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A B S T R A C T   

The disease severity of COVID-19, especially in the elderly and patients with co-morbidities, is characterized by 
hypercytokinemia, an exaggerated immune response associated with an uncontrolled and excessive release of 
proinflammatory cytokine mediators (cytokine storm). Flavonoids, important secondary metabolites of plants, 
have long been studied as therapeutic interventions in inflammatory diseases due to their cytokine-modulatory 
effects. In this review, we discuss the potential role of flavonoids in the modulation of signaling pathways that are 
crucial for COVID-19 disease, particularly those related to inflammation and immunity. The immunomodulatory 
ability of flavonoids, carried out by the regulation of inflammatory mediators, the inhibition of endothelial 
activation, NLRP3 inflammasome, toll-like receptors (TLRs) or bromodomain containing protein 4 (BRD4), and 
the activation of the nuclear factor erythroid-derived 2-related factor 2 (Nrf2), might be beneficial in regulating 
the cytokine storm during SARS-CoV-2 infection. Moreover, the ability of flavonoids to inhibit dipeptidyl 
peptidase 4 (DPP4), neutralize 3-chymotrypsin-like protease (3CLpro) or to affect gut microbiota to maintain 
immune response, and the dual action of angiotensin-converting enzyme 2 (ACE-2) may potentially also be 
applied to the exaggerated inflammatory responses induced by SARS-CoV-2. Based on the previously proven 
effects of flavonoids in other diseases or on the basis of newly published studies associated with COVID-19 
(bioinformatics, molecular docking), it is reasonable to assume positive effects of flavonoids on inflammatory 
changes associated with COVID-19. This review highlights the current state of knowledge of the utility of 
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flavonoids in the management of COVID-19 and also points to the multiple biological effects of flavonoids on 
signaling pathways associated with the inflammation processes that are deregulated in the pathology induced by 
SARS-CoV-2. The identification of agents, including naturally occurring substances such as flavonoids, represents 
great approach potentially utilizable in the management of COVID-19. Although not clinically investigated yet, 
the applicability of flavonoids against COVID-19 could be a promising strategy due to a broad spectrum of their 
biological activities.   

1. Introduction 

The ongoing COVID-19 pandemic, caused by the severe acute res
piratory syndrome coronavirus 2 (SARS-CoV-2), is currently one of the 
most discussed research topics worldwide [1]. The clinical manifesta
tion of COVID-19 occurs after an incubation period of approximately 
5–7 days and usually includes cough, fever, fatigue, headache, diarrhea, 
dyspnoea, and/or lymphopenia [2]. Most patients are asymptomatic or 
experience only mild to moderate symptoms. However, some patients 
may develop respiratory failure, acute respiratory distress syndrome 
(ARDS), or multiple organ failure [1,3]. Advanced age and 
co-morbidities such as diabetes, cardiovascular disease, hypertension, 
chronic kidney disease, and chronic obstructive pulmonary disease are 
highly associated with increased risk of severe course of COVID-19. 
Complications of severe COVID-19 includes ARDS, septic shock, coag
ulation dysfunction, metabolic acidosis, cardiac arrhythmia, kidney 
damage, liver dysfunction, heart failure, or secondary infections [2]. 
There is ample evidence that lung damage and multiple organ failure in 
COVID-19 result from systemic hyper-inflammation [1]. Similar to pa
tients with SARS-CoV and MERS-CoV, the subgroup of COVID-19 pa
tients with severe disease have a high level of serum ferritin, D-dimer, 
fibrinogen, C-reactive protein, interleukin 6 (IL-6) and procalcitonin and 
are in increased risk of thrombosis and disseminated intravascular 
coagulation. These clinical and laboratory traits are linked to 
hyper-inflammation and are associated with macrophage activation 
syndrome [3]. Therefore, the identification of relevant 
anti-inflammatory agents applicable to COVID-19 patients could sup
port strategies to overcome the current pandemic [1]. Reducing un
controlled inflammation should be a therapeutic strategy, especially in 
patients with exaggerated immune responses demonstrated by 
over-production of proinflammatory mediators also known as a cytokine 
storm. Cytokine hyper-production is frequently followed by the devel
opment or worsening of acute respiratory failure, acute cardiac damage, 
or multiple organ failure [2]. Recently, the therapeutic use of naturally 

occurring phytochemicals has been revived, building on the traditional 
use of herbs for medicinal purposes [4,5]. Flavonoids are secondary 
plant metabolites with a polyphenolic structure [6] that exhibit a wide 
range of biological effects, including anti-viral, anti-inflammatory, and 
immunomodulatory activities [7–12]. In addition, flavonoids are rela
tively cheap and environmentally-friendly substances with minimal or 
no side effects [7,8]. During the pandemic that limits people’s lives 
worldwide, it is necessary to investigate all potential treatment options 
for COVID-19. Flavonoids, which are among the most important plant 
substances found in nature, might advance the treatment of excessive 
inflammation in COVID-19. 

2. Pathogenesis of SARS-CoV-2 infection 

The primary immunogenic components of coronaviruses are spike 
glycoproteins that bind to host cells’ receptors to enter them. The human 
receptor of SARS-CoV-2, angiotensin-converting enzyme-2 (ACE-2), is 
intensely expressed on the surface of alveolar epithelial type II, renal, 
cardiac, intestinal, endothelial, and brain cells, which is in a consistency 
with target organs of COVID-19 [3,13]. ACE-2 is crucial for the entry and 
replication of SARS-CoV-2; nevertheless, once attached, viral trans
location and replication is followed by depletion of membrane ACE-2 
[14]. However, the role of ACE-2 is to cleave the angiotensinII (AngII) 
into angiotensin1-7 (Ang1-7) [15]. Therefore, the binding of 
SARS-CoV-2 prevents the production of anti-inflammatory Ang1-7 and 
leads to the accumulation of proinflammatory AngII. This mechanism is 
believed to be crucial in the pathogenesis of acute lung injury (ALI) in 
COVID-19 [16]. The protective effects of ACE-2 on ALI were observed in 
animal models; after infection by SARS-CoV, these injuries were more 
severe in mice with inactivated ACE-2 [17]. Dipeptidyl peptidase 4 
(DPP4) has also been suggested as a co-receptor for SARS-CoV-2 [18, 
19]. However, the evidence of a potential role of DPP4 in COVID-19 is 
still unclear. While Pitocco et al. have not so far supported the inhibition 
of DPP4 as a credible approach to mitigate COVID-19 [20], other au
thors discuss the potential role of DPP4 as a target of therapeutic stra
tegies in the pathology of SARS-CoV-2 [19,21]. As is shown in Fig. 1 [18, 

