the SVI and accessibility metrics for the median city. We also 
present the Best Linear Unbiased Prediction (BLUP) of random effects 

(Supplemental Figs. 7 and 8 for walkshed and driveshed, respectively), 
representing the city-specific random slopes. Fourth, we repeated the 
modeling steps using only the testing sites that did not require an 
appointment nor a physician order prior to testing. 

Last, we explored for the presence of spatial autocorrelation on 
testing site accessibility conditional on the SVI using Global Moran’s I. 
For this, we followed an approach similar to Bilal et al. (2021), by fitting 
a negative binomial model separately for each city, extracting the 
Pearson residuals from this model, and then calculating Global Moran’s 
I. Neighbors were calculated using queen-type weights. We found evi
dence of significant spatial autocorrelation in 18 of the 30 cities (see 
Supplemental Table 2). To address this in the modeling stage, we fol
lowed Bilal et al. (2021) and fitted a negative binomial 
Besag–York–Mollié conditional autoregressive model using integrated 
nested Laplace approximations (INLA), a method that approximates 
Bayesian inference. We fitted this model separately for each city and 
repeated the analysis for both analysis (unrestricted and restricted to 
sites with no barriers). The INLA model failed to converge for 3 and 9 
cities in the unrestricted and restricted analyses, respectively. Therefore, 
we present these results as a sensitivity analysis that compares the re
sults from the INLA models to the main analysis to ensure that residual 
spatial autocorrelation is not driving our inferences. 

Analyses were conducted in R version 4.0.2 using the glmmTMB and 
INLA packages. 

4. Results 

Among the 27,195 census block groups (CBG) included in the anal
ysis, 53% had at least one testing site within a 15-min walkshed, and 
36% had at least one site that required neither a physician order nor an 
appointment (no restriction sites). The median population size and the 
SVI were similar across CBGs with and without testing sites. CBGs 
without testing sites had a larger median area compared to those with 
testing sites. (Table 1). The proportion of CBGs with at least one testing 
site varied considerably across cities, from 22% in Minneapolis to 87% 
in New York City, while the proportion of CBGs with at least one testing 
site with no restrictions varied from 3% in Detroit to 77% in New York 
City (Table 2). Among all cities, the median value for sites per popula
tion was 0.03 sites per 1000 people, with large variation within cities 
(Fig. 1). 

Table 3 shows large inequities in accessibility within cities, with 
lower spatial accessibility in areas of higher social vulnerability. The 
number of sites per population was 30% lower in CBGs at or above the 
90th percentile of the SVI (highest vulnerability), compared to CBGs at 
or below the 10th percentile of the SVI (lowest vulnerability). Inequities 
were similar among all components of the SVI except housing and 
transportation, for which inequity was inverted, i.e., the number of sites 
per population was 50% higher in CBGs with the highest (vs. lowest) 
vulnerability. When comparing all testing sites with testing sites with no 
restrictions, inequities were generally similar in magnitude and direc
tion. Results were similar when using the 75th/25th percentile cut-off 

Table 1 
Characteristics of the census block groups with and without sites.   

CBGs without 
sites within a 15- 
min walkshed 

CBGs with at least 
one site within a 
15-min walkshed 

CBGs with least one 
site (w/o restrictions) 
within a 15-min 
walkshed 

N (%) 12,838 (46.7%) 14,631 (53.3%) 9870 (35.9%) 
Population 1277 [889–1832] 1244 [904–1695] 1271 [927–1704] 
SVI 0.51 [0.26–0.75] 0.51 [0.25–0.76] 0.53 [0.26–0.77] 
Area 

(square 
Km) 

0.42 [0.23–0.84] 0.15 [0.07–0.33] 0.12 [0.05–0.29] 

Footnote: SVI=Social Vulnerability Index, CBG=Census Block Group; all values 
are Medians [IQR]. 
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(Supplemental Table 3). 
Fig. 2 shows the 90/10 ratios for all cities. When including all testing 

sites, 17 out of 30 cities had lower accessibility in high-vulnerability (top 
10% of the SVI) CBGs, compared to low-vulnerability (bottom 10% of 
the SVI) CBGs. However, 13 cities had higher accessibility in low- 
vulnerability (vs. high-vulnerability) CBGs. When considering only 
testing sites with no restrictions, the pattern of inequity changed in 
several cities. In three cities, Washington D.C., Boston, and Philadelphia, 
inequity was inverted, meaning that when considering only testing sites 
with no restrictions these cities had higher accessibility in CBGs with 
high vulnerability. In two cities, Austin and San Jose, inequity was 
smaller when considering only testing sites with no restrictions (vs. all 
testing sites). In two cities, San Francisco and Minneapolis, accessibility 
changed from higher in high (vs. low) vulnerability CBGs to higher low 
(vs. high) vulnerability CBGs when considering only testing sites with no 
restrictions. 

