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Abstract: Broiler breeder hens with efficient feed conversion rate under restricted feed intake
(R-hens) or allowed unlimited access to feed (Ad-hens) progressed with cardiac functional failure
and suffered early sudden death. A supplement of 69 µg 25-hydroxycholecalciferol (25-OH-D3)/kg
feed improved heart health and rescued livability in both R- and Ad-hens throughout laying stage
(26–60 wks). Improvements occurred through cardiac hypertrophic remodeling, reduced arrhythmias,
and pathological cues. Here, we further demonstrated consistently decreased circulating and
cardiac IL-6 and IL-1β levels in conjunction with reduced cardiac chemoattraction and leukocyte
infiltration by 25-OH-D3 in Ad-hens and in R-hens at later time points (35 and 47 wks) (p < 0.05).
Supplemental 25-OH-D3 also ameliorated cardiac fibrosis, endoplasmic reticulum (ER) stress, and
autophagy, mostly in Ad-hens, as both collagen content and expression of COL3A1, as well as
CCAAT box binding enhancer homologous protein (CHOP) and activating transcription factor 6
(ATF6), were consistently decreased, and suppression of microtubule-associated protein 1 light
Chain 3 beta (LC3B) and Sequestosome 1 (SQSTM1) was rescued at 35 and 47 wks (p < 0.05).
Vitamin D receptor-NF-κB signaling was shown to mediate these beneficial effects. The present
results demonstrate that ER stress and autophagic processes along the sequence from inflammation to
fibrotic changes contribute to pathological cardiac remodeling and functional compromise by Ad-feed
intake. 25-OH-D3 is an effective anti-inflammatory and anti-fibrotic supplement to ameliorate cardiac
pathogenesis in broiler breeder hens.
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1. Introduction

Feed restriction (R) is commonly used to improve reproductive performance and livability in
broiler breeder hens, due to the increased susceptibility to metabolic morbidities with genetic selection
for rapid growth [1,2]. This approach, however, is under increasing scrutiny due to welfare concern
of chronic hunger stress. Most studies of ascites and cardiomyopathy with respect to sudden death
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(SD) were carried out using growing juvenile broilers [3,4]. Few studies have examined the cause of
mortality in adult broilers.

Previously, we showed a higher incidence of SD in broiler breeder hens provided with Ad libitum
feed take (Ad-hens) and in R-hens with efficient feed conversion rates [1,2,5,6]. The mortalities were
associated with peripheral hypertension; hyperglycemia; systemic inflammation; and dyslipidemia
that provoked pathological cardiac remodeling, metabolic cardiomyopathy, arrhythmias, and finally
functional failure [1,2]. To further elucidate the cause of SD and prevent SD, 69 µg 25-hydroxychole
calciferol (25-OH-D3)/kg feed was supplemented into the basal diet to examine its effects on cardiac
health throughout the whole egg-laying stage. Results showed greatly improved livability in both Ad-
(48.2% vs. 29.1%) and R-hens (86.7% vs. 78.9%) due to slowed progression of cardiac pathogenesis [5–7].
Among the SD-hens, 78.9%, 75.0%, 93.6%, 91.2% in the R, R+25-OH-D3, Ad and Ad+25-OH-D3 groups,
respectively, were found with cardiac pathologies.

In a variety of animal models and clinical cases, vitamin D improved cardiac health and relieved
functional failure by alleviating pathological hypertrophy, interstitial fibrosis, inflammatory status,
and metabolic cardiomyopathy [8–10]. Vitamin D also limited cardiac pathogenesis by modifying
systemic cues that include hypoxia, hypertension, and type-2 diabetes mellitus [11,12].

Cardiac fibrosis is a hallmark of various cardiovascular diseases such as myocardial infarction,
and ischemic, dilated, and hypertrophic cardiomyopathies, which ultimately compromise cardiac
contractile function [13]. Proinflammatory cytokines participate in cardiac hypertrophy, fibrosis,
and cell apoptosis, contributing to ventricle dilation and chronic heart failure [14]. Based on those
reports, this study aimed to examine the effects of 25-OH-D3 on cardiac inflammation and fibrosis in
the development of hypertrophic remodeling in broiler breeder hens.