Nomenclature 

3CLpro 3-Chymotrypsin-like protease 
ACE-2 Angiotensin-converting enzyme 2 
Ang1-7 Angiotensin1-7 
AngII AngiotensinII 
APC Antigen-presenting cells 
ARDS Acute respiratory distress syndrome 
AT1R Angiotensin II receptor type 1 
BET Bromodomain and extra terminal domain 
BRD4 Bromodomain containing protein 4 
CCL2 Monocyte chemo-attractant protein-1 
CRP C-reactive protein 
CXCL10 C-X-C motif chemokine ligand 10 
DPP4 Dipeptidyl peptidase 4 
EGCG Epigallocatechin-3-gallate 
IL Interleukin 
JAK Janus kinase 

KEAP1 Kelch-like ECH-associated protein 1 
Mas Mitochondrial assembly receptor 
MCP-1 Monocyte chemoattractant protein 1 
MERS-CoV Middle East respiratory syndrome coronavirus 
NF-κB Nuclear factor kappa B 
NK Natural killer 
Nrf2 Nuclear factor erythroid-derived 2-related factor 2 
RAAS Renin-angiotensin-aldosterone system 
RNA Ribonucleic acid 
SARS-CoV Severe acute respiratory syndrome coronavirus 
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
STAT-2 Signal transducer and activator of transcription 2 
TCM Traditional Chinese medicine 
TLRs Toll-like receptors 
TMPRSS Transmembrane serine protease 
TNF-α Tumor necrosis factor-alpha 
VEGF Vascular endothelial growth factor  
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19,22], the primary route of SARS-CoV-2 transmission includes direct 
contact through droplets of saliva or discharge from the respiratory tract 
when a person sneezes or coughs. After the binding of spike glycoprotein 
to ACE-2 receptor on the cell surface, SARS-CoV-2 enters the cell, re
leases RNA genome, and replicates [3]. When the cell is invaded by 
many viral particles and the viral load is high, the whole protein syn
thesis apparatus is dedicated to the replication of the virus. The new 
viral particles are assembled and released by exocytosis and the cell is up 
to the death by apoptosis or as a result of energetic-metabolic chaos. The 
released copies of the virus spread and infect other cells and organs in a 
chain expansion. Eventually, an inflammatory reaction develops in tis
sues with many dead cells, initially in the lungs and then systematically 
(lymph, blood, immune system, coagulation, liver, kidney) while the 
reaction can be clinically severe, especially in patients with 
co-morbidities [13]. 

After the recognition of viral antigens by the immune system, 
antigen-presenting cells present viral antigens to natural killer (NK) cells 
and CD8-positive cytotoxic T-cells, which activate innate and adaptive 
immunity leading to the production of proinflammatory cytokines and 
chemokines [3]. Although the appropriate cytokine release is crucial for 
the defense against viral infection, an aberrant immune response can 
lead to organ injury [1]. Cytokines are secreted proteins with specific 

effects on the development, differentiation, and regulation of immune 
cells [23]. The immune activation by SARS-CoV-2 infection [24], 
especially in the elderly or co-morbid patients [25], can become so 
intense that it may cause deregulated inflammatory processes and un
controlled systemic inflammatory responses, also known as a cytokine 
storm [24]. The cytokine storm, which has also been observed in other 
viral diseases (such as influenza, MERS, and SARS) is defined as an 
exaggerated immune response demonstrated by the overproduction of 
proinflammatory cytokines such as IL-6, tumor necrosis factor-alpha 
(TNF-α), and IL-1β. Currently, there is a clear correlation between 
elevated pro-inflammatory cytokines as a surrogate marker of cytokine 
storm and the severity of COVID-19 as well as unfavorable outcomes in 
hospitalized patients. Elevated IL-6 is recognized as one of the most 
important marker of unfavorable outcomes [1,23]. The cytokine storm 
could lead to thrombotic events, ARDS, multiple organ failure, and 
death [3,26]. The direct cause of death from acute COVID-19 includes 
cytokine storm-induced damage predominantly to the lungs. However, 
other organs, including heart, kidney, and liver are also affected. ARDS 
is characterized by the cytokine storm as one of its main features [24]. 
Therefore, the over-stimulated immune response may cause more 
damage to host cells than the foreign invader (SARS-CoV-2) [23]. Other 
immunologic features of COVID-19 include a lower level of 

Fig. 1. SARS-CoV-2 infection of host cells. Abbreviations: ACE-2, angiotensin-converting enzyme-2; TMPRSS, transmembrane serine protease. Explanatory notes: The 
spike glycoprotein of SARS-CoV-2 is composed of two subunits: S1 mediates the binding of the virus to the ACE-2 receptor and S2 drives host cell membrane fusion 
allowing viral entry. After the binding of S1 region of the virus to the receptor (ACE-2), the S protein is cleaved by host proteases such as TMPRSS (more specifically 
TMPRSS2) to be functional and to activate fusogenicity. Then, the fusion of the viral envelope and host plasma membrane and acidified endosomes results in the 
release of viral genome into the cytoplasm. The next process is facilitated by low pH of endosomes and S2 functional subunit of spike protein. SARS-CoV-2 takes 
advantage of host endoplasmatic reticulum to form numerous double-membrane vesicles that shield the viral genome and enable replication through the replication- 
transcription complex. The viral genome is translated into viral polyproteins by the protein translation machinery of the host cell that split by viral proteases into 
structural and non-structural viral proteins. The assembly of viral particles takes place in the endoplasmatic reticulum/Golgi compartment, and then the assembled 
virions are carried to the cell surface and are discharged from the cell via exocytosis [18,19,22]. 
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T-lymphocytes, NK cells, and regulatory T-cells in patients with severe 
manifestations of the disease. On the contrary, an increased level of 
monocytes and macrophages in COVID-19 patients may explain the 
elevation of proinflammatory cytokines associated with the cytokine 
storm [3]. The above-discussed immunologic features of COVID-19 are 
illustrated in Fig. 2 [1,3,23,24]. Also, the normal gut microbiota can 
maintain immune response to a viral infection and improve respiratory 
symptoms [18]. 