Table 4 shows the results from the negative binomial models. The 
models using walksheds indicate that a 1-decile higher SVI was associ
ated with a 3% (95% CI 2%–4%) lower accessibility. We observed 
similar associations for all SVI components except housing and trans
portation, which had an inverted inequity. Models including only testing 
sites with no restrictions showed similar results. Models using drive
sheds indicate a similar overall pattern, but inequalities were generally 

smaller. But Fig. 3 shows that the relationship between spatial accessi
bility to testing sites and the SVI varied considerably across cities; cities 
in the Northeast and South had a more consistent pattern of lower 
accessibility for CBGs with higher vulnerability, and cities in the Mid
west and West had more heterogeneity in the association with a number 
of cities presenting inverted disparities (higher accessibility in high- 
vulnerability areas) (Fig. 3). Sensitivity analysis using a spatially 
explicit model showed that results were robust to residual spatial 
autocorrelation (Supplemental Fig. 9). 

Supplemental Figs. 7 and 8 show city-specific random slopes or best 
linear unbiased prediction. The fixed effect of the SVI (see Table 4) is 
negative, indicating lower accessibility with higher social vulnerability. 
Therefore, a negative random slope indicates an even stronger inequity, 
while a positive random slope indicates a weaker or inverted inequity. 
The relationship between the two slopes, i.e., from all sites vs. no re
striction sites, is shown in Supplemental Fig. 10. 

5. Discussion 

In this analysis examining inequities in spatial accessibility to 
COVID-19 testing sites in 30 large US cities, we found five key results. 
First, there is wide heterogeneity in accessibility to testing across cities 
with almost half of all CBGs lacking at least one testing site within a 15- 
min walk. Second, there is also wide heterogeneity in spatial accessi
bility within cities, with areas of higher social vulnerability generally 
having lower spatial access to testing. On average, areas at or above the 
90th percentile of the social vulnerability index had 30% lower rate of 
sites per population in the 15-min walkshed, compared to areas at or 
below the 10th percentile of vulnerability. Third, these differences 
varied by city, with several cities having inverted disparities (i.e., high- 
vulnerability areas had higher access to testing). Fourth, accessibility 
was lower when including only sites with no restrictions (i.e., physician 
orders and appointments), but inequities were similar to those found for 
the totality of sites. However, some cities had a more equitable distri
bution of sites when considering only sites with no restriction. Fifth and 
last, when examining different components of the SVI, inequities were 
similar except for the housing and transportation component. 

Inequities in accessibility to COVID-19 testing have been reported 
since the beginning of the pandemic with studies showing that testing 
resources were primarily allocated to more affluent communities (Dal
va-Baird et al., 2021; Dryden-Peterson et al., 2021; Servick, 2020; Asa
bor et al., 2022). Consistent with this pattern, other studies have also 
shown inequities in utilization of tests across different geographies 
within states and cities (Bilal et al., 2021; Dryden-Peterson et al., 2021; 
Seto et al., 2020; Lieberman-Cribbin et al., 2020). Socioeconomically 
disadvantaged counties and communities of color have higher need for 
and lower accessibility to testing, as indicated by high COVID-19 posi
tivity ratios in these communities (Bilal et al., 2021; Dryden-Peterson 
et al., 2021; Lieberman-Cribbin et al., 2020; Rader et al., 2020). Our 
study shows that even a year after initial descriptions of these inequities, 
and after much improvement in overall availability of tests across the 
country, inequities in accessibility to COVID-19 testing in some of the 
largest US cities persist. Our results also show that non-spatial barriers 
are persistent, with a majority of CBGs in most cities having some type of 
restrictions to testing (i.e., need for an appointment before testing or a 
physician order). 

