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Abstract

Burkholderia pseudomallei causes the tropical infection melioidosis. Pneumonia is a common manifestation of melioidosis
and is associated with high mortality. Understanding the key elements of host defense is essential to developing new
therapeutics for melioidosis. As a flagellated bacterium encoding type III secretion systems, B. pseudomallei may trigger
numerous host pathogen recognition receptors. TLR5 is a flagellin sensor located on the plasma membrane. NLRC4, along
with NAIP proteins, assembles a canonical caspase-1-dependent inflammasome in the cytoplasm that responds to flagellin
(in mice) and type III secretion system components (in mice and humans). In a murine model of respiratory melioidosis, Tlr5
and Nlrc4 each contributed to survival. Mice deficient in both Tlr5 and Nlrc4 were not more susceptible than single knockout
animals. Deficiency of Casp1/Casp11 resulted in impaired bacterial control in the lung and spleen; in the lung much of this
effect was attributable to Nlrc4, despite relative preservation of pulmonary IL-1b production in Nlrc42/2 mice. Histologically,
deficiency of Casp1/Casp11 imparted more severe pulmonary inflammation than deficiency of Nlrc4. The human NLRC4
region polymorphism rs6757121 was associated with survival in melioidosis patients with pulmonary involvement. Co-
inheritance of rs6757121 and a functional TLR5 polymorphism had an additive effect on survival. Our results show that
NLRC4 and TLR5, key components of two flagellin sensing pathways, each contribute to host defense in respiratory
melioidosis.
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Introduction

Burkholderia pseudomallei is a tropical soil saprophyte and Tier

1 select agent that causes the infection melioidosis [1]. The

bacterium may be inoculated through the skin, inhaled, or

ingested. Although infection can manifest in myriad ways,

pneumonia is identified in 50% of cases. Mortality from

melioidosis ranges from 14–40% despite appropriate antibiotic

treatment, and the risk of death is higher with pulmonary

involvement [2,3]. This indicates an urgent need for a better

understanding of host-pathogen interactions in melioidosis and

adjunctive immuno-modulatory therapies.

Innate immune mechanisms of recognition of invading bacteria

include membrane-bound Toll-like receptors (TLRs) and cytosolic

NOD-like receptors (NLRs) [4,5]. These pathogen recognition

receptors bind conserved pathogen associated molecular patterns

and drive the host response. For example, as a Gram-negative,

flagellated bacterium, B. pseudomallei is predicted to activate

sensors of LPS (such as TLR4) and flagellin (such as TLR5). We have

found that B. pseudomallei LPS is a TLR4 ligand that drives much of

the innate immune response to B. pseudomallei, and that human

genetic variation in TLR4 is associated with susceptibility to

melioidosis [6–8]. We have also shown that B. pseudomallei activates

TLR5, and that polymorphisms in TLR5 are associated with survival

from melioidosis [9,10], however TLR5-deficient mice have not been

infected with B. pseudomallei to demonstrate the role of TLR5 in an

experimental setting. These findings point to an important role for

flagellin in activation of immune responses in melioidosis.

Whereas TLR5 detects flagellin at the cell surface, cytosolic

flagellin is detected through NLRC4, an inflammasome that

activates caspase-1 [11]. NLRC4 is one of a number of NLRs

that can assemble a canonical caspase-1-dependent inflammasome

that in turn cleaves pro-IL-1b and pro-IL-18 to their active forms
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and induces pyroptosis [5,12]. More recent work identified murine