2.1. Inflammatory pathways associated with SARS-CoV-2 

Elevated levels of cytokines and inflammatory markers including IL- 
6, IL-10, IL-1β, and D-dimer have been observed in severely ill COVID-19 
patients compared to those with moderate symptoms [1]. Also, the ex
amination of bronchoalveolar lavage fluid revealed the excessive release 
of chemokines, including C-X-C motif chemokine ligand 10 (CXCL10) 
and monocyte chemo-attractant protein-1 (CCL2), due to SARS-CoV-2 
infection [26]. Table 1 [27–31] provides a detailed overview of the 

Fig. 2. Immunologic features of SARS-CoV-2-associated pathology. Abbreviations: NK cells, natural killer cells; APC, antigen-presenting cells. Explanatory notes: APC 
presents viral antigens to NK cells and CD8-positive cytotoxic cells to activate innate and adaptive immunity and to produce proinflammatory mediators (cytokines) 
[3]. The immune activation might become so intense that it can lead to exaggerated immune response (cytokine storm) [1,23]. The cytokine storm can result in the 
damage of lungs, kidneys, heart, and/or liver [24]. The immunologic features of COVID-19 include also lower levels of T-lymphocytes, NK cells, and regulatory 
T-cells in patients with severe disease progression. An increased level of monocytes and macrophages in COVID-19 patients can also explain the elevation of 
proinflammatory cytokines [3]. 
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clinical features of COVID-19 patients associated with the inflammatory 
chaos. 

Inflammatory pathways associated with SARS-CoV-2 during innate 
immune response include toll-like receptors (TLRs), which represent a 
subfamily of pattern recognition receptors (PRR). PRR are capable to 
recognize viruses including SARS-CoV-2 in the extracellular milieu or 
endosomes and mediate the inflammatory signaling leading to the 
activation and production of inflammatory cytokines [23]. Another 
important inflammatory mediator of the SARS-CoV-2-related exagger
ated immune response might be the inflammasome triggered by NLRP3 
that also belong s to PRR family. It is expressed in various cell types, 
including innate immune, endothelial, lung epithelial, hematopoietic, 
kidney, or cardiac cells [32]. Another mediator of innate immune re
action to SARS-CoV-2 is the bromodomain-containing protein 4 (BRD4). 
It is an epigenetic reader of acetylated lysines belonging to the bromo
domain and extra terminal domain (BET) family that play an important 
role in epithelial-driven and nuclear factor kappa B (NF-κB)-dependent 
innate inflammation during viral infection [1]. Furthermore, respiratory 
viral infections are associated with inflammatory processes and oxida
tive stress of the epithelium lining cells that activate the transcription 
factor nuclear factor erythroid-derived 2-related factor 2 (Nrf2), which 
protects cells from oxidative damage and inflammation. The severity of 
COVID-19 disease is related to pre-existing conditions, including 
impaired immune responses, obesity, or age. These conditions are 
associated with decreased Nrf2 levels [25]. 

2.2. Targeting inflammation in COVID-19 patients 

Based on the known mechanisms of SARS-CoV-2 infection, sub
stances with potentially beneficial effects may act at various stages such 
as preventing the binding of the virus to the receptors or inhibiting the 
function of the receptor, suppressing viral replication, helping cells to 
resist viral attack via inhibition of cytotoxicity processes (potentially 
slowed down by natural antioxidants), and blocking the virus spread in 
the body [13]. Moreover, due to the association between 
over-inflammation or exaggerated immune response and SARS-CoV-2 
infection, the cytokine is necessary to be early identified and appro
priate anti-inflammatory treatment must be applied. Corticosteroids are 
currently anti-inflammatory agents with most solid evidence of benefit 
in the treatment of COVID-19 [1]. 

However, their applicability is still associated with many unknowns 
[1]. Notably, as SARS-CoV-2 mainly increases IL-6, and therefore the 
administration of corticosteroids acting against a wide range of cyto
kines might be excessive [26]. Therefore, in addition to the global tar
geting of inflammation, the neutralization of a single key inflammatory 

mediator is a currently evaluated therapeutical approach in COVID-19 
management [33]. Anti-cytokine therapies such as IL-6, TNFα, and 
IL-1 cytokine antagonists are suggested to alleviate the 
hyper-inflammation associated with COVID-19 [23]. Potential treat
ment strategies targeting the cytokine storm in COVID-19 include the 
recombinant humanized anti-human IL-6 receptor monoclonal antibody 
tocilizumab. Nevertheless, the efficacy and safety of tocilizumab in 
COVID-19 patients needs to be evaluated in large samples and high 
quality studies and its benefits are yet to be established [26]. In addition, 
anti-TNF antibodies (infliximab, adalimumab) are suggested to modu
late hyper-inflammation and cause a rapid decrease in proinflammatory 
cytokines in COVID-19 patients. As mentioned above, NLRP3 inflam
masome plays a crucial role in the activation of IL-1β. Therefore, drugs 
targeting NLRP3 inflammasome and IL-1β are promising agents to 
mitigate hyper-inflammation and cytokine storm induced by NLRP3 
inflammasome in severely ill COVID-19 patients [23]. Other potential 
therapeutic strategies against COVID-19 include cytokine-adsorption 
device [26], JAK inhibitors, chloroquine, hydroxychloroquine [27], or 
interferon [34]. Despite the lack of any reported cases of COVID-19 
patients treated with BRD4 inhibitors, these drugs can be also consid
ered as potential candidates to ameliorate the excessive inflammation 
and cytokine storm associated with COVID-19 [1]. Nevertheless, before 
implementing anti-inflammatory strategies in COVID-19 patients, it is 
highly important to balance the risks and benefits of specific therapeutic 
modalities due to the impairment of host immune system which might 
lead to secondary infections [27]. 

3. Flavonoids in COVID-19 

Flavonoids are defined as important naturally occurring compounds 
with a phenolic structure [7]. Chemically, flavonoids are composed of 
fifteen-carbon skeleton that consists of two benzene rings connected 
through a pyrane ring [35]. Flavonoids are classified by their chemical 
structure, level of oxidation, and the pattern of the substitution of their 
heterocyclic pyrane ring also known as C ring. The classification of in
dividual compounds within each class is based on the substitution of 
benzene rings (A and B rings) [7]. Table 2 provides an overview of the 
classification and food sources of flavonoids [7–9,36–41]. 

Flavonoids are secondary plant metabolites responsible for their 
color, flavor, and are also related to plants’ pharmacological activities. 
Flavonoids possess significant anti-bacterial, anti-oxidant, anti-cancer, 

Table 1 
Excessive levels of cytokines and chemokines in COVID-19 patients.  