2. Results

2.1. Plasma IL-6, IL-1β Concentrations, and Cardiac Inflammation State and Chemotaxis

Release to allow Ad-feed intake caused a bust of feed consumption in 27 to 30 wks, approximately
35% and 10% more during 27 to 30 wks and 31 to 35 wks than the recommendation allocations by
R-hens [5]. Supplementation of 25-OH-D3 had no significant effects on feed intake in both R- and
Ad-hens [5].

In accordance with improved cardiac health and livability [5–7], both plasma IL-6 (interleukin 6)
and IL-1β concentrations, and cardiac IL-1β expression, were decreased by 25-OH-D3 in Ad- and/or
-R hens at 35 and 47 wks (p < 0.05, Figure 1). Concomitantly, Ad-feed intake dramatically promoted
leukocyte infiltration, while supplemental 25-OH-D3 significantly reduced leukocyte infiltration in
both Ad- and R-hens at 47 wks (p < 0.05, Figure 2). Cell migration analysis manifested cardiac
inflammation state by Ad feed intake, as more heterophils and monocytes were attracted to infiltrate
across the membranes by the chemoattraction of heart homogenates from Ad-hens (p < 0.05, Figure 3).
Supplemental 25-OH-D3 suppressed cardiac chemoattraction in Ad-hens at 35 and 47 wks and R-hens
at 47 wks (p < 0.05, Figure 3).

2.2. Cardiac Fibrosis

Fibrosis is an essential component of tissue repair that serves to preserve tissue architecture;
however, progressive fibrosis also reflects a pathologic state that results in scarring and impairments of
architecture and contractile function [15–17]. Ad-feed intake persistently increased cardiac fibrosis and
COL3A1 (collagen type 3-α1) expression (p < 0.05, Figure 4). Supplemental 25-OH-D3 significantly
reduced cardiac fibrosis and COL3A1 expression in Ad-hens at 35 and 47 wks, and in R-hens at 47 wks
(p < 0.05, Figure 4).
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Figure 1. Effects of dietary 25-hydroxycholecalciferol (25-OH-D3) supplementation on systemic and 
cardiac inflammation of broiler breeder hens provided with restricted or ad libitum feed intake. 
Plasma IL-6 and IL-1β concentration were determined by ELISA method (n = 4, 7, 7 for each group 
at 29, 35, and 47 wks, respectively, panel (A). Four hearts from collections at 29, 35, and 47 wks were 
used for cardiac IL-1β analysis by Western blot (n = 4 for each group, panel (B). Densitometric 
intensities of Western blot were normalized to β-actin and expressed as ratios relative to R-hens at 29, 
35, or 47 wks. *; significant difference by Ad-feed intake (vs. corresponding R hens, p < 0.05). +; 
significant difference by 25-OH-D3 (vs. R or Ad hens, p < 0.05). R; restriction, Ad; ad libitum, 
25-OH-D3: 25-hydroxycholecalciferol. 

 
Figure 2. Effects of dietary 25-OH-D3 supplementation on cardiac leukocyte infiltration of broiler 
breeder hens provided with restricted or ad libitum feed intake. Three hearts from collections at 35 
and 47 wks were used for histological and immunohistochemical studies (n = 3). Leukocyte 
infiltration was determined by counts in hematoxylin and eosin (H&E) staining (cells with intense 
purple color containing dark nuclei indicated by arrows, panel (A), and immunohistochemical 
analysis using a specific antibody against avian macrophages (panel (B)). Fluorescence results of 
macrophage infiltration were expressed as ratios relative to R-hens at 35 wks.*; significant difference 
by Ad-feed intake (vs. corresponding R hens, p < 0.05). +; significant difference by 25-OH-D3 
inclusion (vs. R or Ad hens, p < 0.05). R; restriction, Ad; ad libitum, 25-OH-D3: 
25-hydroxycholecalciferol. 