Despite this general pattern of inequity, several cities had inverted 
inequities (i.e., better accessibility in more vulnerable areas), particu
larly when considering the distribution of sites with no restrictions to 
testing. The Best Unbiased Prediction (BLUP) shows that city-specific 
random slopes varied considerably. For example, in Houston and Dal
las, the random slopes were negative, indicating that, in these cities, 
higher vulnerability was more strongly associated with lower access, as 
compared to the average city. The pattern of distribution of sites can be 
visually examined in the map (Supplemental Fig. 3), which shows that 
the suburbs located east of Houston, where poor communities and 

Table 2 
Spatial accessibility to COVID-19 testing in 30 large US cities.  

City Number 
of CBG 

Population 
(in 100,000) 

CBGs with at 
least one 
testing site 
within a 15- 
min walkshed 

CBGs with at least 
one site with no 
restriction within 
a 15-min 
walkshed 

% (n) % (n) 

Austin 496 9.6 34.5 (171) 22.2 (110) 
Baltimore 625 6.0 34.9 (218) 17 (106) 
Boston 543 6.8 52.1 (283) 16.6 (90) 
Charlotte 454 8.7 23.1 (105) 14.1 (64) 
Chicago 2149 27.0 69.7 (1498) 61 (1311) 
Cleveland 443 3.8 43.1 (191) 12.6 (56) 
Columbus 610 8.7 27.2 (166) 13.1 (80) 
Dallas 903 13.0 45.2 (408) 28 (253) 
Denver 480 7.1 45.6 (219) 25.6 (123) 
Detroit 792 6.6 23.7 (188) 3.4 (27) 
Fort Worth 505 8.6 31.3 (158) 16.8 (85) 
Houston 1307 23.0 40.7 (532) 26.6 (348) 
Indianapolis 574 8.6 22.8 (131) 9.8 (56) 
Kansas City 421 4.9 26.6 (112) 14 (59) 
Las Vegas 443 6.3 36.1 (160) 24.6 (109) 
Long Beach 326 4.7 48.2 (157) 26.7 (87) 
Los Angeles 2490 40.0 43.5 (1084) 25.1 (624) 
Miami 296 4.5 69.9 (207) 55.7 (165) 
Minneapolis 378 4.2 22.2 (84) 11.4 (43) 
New York 

City 
6173 84.0 87.9 (5425) 77.7 (4799) 

Oakland 330 4.2 67 (221) 52.1 (172) 
Philadelphia 1319 16.0 73.6 (971) 8 (106) 
Phoenix 955 16.0 35.2 (336) 25.1 (240) 
Portland 435 6.4 36.6 (159) 19.1 (83) 
San Antonio 876 15.0 32 (280) 21.3 (187) 
San Diego 827 14.0 23.8 (197) 8.9 (73) 
San 

Francisco 
575 8.7 56.3 (324) 14.3 (82) 

San Jose 544 10.0 25.2 (137) 19.9 (108) 
Seattle 477 7.2 32.1 (153) 10.3 (49) 
Washington 449 6.9 54.6 (245) 25.6 (115) 
Total 27,195 390.8 53.4 (14,520) 36.1 (9810) 

Footnotes: Population refers to total city population in 2015–2019 (5-year 
American Community Survey). CBG=Census Block Group. CBGs with no re
strictions were those that required neither an appointment nor a physician order 
prior to testing. Median Site per 1000 people is the median value per city for the 
metric calculated as the number of sites divided by the population covered in 
each walkshed. Testing site data is current as of October 19th, 2021 
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communities of color are located, have only a small number of testing 
sites. In Dallas, we also see an overlap between neighborhoods that have 
been historically disadvantaged by segregationist policies (Gándara and 
Orfield, 2021) and areas with fewer testing sites (Supplemental Fig. 3). 
Conversely, cities like Seattle, had a positive random slope, meaning 
that the association between vulnerability and accessibility was weaker 
or inverted. However, inequity findings should be interpreted in 
conjunction with overall metrics of accessibility. For example, in Min
neapolis, areas of high vulnerability also had higher accessibility, 
compared to areas of low vulnerability, but the city had few testing sites 
(Supplemental Fig. 4), even though the existing sites were more often 
located near areas of high vulnerability. We have interactive maps 
available in the “COVID-19 inequities in cities dashboard” (Bilal et al., 
2022a) (https://www.covid-inequities.info/). 