The level of inflammation-associated molecules in COVID-19 
patients 

Reference 

Increased IL-1B, IL-1RA, IL-7, IL-8, IL-9, IL-10, FGF, GM-CSF, IFNγ, G- 
CSF, IP10, MCP1, MIP1A, PDGF, TNFα, VEGF in COVID-19 patients 
(among which IL-2, IL-7, IL-10, G-CSF, IP10, MCP1, MIP1A, TNFα 
higher in severe patients) 

[27] 

Increased plasmatic concentration of IL-2, IL-7, IFN-γ, GCSF, IP-10, 
MCP1, MIP, and TNF-α in severe COVID-19 patients 

[28] 

Increased IL-6 in patients with ARDS who died in comparison with 
patients with ARDS who survived 

[29] 

Increased IL-6 in patients with pneumonia [30] 
Increased IL-6 associated with death [31] 

Abbreviations: ARDS, acute respiratory distress syndrome; FGF, fibroblast growth 
factor; G-CSF, granulocyte-colony stimulating factor; GM-CSF, granulocyte- 
macrophage colony-stimulating factor; IFNγ, interferon-gamma; IL, interleukin; 
IP10, interferon-γ-inducible protein 10; MCP1, monocyte chemo-attractant 
protein 1; MIP, macrophage inflammatory proteins; MIP1A, macrophage in
flammatory protein 1 alpha; PDGF, platelet-derived growth factor; TNFα, tumor 
necrosis factor-alpha; VEGF, vascular endothelial growth factor. 

Table 2 
Classification and food sources of flavonoids [7–9,36–41].  

Flavonoid 
classification 

Members of the flavonoids 
subgroup 

Food sources 

Flavanones Hesperidin, naringenin, 
naringin, taxifolin, eriodictyol, 
naringenin 

Oranges, lemons, oregano, 
grapes, medicinal plants 

Flavonols Kaempferol, quercetin, fisetin, 
myricetin, morin, rutin 

Onion, apples, tomatoes, 
kale, grapes, berries, lettuce, 
tea, red wine, olive oil, 
medicinal plants 

Flavanols Catechin, epicatechin, 
epigallocatechin-3-gallate 

Green tea, apples, bananas, 
blueberries, cacao beans, 
peaches, pears, medicinal 
plants 

Flavones Apigenin, luteolin, hispidulin, 
wogonin, oroxylin, scutellarin, 
rhamnocitrin baicalein, 
chrysin, morusin, tangeretin, 
pectolinarigenin, scutellarin 

Chamomile, mint, celery, 
parsley, Ginkgo biloba, 
tomatoes, fruit skin, red 
wine, medicinal plants 

Isoflavonoids Genistein, glycitein, daidzein Soya, medicinal plants 
Chalcones Phloretin, xanthohumol, 

isoliquiritigenin, velutone F 
Strawberries, apples, 
medicinal plants 

Anthocyanidins Cyanidin, delphinidin, 
apigenidin, malvidin 

Black/cran/rasp/straw/ 
blue-berries, grapes, 
cherries, blackcurrants, nuts, 
medicinal plants  
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anti-inflammatory, and immunomodulatory abilities [7,8,42]. In addi
tion, flavonoids exert a strong anti-viral capacity in numerous pathol
ogies [43–46]. More importantly, flavonoids demonstrated anti-viral 
and immunomodulatory activities against coronaviruses [47]. There
fore, the anti-viral properties of flavonoids might be applicable also in 
the current COVID-19 pandemic. The potentially beneficial role of fla
vonoids or flavonoid-rich whole plants in COVID-19 pandemic is 
currently a widely discussed topic [48–51]. One of the suggested targets 
of SARS-CoV-2 therapies is the ACE-2 receptor [52]. The applicability of 
flavonoids is associated with the SARS-CoV-2 spike-protein that engages 
ACE-2 receptors to entry into host cells as was demonstrated by bioin
formatics and molecular docking in case of tea flavonoids, especially 
epigallocatechin-3-gallate (EGCG) and theaflavin gallate [53], fisetin, 
quercetin, kaempferol [54], quercetin, luteolin, or naringenin [55]. 
Moreover, the biological activity of flavonoids predetermines them to be 
effective also in terms of the modulation of inflammatory and immune 
pathways of SARS-CoV-2-associated pathology. 

3.1. Flavonoids as potential inflammatory modulators in COVID-19 

The anti-inflammatory and immunomodulatory properties of flavo
noids are well-described [7–12]. Thus, flavonoids could potentially be 
useful in the modulation of COVID-19-related inflammatory processes 
and immune responses. Due to the excessive immune responses that 
trigger cytokine release and can result in the overproduction of proin
flammatory cytokines, the modulation of systemic immune responses 
and reversion of hyper-inflammation are suggested to possess a potential 
role in the management of COVID-19 patients [23]. Generally speaking, 
flavonoids can modulate the production of inflammatory mediators. 
Luteolin inhibited IL-1β-induced inflammation in rat chondrocytes [56]. 
Similarly, apigetrin, a glucoside conjugate of apigenin [57], reduced 
inflammatory factors including IL-lβ, TNF-α, IL-6, and VEGF in mice 
with acute otitis media [58]. Also, Smilax campestris aqueous extract, 
which contains catechin and glycosylated derivatives of quercetin 
(quercetin-3-O-glucoside, quercetin-3-O-galactoside, rutin, and 
quercetin-3-rhamnoside) as its main constituents, reduced the produc
tion of proinflammatory cytokines TNF-α, IL-1β, IL-6, IL-8, and MCP-1 in 
lipopolysaccharide (LPS)-activated macrophages derived from the 
monocytic cell line THP-1 [59]. In addition, apigenin alleviated 
inflammation demonstrated through reduced plasma levels of IL-6, 
TNF-α, and interferon-γ (IFN-γ) in vivo [60]. Furthermore, flavonoids 
can modulate the switch of macrophages from proinflammatory to 
anti-inflammatory phenotype [61]. As was demonstrated by et al, fla
vonoids (quercetin, naringenin and naringin) induced metabolic varia
tions opposite to proinflammatory metabolic reprogramming elicited by 
LPS and IFN-γ stimulation in in vitro cultured human macrophages [62]. 
Also, flavonoids regulate the immune cell functions through the 
enhancement of the activity of NK cells and cytotoxic T lymphocytes and 
also through the macrophage functions via modulation of lysosomal 
activity and the release of nitric oxide [63]. Moreover, potent modula
tory properties of hesperidin on systemic immunity (demonstrated by 
enhanced NK cell cytotoxicity and proportion of phagocytic monocytes, 
amelioration of the secretion of cytokines stimulated by macrophages, 
or increased T helper cells) were observed in rats following an intensive 
training and exhausting exercise [64]. Therefore, a significant benefit of 
flavonoids is associated with their potent immunomodulatory properties 
[11,62,65]. 