Figure 1. Effects of dietary 25-hydroxycholecalciferol (25-OH-D3) supplementation on systemic and
cardiac inflammation of broiler breeder hens provided with restricted or ad libitum feed intake. Plasma IL-6
and IL-1β concentration were determined by ELISA method (n = 4, 7, 7 for each group at 29, 35, and
47 wks, respectively, panel (A). Four hearts from collections at 29, 35, and 47 wks were used for cardiac
IL-1β analysis by Western blot (n = 4 for each group, panel (B). Densitometric intensities of Western blot
were normalized to β-actin and expressed as ratios relative to R-hens at 29, 35, or 47 wks. *; significant
difference by Ad-feed intake (vs. corresponding R hens, p < 0.05). +; significant difference by 25-OH-D3

(vs. R or Ad hens, p < 0.05). R; restriction, Ad; ad libitum, 25-OH-D3: 25-hydroxycholecalciferol.
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Figure 2. Effects of dietary 25-OH-D3 supplementation on cardiac leukocyte infiltration of broiler
breeder hens provided with restricted or ad libitum feed intake. Three hearts from collections at 35 and
47 wks were used for histological and immunohistochemical studies (n = 3). Leukocyte infiltration
was determined by counts in hematoxylin and eosin (H&E) staining (cells with intense purple color
containing dark nuclei indicated by arrows, panel (A), and immunohistochemical analysis using a
specific antibody against avian macrophages (panel (B)). Fluorescence results of macrophage infiltration
were expressed as ratios relative to R-hens at 35 wks.*; significant difference by Ad-feed intake
(vs. corresponding R hens, p < 0.05). +; significant difference by 25-OH-D3 inclusion (vs. R or Ad hens,
p < 0.05). R; restriction, Ad; ad libitum, 25-OH-D3: 25-hydroxycholecalciferol.
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Figure 3. Effects of dietary 25-hydroxycholecalciferol supplementation on cardiac chemoattraction of 
broiler breeder hens provided with restricted or ad libitum feed intake. Four hearts from collections 
at 35 and 47 wks were used as a chemoattractant for leukocyte migration analysis through the 
trans-well method. Fetal bovine serum (FBS) served as a reference. Isolated leukocytes were pooled 
from 2 R-hens at age of 35 or 47 wks. *; significant difference by Ad-feed intake (vs. corresponding R 
hens, p < 0.05). +; significant difference by 25-OH-D3 inclusion (vs. R or Ad hens, p < 0.05). R; 
restriction, Ad; ad libitum. 

 

Figure 4. Effects of dietary 25-hydroxycholecalciferol supplementation on cardiac fibrosis of broiler 
breeder hens provided with restricted or ad libitum feed intake. Three hearts from collections at 35 
and 47 wks were used for fibrosis analysis with collagen content by trichrome staining (blue color)(n 
= 3 for each group) and the remaining four hearts were used for COL3A1 (collagen type 3-𝛼1) 
expression analysis by qRT-PCR method (n = 4 for each group). Results of qRT-PCR and 
chromogenic intensity in trichrome staining were expressed ratios relative R-hens at 35 wks.*; 
significant difference by Ad-feed intake (vs. corresponding R hens, p < 0.05). +; significant difference 
by 25-OH-D3 (vs. R or Ad hens, p < 0.05). R; restriction, Ad; ad libitum, 25-OH-D3: 
25-hydroxycholecalciferol. 

2.3. Endomplasmic Reticulum (ER) Stress and Autophagy 

Figure 3. Effects of dietary 25-hydroxycholecalciferol supplementation on cardiac chemoattraction of
broiler breeder hens provided with restricted or ad libitum feed intake. Four hearts from collections at
35 and 47 wks were used as a chemoattractant for leukocyte migration analysis through the trans-well
method. Fetal bovine serum (FBS) served as a reference. Isolated leukocytes were pooled from 2
R-hens at age of 35 or 47 wks. *; significant difference by Ad-feed intake (vs. corresponding R hens,
p < 0.05). +; significant difference by 25-OH-D3 inclusion (vs. R or Ad hens, p < 0.05). R; restriction,
Ad; ad libitum.
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Figure 4. Effects of dietary 25-hydroxycholecalciferol supplementation on cardiac fibrosis of broiler
breeder hens provided with restricted or ad libitum feed intake. Three hearts from collections at 35 and
47 wks were used for fibrosis analysis with collagen content by trichrome staining (blue color)(n = 3
for each group) and the remaining four hearts were used for COL3A1 (collagen type 3-α1) expression
analysis by qRT-PCR method (n = 4 for each group). Results of qRT-PCR and chromogenic intensity in
trichrome staining were expressed ratios relative R-hens at 35 wks.*; significant difference by Ad-feed
intake (vs. corresponding R hens, p < 0.05). +; significant difference by 25-OH-D3 (vs. R or Ad hens,
p < 0.05). R; restriction, Ad; ad libitum, 25-OH-D3: 25-hydroxycholecalciferol.
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2.3. Endomplasmic Reticulum (ER) Stress and Autophagy