Inequity in spatial accessibility was larger when measured via the 
walkshed (vs. the driveshed) metric. This is somewhat expected as 
drivesheds cover larger geographic areas potentially resulting in less 
heterogeneity in accessibility. However, city-specific random slopes 
show large differences, with many cities showing a stronger association 

between SVI and accessibility compared to the average city. 
Our finding indicates that some cities may be on the right track when 

it comes to promoting equity in COVID-19 testing. Further examination 
of the actions taken by these cities’ health department may point to 
policies that have the potential to promote equity in testing. Positive 
results can be shared and replicated/adapted by other jurisdictions with 
policy-making capacity. In addition, further examination of variation 
public health and healthcare infrastructure in these cities can provide 
insights into the drivers of disparities within and across cities (Riley, 
2022) as well as potential solutions to mitigate disparities related to 
COVID-related public health interventions, such as testing and vacci
nation, for which large disparities have also been reported (Bilal et al., 
2022b). Lastly, further research is needed to assess whether higher 
accessibility and fewer restrictions were translated into smaller in
equities in utilization. 

We found generally consistent results for the social vulnerability 
index, overall and by components, except for the housing and trans
portation component. The social vulnerability index has been used to 
characterize variations across several COVID-19 related predictors and 
outcomes. Higher social vulnerability was associated with accessibility 
to healthcare resources in the context of COVID-19 (Kang et al., 2020), 
higher risk of becoming a COVID-19 hotspot (Dasgupta et al., 2020), and 
higher COVID-19 case fatality (Nayak et al., 2020). Inconsistent results 
for the housing and transportation component may be related to the 
indicators included in this component; in particular, indicators like 
percentage of mobile homes and households without vehicles may be 
less useful to measure social vulnerability in large cities. A previous 
study examining the association between the housing and transportation 
indicator and COVID-19 outcomes found inexistent or narrower dis
parities in this domain compared to the other SVI domains (Bilal et al., 
2021). 

This study has limitations. First, we have a few limitations related to 
the accessibility metric, including the fact that it does not account for the 
capacity of the testing sites. The metric only accounts for the number of 
sites and the population distribution, thus we cannot assess whether 
sites in high vulnerability areas also have higher capacity to meet the 
need for testing. The largest share of testing sites examined were phar
macy clinics and urgent care clinics, which are likely similar across cities 
in terms of capacity but testing sites can also be academic hospitals with 

Fig. 1. Sites per population in the block group 15-min walkshed by city Footnotes: Dashed line represents the median value for all cities. This plot excludes outliers, 
i.e., top 1% of the CBGs with values ranging from 0.65 to 5 sites per 1000 people. Cities are ordered from lowest to highest median value of site per 1000 population. 

Table 3 
Median ratio (IQR) of spatial accessibility to COVID-19 testing sites between 
CBGs at or above the 90th and at or below the 10th percentile of SVI, and its 
components among 30 cities.   

All testing sites Only testing sites 
without restrictions 

Median IQR (25th- 
75th) 

Median IQR (25th- 
75th) 

SVI – overall 0.7 0.4–1.4 0.7 0.5–1.7 
SVI – socioeconomic status 0.7 0.5–1.0 0.7 0.4–1.0 
SVI – household composition 

and disability 
0.7 0.5–1.0 0.9 0.6–1.2 

SVI – minority status and 
language 

0.6 0.4–1.2 0.5 0.3–1.4 

SVI – housing type and 
transportation 

1.5 1.0–2.2 1.2 0.6–1.7 

Footnote: Inequities were measured by the 90/10 ratio between the top and 
bottom deciles of the SVI, overall and by SVI components. IQR=Interquartile 
range. 
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potentially large capacity to test. Moreover, given data limitations, we 
were not able to include mobile test clinics, which may have focused on 
disadvantaged communities (Jaklevic, 2021). This may have over
estimated spatial inequities in cities that invested in pop-up sites in 
low-income neighborhoods. However, a recent study has found that 
racially segregated communities have a lower presence of COVID-19 
testing sites, including mobile or pop-up sites (Asabor et al., 2022). 
Also, the use of street network has limitations, such as lack of detail 
about mid-block crossing signals or informal cut throughs that would 
allow for calculation of more precise routes and travel time. Regarding 
of the accessibility metric, we were unable to account for other types of 
testing strategies such as home testing. This has become especially 
relevant in later phases of the pandemic, as rapid at home testing has 
become a commonplace strategy to mitigate the transmission of 
SARS-CoV-2. 