Based on the immunomodulatory properties of flavonoids discussed 
above, we can assume their significant effects on the production of 
proinflammatory cytokines also within COVID-19. Despite the high af
finity to the spike protein, helicase and protease sites on ACE-2 
demonstrated in in silico studies, the flavonoid-based phytomedicine 
caflanone also exhibited the ability to inhibit the production of cyto
kines including IL-1β, IL-6, IL-8, Mip-1α, TNF-α [47]. Moreover, Bella
vite and Donzelli [13] recently discussed the nutraceutical properties of 
citrus fruits, primarily focusing on its flavonoid component hesperidin 

as a potential substance against SARS-CoV-2 due to its anti-viral, anti-
oxidant, and inflammation-modulatory activities [13]. Hesperidin 
ameliorated altered level of inflammatory mediators in 
ischemia/reperfusion-induced kidney injury in rats [66] and also trig
gered anti-inflammatory responses resulting in a decreased level of IL-33 
and TNF-α in mice co-treated with hesperidin and LPS [67]. Neverthe
less, the hypothetical role of citrus flavonoid hesperidin against 
COVID-19 requires corroboration in further pre-clinical, epidemiolog
ical, and clinical studies [13]. 

Moreover, vascular endothelial activation has a crucial role in the 
excessive cytokine production leading to the cytokine storm and severe 
pathologies in infectious diseases such as SARS or COVID-19. Therefore, 
rhamnocitrin, a flavonoid extracted from Nervilia fordii, which has been 
identified as a potent inhibitor of endothelial activation, might be sug
gested as a potential modulator of cytokine storm in the management of 
these diseases [68]. 

Notably, the traditional Chinese medicine (TCM) with its main active 
ingredients including flavonoids (such as quercetin, kaempferol, luteo
lin, baicalein, naringenin, and wogonin) could also exert beneficial ef
fects in the management of COVID-19 via the inhibition of viral 
adsorption and replication as well as the regulation of inflammatory 
mediators, anti-inflammatory, and immune-regulatory effects to prevent 
cytokine storm and to protect the target organs [69]. Indeed, Niu et al. 
[70] recently evaluated chemical constituents of three TCM formulas 
that were proven to be effective in COVID-19. Eventually, the network 
pharmacology research revealed decreased IL-6 through several TCM 
compounds, including but not restricted to quercetin, luteolin, and rutin. 
These observations suggest the positive association between TCM effi
ciency in the prevention and rehabilitation of at-risk COVID-19 [70]. 

Table 3 
Effects of TCM (mostly flavonoids among core compounds) in COVID-19 eval
uated through network pharmacology and molecular docking.  

TCM Potential effects in COVID-19 Reference 

TCM prescription 
Dayuanyin 

Suppression of the inflammatory storm and 
regulation of immune function. 

[72] 

Observed affinity between the core 
compounds of Dayuanyin (kaempferol, 
quercetin, 7-Methoxy-2-methyl isoflavone, 
naringenin, formononetin) and its target genes 
such as IL-6, IL1β, and CCL2. 

Maxingyigan 
decoction 

Recognized and verified gene targets 
(including IL-6) and three components of 
Maxingyigan (quercetin, formononetin, 
luteolin). 

[73] 

The potential role of Maxingyigan in the 
prevention and treatment of COVID-19 could 
be based on its anti-inflammatory and 
immunity-based actions including the 
activation of T-cells, lymphocytes, leukocytes, 
cytokine-cytokine-receptor, and chemokine 
signaling pathways. 

Toujie Quwen 
granule 

The potential role of Toujie Quwen granule 
and its key active ingredients (including 
quercetin, kaempferol, luteolin, and oroxylin 
A, among others) in the treatment of COVID- 
19 associated with the mechanisms that 
elevate immunity, suppress inflammatory 
stress, and regulate inflammatory responses 
among others. 

[74] 

Qing-Fei-Pai-Du 
decoction 

Observed immuno-regulatory, anti- 
inflammatory and multi-organ protective 
abilities (attributed to four compounds 
including also flavonoids baicalin and 
hesperidin and its targets) that could be 
applicable in COVID-19 management 
(thrombin and TLR signaling suggested as 
essential pathways of its anti-inflammatory 
effects). 

[75] 

Abbreviations: CCL2, monocyte chemo-attractant protein-1; IL, interleukin; TCM, 
Traditional Chinese medicine; TLR, Toll-like receptor. 
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Similarly, other TCM formula, which includes quercetin among others, 
could inhibit COVID-19 through ACE2 downregulation [71]. Moreover,  
Table 3 [72–75] briefly summarizes the applicability of other TCM 
formulas with defined core compounds (represented mostly by flavo
noids among others) in COVID-19 through the modulation of inflam
matory/immune pathways, based on studies of network pharmacology 
and molecular docking. 

Thus, flavonoids are currently a widely discussed source of agents 
potentially applicable in the management of COVID-19, as demonstrated 
by network pharmacology and molecular docking experiments. 

3.2. The potential of flavonoids to modulate specific inflammatory 
pathways deregulated in SARS-CoV-2 infection 

Apart from the above-discussed effects of flavonoids against the 
SARS-CoV-2, research databases offer a wide range of results that could 
indirectly point to flavonoids’ role in targeting inflammatory mediators 
that are altered in COVID-19. Based on the above-described inflamma
tory processes associated with COVID-19 and with diverse biological 
effects of the flavonoids taken into account, it is possible to hypothesize 
their significant effects on SARS-CoV-2-associated pathways such as the 
modulation of NLRP3 inflammasome, TLRs, or BRD4, and activation of 
Nrf2, or the effects on ACE-2 (Fig. 3) [1,16,23,32,76–78]. 