Induction of autophagy exerts cardioprotective effects in several cardiovascular pathologies,
and therefore reflects an adaptive mechanism by the heart in response to stress conditions. However,
prolonged states of active autophagy may exacerbate the pathologies and cause detrimental results [18,19].
In the chicken model of obesity, progression of cardiac functional failure by Ad-feed intake [5,6]
was associated with a consistent increase of cardiac activating transcription factor 6 (ATF6) and
CCAAT box binding enhancer homologous protein (CHOP) expression and transiently increased
microtubule-associated protein 1 light Chain 3 beta (LC3B), and Sequestosome 1 (SQSTM1) expression
early in obesogenic feeding, but was significantly downregulated at the late stage in overtly obese hens
(p < 0.05, Figure 5). In that setting, 25-OH-D3 supplementation significantly attenuated endoplasmic
reticulum (ER) stress and rescued autophagic activity, as shown by ATF6 and CHOP expression along
time course, and LC3B and SQSTM1 expression at 35 and/or 47 wks in Ad- and R-hens, respectively
(p < 0.05, Figure 5).

Figure 5. Effects of dietary 25-hydroxycholecalciferol supplementation on cardiac endoplasmic
reticulum (ER) stress and autophagy of broiler breeder hens provided with restricted or ad libitum feed
intake. ER stress and autophagy analysis includes activating transcription factor 6 (ATF6), CCAAT box
binding enhancer homologous protein (CHOP), microtubule-associated protein 1 light Chain 3 beta
(LC3B), and Sequestosome 1 (SQSTM1) by Western blot method (n = 4 for each group). Densitometric
intensity results were normalized to β-actin and expressed as ratios relative R-hens at 29, 35, or 47 wks.
*; significant difference by Ad-feed intake (vs. corresponding R hens, p < 0.05). +; significant difference
by 25-OH-D3 (vs. R or Ad hens, p < 0.05).

2.4. VDR and NFκB Activation

Activation of vitamin D receptor (VDR) with nuclei translocation was decreased by Ad-feed
intake at 29 and 47 wks, whereas nuclear factor-κB (NF κB) activation was increased along the time
course (p < 0.05, Figure 6). Dietary inclusion of 25-OH-D3 consistently alleviated NFκB activation
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and promoted VDR translocation in both Ad- and R-hens (p < 0.05, Figure 6). The results confirmed
VDR-NFκB signaling to mediate the beneficial effects by 25-OH-D3 on cardiac functions.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 12 
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Figure 6. Effects of dietary 25-hydroxycholecalciferol supplementation on cardiac vitamin D receptor
(VDR) and nuclear factor-κB (NFκB) activation of broiler breeder hens provided with restricted or ad
libitum feed intake. Western blots of nuclear VDR and p65 (a subunit of NFκB; nuclear factor-κB) were
assessed for (n = 4 for each group). Densitometric intensities results were normalized to histone family
member X (H2A.X) and expressed as ratios relative R-hens at 29, 35, or 47 wks. *; significant difference
by Ad-feed intake (vs. corresponding R hens, p < 0.05). +; significant difference by 25-OH-D3 (vs. R or
Ad hens, p < 0.05).