Second, the examination of non-spatial barriers was limited to only 
two indicators; we did not account for several other potential non- 
spatial barriers to care. In particular we were not able to measure real 
or perceived barriers related to costs, either direct or indirect, which are 
critical for economically disadvantaged and uninsured groups (Glied 
et al., 2020). Spatial accessibility may be high in disadvantaged com
munities, but if community members don’t know that tests are free, test 
utilization may still be low, particularly in communities a high pro
portion of uninsured or underinsured individuals (Rader et al., 2020). 

Further analyses are necessary to assess the effect of these real and 
perceived barriers on COVID-19 testing utilization. 

Lastly, accessibility is just one of the components of access and many 
factors may have a role in testing utilization (Frenk and White, 1992). 
Improving testing capacity in vulnerable communities should be 
coupled with strong community engagement (Lash et al., 2020; Clark 
et al., 2021) and strengthening of the public health infrastructure 
(Romero et al., 2020; Fields et al., 2021) to support contact tracing and 
isolation. Moreover, an understanding of whether these spatial acces
sibility patterns follow racial and economic segregation patterns (Asabor 
et al., 2022; Torrats-Espinosa, 2021), may also help unpack the conse
quences of structural racism on the allocation of healthcare resources 
(Bailey et al., 2017). A more in-depth examination of the efforts in 
various cities is necessary to understand the observed heterogeneity in 
inequity and potentially identify successful equity-based strategies. 

6. Conclusion 

We examined inequity in spatial accessibility to COVID-19 testing in 
30 of the largest US cities. We found that spatial accessibility to testing 
vary widely across cities, and that in general accessibility is worse in 
more vulnerable areas. Despite this general pattern of inequity, several 
cities had inverted inequity (i.e., better accessibility in more vulnerable 
areas). This finding indicates that these cities may be on the right track 

Fig. 2. Inequities in testing accessibility between 
census block groups at the top and bottom deciles of 
the social vulnerability index. Footnote: Ratios are 
shown on the log scale. Lines in red represent worse 
outcomes for most vulnerable communities (i.e., 
lower rates of sites per population for the top 10 
percent most vulnerable CBGs compared to the 10 
percent least vulnerable). Lines in green represent 
better outcomes for vulnerable communities. (For 
interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   

Table 4 
Association of spatial accessibility and the social vulnerability index (SVI) and its components.   

Walkshed Driveshed 

All testing sites Only testing sites without 
restrictions 

All testing sites Only testing sites without 
restrictions 

Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI 

SVI overall 0.97 0.95–0.99 0.98 0.95–1.01 0.98 0.97–0.99 0.98 0.97–0.99 
SVI socioeconomic status 0.96 0.94–0.97 0.96 0.93–0.99 0.98 0.97–0.99 0.98 0.97–0.99 
SVI household composition and disability 0.97 0.95–0.98 0.99 0.96–1.02 9.98 0.97–0.99 0.99 0.98–1.00 
SVI minority status and language 0.95 0.93–0.97 0.96 0.92–0.99 0.98 0.97–0.99 0.98 0.97–1.00 
SVI housing type and transportation 1.04 1.02–1.07 1.02 0.99–1.04 1.0 1.0–1.01 0.99 0.97–1.00 

Footnote: Results are from negative binomial models including random intercept for cities and random slope for the SVI. Coefficients represent the fixed effect of SVI 
(median effect across all cities). Coefficients are exponentiated, representing the relative increase in sites per population per 1-decile increase in the SVI or its 
components. 
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when it comes to promoting equity in COVID-19 testing. Efforts should 
be made to improve accessibility to testing in cities, as testing is a key 
component of the strategy to mitigate the transmission of SARS-CoV-2, 
particularly as new and more transmissible variants become dominant. 
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