Fig. 3. Inflammatory pathways associated with SARS-CoV-2 that can be potentially targeted by flavonoids. Abbreviations: AngII, angiotensin II; ACE, angiotensin- 
converting enzyme; ACE-2, angiotensin-converting enzyme 2; Ang1-7, angiotensin 1-7; AngII, angiotensin II; AT1R, angiotensin II receptor type 1; BRD4, 
bromodomain-containing protein 4; CRP, c-reactive protein; IL, interleukin; Mas, mitochondrial assembly receptor; NF-κB, nuclear factor kappa B; Nrf2, nuclear 
factor erythroid 2-related factor 2; RAAS, renin-angiotensin-aldosterone system; TLRs, toll-like receptors. Explanatory notes: (A) An essential determinant of the 
inflammatory response is the cleavage and secretion of pro-IL-1β and pro-IL-18 into bioactive cytokines activated by the NLRP3 inflammasome [23]. The NLRP3 
inflammasome is activated in response to AngII stimulation [32]. (B) TLR activation followed by viral infection can induce the production of IL-6 by macrophages and 
monocytes. TLRs, TNFα, and IL-1β are considered as the most important stimulators of IL-6. IL-6 is the main regulator of T-cells and can modulate the function of 
Th17 cells to serve as proinflammatory self-reactive T-cells. IL-6 can also induce the production of acute phase proteins such as CRP [23]. (C) The recruitment of 
BRD4 by NF-κB leads to the activation of NF-κB-mediated proinflammatory signaling while BRD4 inhibitors decrease the recruitment of macrophages and infiltration 
of T-cells. The transmembrane E protein of SARS-CoV-2 has been recently demonstrated to bind to BRD4 [1]. (D) The activity of Nrf2 is associated with the 
modulation of execution and resolution of inflammation through the repression of proinflammatory signals such as IL-6 or IL-1β [76]. (E) Despite the crucial role for 
viral entry, ACE-2 paradoxically exerts protective effects via conversing AngII to Ang1-7 [77]. SARS-CoV-2 spike protein attachment to ACE-2 leads to ACE-2 
downregulation (increase in the level of AngII and augmentation of AngII/AT1R axis activation that are associated with proinflammatory responses). RAAS acti
vation can promote proinflammatory responses through AT1R in kidney and vascular system [16]. The ACE-2-cleaved protein Ang1-7 bind to Mas that is followed by 
a decrease in proinflammatory cytokine production (TNF-α, IL-6) [78]. Therefore, the binding of SARS-CoV-2 to ACE-2 prevents the production of anti-inflammatory 
Ang1-7 and leads to the accumulation of proinflammatory AngII [16]. 

A. Liskova et al.                                                                                                                                                                                                                                 



Biomedicine & Pharmacotherapy 138 (2021) 111430

8

3.2.1. Flavonoids potentially targeting NLRP3 inflammasomes and TLRs in 
COVID-19 

Flavonoids demonstrated reasonable effects in the modulation of 
inflammatory mediators or signaling cascades including TLRs and 
NLRP3 inflammasomes (Table 4) [41,79–87]. Altogether, these results 
highlight flavonoids’ capacity to target inflammatory processes associ
ated with TLRs and NLRP3 inflammasome, the deregulation of which is 
discussed also in terms of SARS-CoV-2 pathology. Therefore, it can be 
assumed that flavonoids exert significant anti-viral and immunomodu
latory effects mediated through TLRs or NLRP3 inflammasomes in 
COVID-19 patients while these effects need to be precisely evaluated in 
well-defined pre-clinical and clinical studies. 

3.2.2. Flavonoids potentially targeting BRD4 in COVID-19 
As mentioned above, the transmembrane E protein of SARS-CoV-2 

has been recently demonstrated to bind to BRD4 while its recruitment 
by NF-κB activates proinflammatory signaling [1]. Importantly, fisetin 
and amentoflavone are putative ligands of BRD4 and amentoflavone can 
establish contacts with non-canonical residues for BET inhibition [88]. 
Moreover, Yokoyama [89] recently discussed the structural and ther
modynamic characteristics of isoliquiritigenin interactions with BRD4 
and suggested it as a novel template for BDR inhibitors [89]. Hence, 
BRD4 inhibition represents another approach potentially applicable to 
overcome COVID-19 associated inflammatory chaos. 

3.2.3. Flavonoids potentially targeting Nrf2 in COVID-19 
The Nrf2-response has been recently demonstrated to be suppressed 

in COVID-19 patient biopsies while the Nrf2 agonists 4-octyl-itaconate 
and the clinically approved dimethyl fumarate inhibited SARS-CoV-2 
replication across cell lines in vitro [90]. The poor reproducibility of 
COVID-19 in animal models limits the effectiveness of the development 
of therapies against SARS-CoV-2. Nevertheless, genetic or pharmaco
logical activation of Nrf2 demonstrated anti-inflammatory and anti-viral 
effects in other pathologies while the most relevant mechanisms of its 

action are associated with targeting specific cysteine receptors within 
KEAP1 [76]. Although the evaluation of Nrf2 inducers for the reduction 
of oxidative stress and inflammation in SARS-CoV-2 infections has not 
been yet performed, a wide range of compounds including flavonoids 
can activate Nrf2 within other pathologies (7-O-methylbiochanin A, 
biochanin A, flavonoids of Abelmoschus esculentus L. flowers, cyanidin 
chloride) [91–95]. Moreover, xanthohumol protected LPS-induced 
acute lung injury against inflammatory damage and oxidative stress 
via induction of the AMPK/GSK3β-Nrf2 signaling axis in vivo and in 
vitro [96]. Also, EGCG was observed to protect endothelial cells against 
inflammation induced by environmental pollutants while the mecha
nisms of action included the induction of Nrf2-regulated genes [97]. 
Moreover, Crateva nurvala Buch. Ham extracts containing flavonoids as 
the major class of bioactive phytochemicals activated Nrf2 and 
decreased proinflammatory TNF-α, NF-κβ, and IL-6 in vivo [98]. Besides, 
flavonoids from Apios americana Medikus leaves reduced inflammatory 
cytokines and activated Nrf2-KEAP1 pathways in RAW264.7 cells that 
are, when induced by LPS, accepted as a classic inflammatory model 
[99]. Furthermore, a study evaluating flavonoids’ role in the inhibition 
of Influenza A viral replication demonstrated that 6-demethox
y-4′-O-methylcapillarisin, a flavonoid derivative of Artemisia rupestris L., 
activated Nrf2/heme oxygenase pathway [100]. It can therefore be 
hypothesized that flavonoids could decrease the severity of SARS-CoV-2 
via the activation of Nrf2 and subsequent modulation of inflammatory 
and immune processes [25]. 