3. Discussion

In mammals, proinflammatory cytokines participate in the development of hypertensive end-organ
damage such as the heart and kidney by provoking inflammation state as well as extracellular matrix
remodeling [20–23]. Similar results, including systemic and pulmonary hypertension and cardiac
pathological remodeling in association with increased inflammatory state and interstitial fibrosis,
were also observed in broiler hens allowed Ad-feed intake [1,2]. We then demonstrated that dietary
25-OH-D3 supplementation ameliorated pathological cues, including peripheral hypertension and
vascular remodeling, and relieved cardiac pathological remodeling and functional compromise [5–7].
Here, we further documented the beneficial effects of 25-OH-D3 on cardiac health by showing its
ability to regulate inflammation state and fibrotic progression. These results as well as those from
mammals suggest that vitamin D supplementation has the potential to limit the pathogenesis of
diseases characterized by inflammation and fibrogenesis, such as cardiomyopathy and contractile
failure [24].

Several endocrine and local stimuli such as hyperglycemia, elevated plasma levels of NEFA
(non-esterified free acids), lipoproteins, oxidative stress, angiotensin-II, endothelin-1, and cytokine
themselves have been shown to induce proinflammatory cytokine production by activating NF-κB
pathway [25]. Activation of VDR by 1,25(OH)2D3 (1,25-dihydroxycholecalciferol) acts as a negative
regulator in NF-κB signaling, due to VDR-p65 interaction and by interacting with IKKβ (IκB kinase
beta) to maintain NF-κB sequestered by IκB (inhibitor kappa B) and thus prevent NF-κB translocation
into the nuclei for downstream inflammatory gene expressions [26–29]. Moreover, in addition
to NF-κB pathway, 1,25(OH)2D3 was shown to suppress high glucose-induced MCP-1 (monocyte
chemoattractant protein-1) expression by directly upregulating VDR expression in both cell and
animal models [30,31]. Accordingly, the present results confirmed the molecular aspect of VDR- NFκB
signaling and upregulation of VDR expression to mediate 25-OH-D3 effects in the chicken model
of obesity.

In a model of hypertension and end-organ damage by angiotensin II or high salt induction, deletion
of IL-6 failed to prevent the development of hypertension, but attenuated myocardial inflammation
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and fibrosis, leading to an improvement in cardiac function [23]. Such observations suggest that
proinflammatory cytokines accelerate the development of hypertensive heart diseases. However,
a low constitutive level of IL-1β in the heart, induced by mechanical stretch, was sufficient to induce
IGF-1 (insulin-like growth factor-1) production that negatively regulated JNK (c-Jun N-terminal kinase)
signaling in the progression of cardiomyocyte hypertrophy from the compensated state to heart
failure [32]. The counterbalance of hypertrophy-induced IL-1/IGF-1/JNK pathway thus determines the
fate of the pressure-overloaded heart, namely, physiological compensative hypertrophy or maladaptive
remodeling. Similar results, including sustained cardiac JNK activation and inflammation provocation
in accompany with persistently elevated blood pressure, were also observed along the progression
of pathological hypertrophy and functional compromise in the broiler breeder model [1,2]. Thus,
improved inflammation status and fibrosis by 25-OH-D3 can be partially attributed to amelioration
of mechanical loading in the heart due to its actions of the renin–angiotensin system and arterial
remodeling that alleviate peripheral hypertension [7].

Cardiac hypertrophy reflects a compensatory response to enhance the function of the heart,
yet active tissue remodeling processes triggered by various types of cues may diminish cardiac
function. The major differences between the adaptive and maladaptive hypertrophy were associated
with differential expression of genes involved in metabolism, fibrosis, and immune response [33].
Fibrosis is an essential component of tissue repair that follows tissue injury and is usually associated
with inflammation [17]. However, progressive fibrosis due to chronic activation of fibroblasts
by inflammation diminishes cardiac contractile function and causes structural damages [15–17].
1,25(OH)2D3 was shown to inhibit cardiac myofibroblast activation and collagen synthesis by repressing
TGF-β1 signaling [34]. Accordingly, 25-OH-D3 may act at the transition of cardiac remodeling
by regulating inflammation state and fibrogenesis to decelerate the progression into maladaptive
remodeling in Ad-hens.