NAIP5 and NAIP6 as direct flagellin sensors that signal through

NLRC4 [13,14]. NLRC4 also contributes to the sensing of

bacterial components other than flagellin: murine NLRC4-NAIP1

and NLRC4-NAIP2 inflammasomes recognize bacterial type

three secretion system (T3SS) needle and rod proteins, respectively

[13–16]. In contrast to mice, humans have only a single NAIP,

and in human U937 monocytes the NLRC4-NAIP inflammasome

recognizes a T3SS needle protein but not flagellin [14]. The

functional interpretation of the three NLRC4 agonists is similar –

flagellin, rod, and needle protein are all believed to be accidentally

injected into the cytosol by bacterial T3SS. This is in contrast to

TLR5 detecting extracellular flagellin, the presence of which will

not be strictly linked to a particular virulence trait. In addition to

the canonical caspase-1-dependent inflammasome, a noncanonical

inflammasome involving another inflammatory caspase, caspase-

11, has recently been described in mice [17]. Caspase-11 protects

mice from B. pseudomallei infection [18].

In this study, our primary objective was to determine the

relative importance of NLRC4 in murine respiratory melioidosis

in comparison to TLR5, and with respect to canonical and

noncanonical inflammasomes. Our secondary objective was to test

whether genetic variation in NLRC4 was associated with outcome

in human respiratory melioidosis.

Methods

Ethics statement
All animal experiments were approved by the University of

Washington Institutional Animal Care and Use Committee (protocol

number 2982-03). The University of Washington complies with all

applicable provisions of the federal Animal Welfare Act and with the

Public Health Service (PHS) Policy on Humane Care and Use of

Laboratory Animals. The University of Washington Human Subjects

Division Institutional Review Board; the Ethical Review Committee

for Research in Human Subjects, Ministry of Public Health, Thailand;

and the Ethics Committee of the Faculty of Tropical Medicine,

Mahidol University, Bangkok, Thailand approved the human genetic

studies on subjects who had provided or whose next of kin had

provided written informed consent for enrollment into clinical studies

of melioidosis at the time of recruitment.

Bacteria
B. pseudomallei 1026b was grown in LB broth shaking in air at

37uC, washed twice, resuspended in PBS containing 20% glycerol,

and frozen at 280uC. Immediately before each aerosol infection

experiment, the freezer stock was thawed and diluted in PBS to the

desired concentration, as previously described [19].

Mouse model of melioidosis
Animals. Specific pathogen-free C57BL/6 mice were ob-

tained from the Jackson Laboratory (Bar Harbor, ME). Tlr52/2

mice are previously described [20]. Nlrc42/2 mice were obtained

from Vishva Dixit [21]. Casp12/2Casp112/2 mice were obtained

from Richard Flavell [22]. All mice were backcrossed at least six

generations onto a C57BL/6 background and Tlr52/2Nlrc42/2

mice were subsequently derived. Mice were housed in isolator

cages with ad lib access to chow and water, and were monitored

one to two times daily.

Infection. Mice were exposed to aerosolized bacteria in a 24

port cylindrical nose-only exposure chamber (In-Tox Products,

Moriarty, NM) [19]. Aerosols were generated by a MiniHeart Hi-

Flo nebulizer (Westmed, Tucson, AZ) driven at 8 L/min with

7 L/min simultaneous dilution air for 10 minutes followed by

5 minutes washout period. Pressure and airflow were controlled by

an AeroMP aerosol management platform (Biaera Technologies,

Frederick, MD). Bacterial deposition in each experiment was

determined from quantitative culture of lung tissue from four mice

sacrificed immediately after infection. Animals were examined

daily for illness or death and their clinical condition recorded.

When indicated, abdominal surface temperatures were measured

using a Ranger MX4P digital infrared thermometer (Raytek,

Santa Cruz, CA, USA). Ill animals with temperatures ,21.5uC or

a combination of ruffled fur, eye crusting, hunched posture and

lack of resistance to handling were deemed terminal and

euthanized. Spontaneous death was not required as an endpoint.

Bacterial quantification. Twenty four or forty eight hours

after infection mice were sacrificed. The left lung and spleen each

were homogenized in 1 mL sterile PBS. One hundred microliters

each of homogenate and 10-fold serial dilutions were plated in

duplicate on LB agar or Ashdown’s medium. Colonies were

counted after 2–4 days of incubation at 37uC or up to a week

incubating at room temperature.