3.2.4. Flavonoids potentially targeting ACE-associated pathways in COVID- 
19 

The dual impact of ACE-2 in COVID-19 is associated with its ability 
to convert AngII to Ang1-7, thus counteracting the inflammatory action 
of AngII [77]. The attachment of SARS-CoV-2 spike protein to ACE-2 is 
followed by down-regulation of ACE-2 through its intracellular binding 
site and then an increase in the level of AngII and augmentation of 
AngII/AT1R axis activation. Increased production of AngII and 

Table 4 
Effects of flavonoids on inflammatory cascades TLRs and NLRP3 inflammasomes.   

Target of 
inflammatory 
pathway 

Flavonoid Aim of the study Effects Reference 

TLR Epigallocatechin-3-gallate BALB/C mice (lipopolysaccharide-induced 
acute lung injury) 

Ameliorated lipopolysaccharide-induced acute lung 
injury by suppression of TLR4/NF-κB signaling. 

[79] 

Decreased proinflammatory cytokines TNF-α, IL-1β, 
and IL-6 in lung, serum, and bronchoalveolar lavage 
fluid. 

Luteolin C57BL/6J mice (inflammation-mediated 
metabolic diseases) 

TLR signaling modulation. [80] 
Reduction of macrophage infiltration and modulation 
of the inflammatory response. 

Nobiletin Prostate cancer cells (anti-inflammatory 
activities) 

Anti-inflammatory effects (inhibition of TLR4 and TL9- 
dependent signaling). 

[81] 

Pycnogenol® (extract of French 
maritime pine bark rich in 
flavonoids) 

TLR-dependent immunomodulatory activities TLRs inhibition (after gastrointestinal metabolization). [82] 

Flavonoids from Houttuynia 
cordata 

Effects and mechanism of flavonoid glycosides 
from H. cordata on influenza A virus-induced 
acute lung injury in mice 

Attenuation of H1N1-induced acute lung injury 
(inhibition of TLR signaling). 

[83] 

NLRP3 
inflammasomes 

Apigenin Effects on NLRP3 inflammasome pathways – 
measurement of active IL-1β (differentiated 
THP-1 cells) 

Inhibition of IL-1β. [84] 

Scutellarin Effects on NLRP4 inflammasome activation 
(macrophages) 

Suppression of NLRP3 inflammasome activation in 
macrophages. 

[85] 

Myricetin Effects on NLRP3-driven inflammatory 
diseases 

Inhibition of NLRP3 inflammasome assembly. [86] 

Baicalin Effects on neuroinflammation (amyloid beta 
precursor protein/presenilin-1 mice) 

Protection of neurons from microglia-mediated 
neuroinflammation via suppression of NLRP3 
inflammasomes and the TLR4/NF-κB signaling 
pathway. 

[87] 

Flavonoids isolated from 
Millettiavelutina (velutone F) 

Effects on NLRP3 inflammasome activation 
(THP1 cells) 

Suppression of NLRP3 inflammasome activation and 
serum IL-1β release. 

[41] 

Abbreviations: IL, interleukin; NF-κB, nuclear factor kappa B; TLRs, Toll-like receptors; TNFα, tumor necrosis factor. 
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activation of angiotensin II receptor type 1 (AT1R) are processes asso
ciated with proinflammatory response. The activation of NF-κB by AngII 
also leads to the production of TNF-α, IL-6, IL-1β. AT1R activation is 
followed by the regulation of mitogen-activated protein kinase (MAPK) 
by AngII, which also affects the release of cytokines (TNF-α, IL-1). 
Furthermore, the activation of the renin-angiotensin-aldosterone sys
tem (RAAS) can be associated with proinflammatory responses through 
AT1R in the kidney and vascular system. In fact, increased circulatory 
levels of AngII have been observed in COVID-19 patients with the as
sociation of its plasma level and lung injury [16]. However, the 
ACE-2-cleaved protein Ang1-7 is hypothesized to possess beneficial ef
fects on immune regulation and its low expression during SARS-CoV-2 
infection can be associated with COVID-19 severity. The antagonist ef
fects of AngII-derived pathway is associated with the binding of Ang1-7 
to the mitochondrial assembly (Mas) receptor and consequent decrease 
in proinflammatory cytokine production (TNF-α, IL-6) [78]. Therefore, 
the binding of SARS-CoV-2 to ACE-2 decreases its anti-inflammatory 
Ang1-7 production and promotes the accumulation of proin
flammatory AngII [16]. 

In 1982, Agarwal demonstrated anti-inflammatory effects of a 
flavonoid nepitrin that could be mediated through its anti-angiotensin 
action [101]. More recently, in hypertensive rats models, high levels 
of AngII were attenuated by hesperidin [102] and RAS activation was 
inhibited by tangeretin [103]. Similarly, kaempferol exerted 
inflammation-inhibitory effects mediated by a decrease in 
AngII-induced collagen accumulation in cardiac fibroblasts [104]. A 
precise analysis of the effects of ACE-2 on the overall course of 
SARS-CoV-2 pathogenesis may contribute to the identification of key 
agents, potentially even among flavonoids, targeting the discussed 
ACE-2 and related signaling mechanisms. 

3.2.5. Other potential mechanisms of flavonoids targeting inflammation as 
a strategy against COVID-19 

Other mechanisms that could potentially be modulated by flavonoids 
in COVID-19 include the inhibition of DPP4, the neutralization of 
3CLpro, or the effects on gut microbiota. 