Parts of beneficial effects of vitamin D on cardiac pathologies, including hypertrophy, ischemia,
arrhythmias, and heart failure, have been attributed to a relief of ER stress and related inflammation
and cell apoptosis through VDR activation and downregulation of downstream targets, caspase,
and CHOP gene expressions [35–39]. ATF6 and CHOP act as a mediator in ER stress-induced
proinflammatory cytokine signaling [36–38]. Autophagy plays a dual role in the cardiovascular
system depending on the strength of stress; physiological autophagy is protective and required to
maintain normal cardiovascular function, while pathologic autophagy is involved in the manifestation
of cardiovascular disease [36,40,41]. Consequently, sustained activation of autophagy by 25-OH-D3

during ER stress functions as an antiapoptotic process to prevent cell death by removing damaged
proteins/organelles [41]. In diabetic rats, 1,25(OH)2D3 attenuated myocardial hypertrophy and
interstitial fibrosis, improved cardiac function, and rescued cardiac autophagic activity through VDR
activation and downstream β-catenin/TCF4/GSK-3β/mTOR (β-catenin/T-cell factor/glycogen synthase
kinase-3β/mammalian target of rapamycin) pathway regulation [42]. Persistent hypertension combined
with systemic and cardiac hypoxia and metabolic derangements by Ad-feed intake [1,2,5–7] thus
ultimately caused failure of the heart’s cellular defense against mechanical and metabolic stresses
that led to progressive pathological remodeling and finally functional compromise. Supplemental
25-OH-D3 protects the heart against pathological hypertrophy partially by operating at autophagic
process and ER stress.

4. Materials and Methods

4.1. Animal Management

Cobb 500 broiler breeder hens at age of 22 wks purchased from a local breeder farm were fed to
26 weeks with a nutritionally adequate soy-and-corn-based breeder mash to achieve breeder company
bodyweight recommendations [5]. All birds were caged individually within a house whose ambient
temperature was maintained around 24–28 ◦C. Relative humidity varied with weather and was
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maintained between 55 and 85%. Birds had free access to water throughout the experiment. Feed was
placed at 08:30 a.m. in conjunction with a 14L:10D (lights on at 05:00 a.m.) photo schedule. At age
26 weeks, 180 birds remained on restricted rations (R-hens) as recommended, while another 220 birds
had sufficient feed for consumption to appetite (Ad-hens). Within each feed intake treatment, half of hens
consumed a nutritionally adequate breeder diet, while the other half consumed this same diet containing
additional 69 µg/kg feed of 25-OH-D3 (DSM Nutritional Products Ltd., Netherlands). Diets were fed
until hens were 60 weeks old. The supplementation of 25-OH-D3 improved egg production due to its
effects on livability [5,6]. Details of feed formulation, egg production, feed intake, and BW throughout
the feeding trial were described previously [5]. The Institutional Animal Care and Use Committee of
National Chung Hsing University, Taiwan approved all bird husbandry and procedures in accordance
through an approved animal care protocol (IACUC Permit No. 102–113, 28 January 2017).

4.2. Necropsy and Tissue Collection

Hens were studied following an overnight fast and necropsied under anesthesia as described
previously [43]. Organs and tissues (plasma, heart, liver, abdominal fat, lung, and pulmonary artery)
were collected at ages 29, 35, and 47 wks, from 4, 7, and 7 randomly selected hens, respectively.
Collected organs were used for gross pathological examination first. Four hearts from each group were
used for molecular and biochemical studies, and the remaining 3 hearts collected at 35 and 47 wks
were used for histochemical and immunostaining analysis. Collected liver and abdominal fat used
for body compositional analysis and plasma, liver, lung, and pulmonary artery were also used for
pathological studies, including morphological, molecular, and biochemical analyses [5–7].

4.3. Plasma IL-6 and IL-1β Concentrations and Cardiac Leukocyte Infiltration and Fibrosis

Plasma IL-6 and IL-1β levels were determined by validated commercial ELISA kits (Cat.# KMC0011,
and KMC006; Biosource International, Camarillo, CA, USA, respectively) [44]. Paraffin embedded left
ventricle sections were stained with (hematoxylin and eosin, H&E) to examine leukocyte infiltration or
by trichrome Masson to visualize tissue fibrosis as described previously [1,2]. Macrophage infiltration
was further visualized by antigen retrieval using an avian-specific mouse monoclonal antibody
conjugated with FITC (Clone KUL01, Abcam, Cambridge, UK) [45]. Three sections per hen and
5 images from each section were used for intensity quantification using Image-J software (NIH,
Bethesda, MD, USA).

4.4. Chemoattraction Analysis

Blood monocytes and heterophils were isolated using commercial Histopaque®1077 and 1119
(Sigma, St. Louis, MO, USA), and chemotactic migration of leukocytes was analyzed through the
trans-well method as described in our previous studies [45,46]. In brief, 300 mg of ventricle were
homogenized in 3 mL RPMI medium and then centrifuged at 15,000× g for 30 min at 4 ◦C. Pellets were
collected and re-suspended in RPMI (10%, w/w). Peripheral heterophils or monocytes (1× 105 cells/well)
pooled from 2 R-hens at age of 35 or 47 wks were plated onto the top trans-wells (pore size 5 µm).
RPMI medium containing 10% (w/w) ventricle homogenates or 10% FBS (fetal bovine serum) as a
reference was added to the lower chamber of trans-wells and allowed incubation for 4 h at 37 ◦C.
After aspiration of medium, the lower chamber was fixed in methanol for 10 min, stained in Coomassie
blue R250, and destained in 10% acetic acid. After drying, the membrane was mounted onto a slide
and migrated cells were counted (five random fields per slide) under a microscope.

4.5. Western Blot Analysis

Left ventricle homogenates in RIPA buffer and nuclear extracts prepared using commercial kits
(ab113474, Abcam) were used for Western blot analysis using a specific antibody against chicken
IL-1β (Cat.# ab24771, Abcam) and antibodies cross-reactive to chicken antigens, including rabbit
anti-SQSTM1/p62 (Cat.# ab101266, Abcam), anti-β-actin (Cat.# 4967), anti-p65 (Cat.# 8242, Cell
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Signaling Technology, Danvers, MA, USA), anti-CHOP (Cat.# sc-575), anti-ATF6 (Cat.# sc-166659,
Santa Cruz Biotechnol. Inc., Dallas, TX, USA), anti-H2A.x (histone family member X, Cat.#
PAB8764, Abnova Corporation, Taipei, Taiwan), anti-LC3B (Cat.# PM036, Medical & Biological
Laboratories, Nagoya, Japan), and rat anti-VDR (Cat.# GR37-100UGCN, Merck, Kenilworth, NJ, USA).
Horseradish peroxidase-conjugated secondary antibodies (Cell Signaling Technology) were used to
identify the bands reactive to the primary antibodies.

4.6. Gene Expression by qRT-PCR

Freshly collected tissues were quickly dissected into 1 mm3 pieces on ice, dumped into RNAlaterTM

(Invitrogen, Waltham, MA, USA), and stored at –80 ◦C until use. Total RNA extraction, random priming
reverse transcription, and qRT-PCR amplification were conducted as described previously [47] using
commercial kits (Applied Biosystems, Waltham, MA, USA). Information about the primers is given in
Supplement, Table S1. Reactions were conducted in triplicate, and the intra-assay CV (coefficient of
variation) was less than 10%.

4.7. Statistics

Data were analyzed by two-way ANOVA, in which feed intake (Ad or R) and 25-OH-D3 treatment
were the classifying variables. Differences between group means were tested using Bonferroni
corrected t test when the main effect was significant. If an interaction between feed intake and
25-OH-D3 treatment was found, a mean comparison was performed. Results were expressed as means
± SE. Mean differences were considered significant at p < 0.05. All statistical procedures were carried
out using SPSS for Windows 13.0.

5. Conclusions

Dietary supplementation of 25-OH-D3 relieved pathological cardiac remodeling and improved
livability in broiler breeder hens with Ad-feed intake. Parts of the improvements were mediated by
alleviation in cardiac ER stress and a sustained autophagic process in the sequence from inflammation
to fibrotic changes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/21/8379/s1,
Table S1: Primers for quantitative real time polymerase chain reaction (qRT-PCR) analysis.
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