3.2.5.1. Dipeptidyl peptidase 4. In addition to ACE-2, recently suggested 
interaction between SARS-CoV-2 and dipeptidyl peptidase 4 (DPP4) as a 
co-receptor could lead to the development of novel therapeutic COVID- 
19 strategies. DPP4 is a ubiquitous membrane-bound aminopeptidase 
with multiple roles in metabolism, nutrition, and the endocrine and 
immune system [105]. A large interface was observed between the 
SARS-CoV-2 spike glycoprotein and DPP4 using a docked complex 
model. The capacity of DPP4 to cleave numerous substrates, such as 
chemokines or growth factors, is associated with its ability to regulate 
numerous physiological processes [18] and diseases of the immune 
system. DPP4 is expressed on epithelia and endothelia of the systemic 
vasculature, lung, small intestine, kidney, and heart. Accordingly, DPP4 
distribution may contribute to the virus’s entry through the respiratory 
tract and may also facilitate the development of cytokine storm and 
immune-pathologies associated with fatal COVID-19 consequences [19]. 
Therefore, some investigators suggest the inhibition of DPP4 as a ther
apeutic strategy to slow the progression of COVID-19 or to hamper 
cytokine storm and inflammation [18,19]. DPP-4 inhibitors, generally 
known as anti-diabetic drugs, may possess immunomodulatory func
tions and could be beneficial in inflammatory diseases [106,107] and 
could act beneficially also in COVID-19 patients through the reduction 
of inflammation [108]. Natural compounds, including flavonoids such 
as EGCG also target DPP4 [109–112]. Indeed, citrus flavonoids [113], 
epicatechin [114], and chrysin [115] were demonstrated to be potent 
DPP4 inhibitors. Overall, flavonoids may represent a source of DPP4 
inhibitors with potential efficacy against COVID-19. 

3.2.5.2. 3-Chymotrypsin-like protease. 3-Chymotrypsin-like protease 

(3CLpro) is a non-structural protein of coronaviruses. The 3CLpro of 
SARS-CoV-2 shares 96.1% of its sequence with other SARS-CoV family 
members such as SARS-CoV or MERS-CoV. 3CLpro cleaves polyproteins 
into viral replication-related proteins, a process essential for viral 
replication and maturation. Another crucial function of 3CLpro is to 
cleave host proteins related to innate immune responsiveness such as the 
signal transducer and activator of transcription 2 (STAT-2) and NF-κB 
transcription factor. Therefore, the neutralization of 3CLpro can avert 
viral maturation and restore the natural immune response [18]. As in the 
case of SARS-CoV [116,117] and MERS-CoV [118], the promising role of 
flavonoids has been recently suggested also in SARS-CoV-2 pathology. 
Interestingly, quercetin has been demonstrated as a potent inhibitor of 
SARS-CoV-2 3CLpro in vitro and can be considered a proper candidate for 
further optimization and development [119]. Similarly, the docking 
study revealed quercetin, scutellarin, and myricetin as potent candidates 
to target 3CLpro [120]. Despite quercetin’s promising efficiency in 
COVID-19 targeting 3CLpro, its anti-viral properties may be challenged 
by its poor oral bioavailability. Therefore, Di Pierro et al. have recently 
demonstrated an increased bioavailability of quercetin’s phospholipid 
complex (Quercetin Phytosome®) in humans [121]. Furthermore, a 
3CLpro inhibitory activity of quercetin-3-O-rutinoside (rutin), 
kaempferol-3-O-rutinoside (nicotiflorin), and their human metabolites 
has been demonstrated using molecular docking approach [122]. Thus, 
the neutralization of 3CLpro by flavonoids to restore immune response 
represents another potential strategy against COVID-19. 

3.2.5.3. Gut microbiota. Despite that SARS-CoV-2 is associated with 
acute respiratory syndrome, there are also gastrointestinal manifesta
tions that may precede respiratory events. Therefore, due to the capacity 
of normal gut microbiota restoration to maintain immune response to 
viral diseases and improve respiratory symptoms, the prebiotic proper
ties of polyphenolic compounds may represent a therapeutic strategy for 
COVID-19, primarily due to the possibility to affect the gut microbiota of 
patients [18]. Flavonoids can modulate intestinal immune function 
through the modulation of T-cell differentiation, alteration of gut 
microbiota as well as the regulation of cytokines [123,124]. Also, 
Estruel-Amades [125] demonstrated the immunomodulatory activity of 
hesperidin on gut-associated lymphoid tissue and reinforced its prebi
otic role [125]. Hence, the restoration of the immune responses through 
gut microbiota may potentially support the organism to overcome 
COVID-19. 

Above all, flavonoids modulate the synthesis or activity of a plethora 
of inflammatory mediators and immunomodulatory signals [51,74,113, 
114,118,121,123,126,127]. However, pre-clinical evidence might be 
limited by the utilization of non-physiological concentrations in in vitro 
models while flavonoids are extensively metabolized in vivo [126]. Low 
bioavailability of flavonoids can limit or hinder their activity. Generally 
speaking, the bioavailability of flavonoids is affected by several factors 
including molecular weight, glycosylation, or metabolic conversion 
[128]. The metabolism of flavonoids occurs in small and large intestine, 
and liver. Also, the absorption, distribution, and metabolism of flavo
noids and their circulating concentrations, elimination, and tissue 
exposure are also affected by age, sex, genotype, habitual diet, pre
scribed medicine, and gut microbiome [7]. Gut microbiota plays an 
essential role in the metabolism of flavonoids [129]. However, some 
metabolites were observed to paradoxically exert more robust physio
logical functions than their precursors [7]. Nevertheless, the increase in 
flavonoids bioavailability as well as the safety evaluation of their 
application are the goals of ongoing research [7,9,130–132]. Further
more, human studies are necessary to clarify the anti-inflammatory 
properties of flavonoids [126]. 

4. Conclusion 

The well-known capacity of flavonoids to regulate anti-viral, anti- 
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inflammatory, and immunomodulatory responses underscores their 
potential importance also in the treatment of COVID-19. Although the 
results of studies utilizing flavonoids against COVID-19 published so far 
are promising, the body of literature on this topic as a whole remains 
partial and does not provide sufficient evidence for its applicability in 
COVID-19 patients. Nevertheless, current intensive research suggests 
the great potential of flavonoids as natural substances promoting the 
prevention or overcoming the SARS-CoV-2 infection due to the wide 
range of their biological effects including the modulation of inflamma
tory processes and immune responses. Due to the extensive biological 
effects of flavonoids demonstrated in various pathologies, promising 
results are hypothesized also in the association of their usefulness in the 
management of COVID-19. Based on the findings discussed in this re
view, the beneficial effects of flavonoids in the modulation of inflam
matory and immune processes in COVID-19 can be expected. 
Nevertheless, the precise and detailed evaluation of flavonoid effects in 
well-defined research are necessary to analyze the exact mechanisms of 
their action, to specify the population that could benefit from such 
treatment, and to evaluate their bioavailability or the potentialities to 
improve their efficacy as a single compound or in combination with 
other SARS-CoV-2-targeted agents. COVID-19 as a new pathological 
process represents a unique challenge in the search for and identification 
of therapeutic substances enabling the overcoming of this pandemic, 
which is a severe current problem paralyzing the whole society. 
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