Lung histology and quantitative morphometry. The right

lung was fixed in 4% paraformaldehyde as previously described

[19]. Lung tissue was embedded in paraffin, sectioned to expose

maximum surface area, and stained with hematoxylin and eosin;

sections were examined by a veterinary pathologist who was

blinded to group assignment. The number of focal inflammatory

lesions, area of each lesion, and total lung tissue area in one

representative section from each mouse were determined using

Nikon NIS-Elements software.

Cytokine measurements. Left lung homogenates in PBS

were diluted 1:1 in lysis buffer containing 26 protease inhibitor

cocktail (Roche Diagnostics, Mannheim, Germany), incubated on

ice for 30 min, and then centrifuged at 15006 g. Supernatants

were collected and stored at 280uC until assayed for cytokines.

Whole blood was centrifuged, serum removed and stored at

280uC until assayed. IFN-c, IL-10, IL-12p70, IL-1b, IL-6, KC,

and TNF-a were measured in lung homogenates and serum using

a multiplex bead assay (Luminex, Austin, TX) and reagents

purchased from R&D Systems.

Human subjects
Clinical cohort. Human genetic analyses were performed on

patients with culture-proven melioidosis admitted to Sappasithi-

prasong Hospital, Ubon Ratchathani, Thailand from 1999

through 2005 [8–10]. A study team screening patients with

clinical signs of infection cultured sputum, blood, urine and other

Author Summary

Melioidosis is an infection caused by Burkholderia pseudo-
mallei, a bacterium that is found in tropical soil and water.
Melioidosis can present in a variety of ways, but lung
involvement is common and usually severe. The host
response to infection governs outcome. In this study, we
examined the role of two host sensors of bacterial
components–TLR5 and NLRC4–to determine their neces-
sity in respiratory melioidosis. Although both proteins are
involved in detection of bacterial flagellin, in mice we
defined specific and individual roles for TLR5 and NLRC4 in
protecting against death from melioidosis. In humans with
melioidosis involving the lung, genetic variation in these
receptors also had independent associations with survival.
These results underscore the importance of these ele-
ments of host defense in respiratory melioidosis and
support further studies of the underlying mechanisms.

NLRC4 and TLR5 in Respiratory Melioidosis
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relevant samples (for example, abscess aspirates) for B. pseudo-
mallei. Samples from some patients were independently submitted

for culture by hospital clinicians. Pulmonary involvement was

defined by a positive B. pseudomallei culture from the respiratory

tract or radiographic evidence of a pulmonary infiltrate and a

positive B. pseudomallei culture from another clinical specimen.

Deaths were defined as those individuals who died during their

hospitalization or were discharged home in extremis for palliative

care. DNA was extracted from blood using a Nucleon BACC3 kit

(GE Healthcare, Buckinghamshire, UK).

Polymorphism selection and genotyping
NLRC4 SNP identification and selection was performed using

the Genome Variation Server (http://gvs.gs.washington.edu/

GVS/). Coding SNPs in the gene and haplotype-tagging SNPs

were selected. Within the region encompassed by 50,000 bases

upstream and downstream of NLRC4, SNPs with a minor allele

frequency $2% in populations identified as Japanese, Chinese

and Asian were binned into groups with R2$0.8 to identify

haplotype-tagging SNPs. Genotyping was performed using

an allele-specific primer extension method (Sequenom Inc.,

San Diego, CA, USA) with reads by a MALDI- TOF mass

spectrometer [8].

Statistics
Comparisons of two and three groups of data expected to follow

a normal distribution were made using Student’s t test and

ANOVA with a Bonferroni post-test, respectively. CFUs were

log10 transformed before analysis. Survival analyses were per-

formed with the log rank test. SNPs were tested for deviation from

Hardy-Weinberg equilibrium using the exact test. The association

of genotype with death was performed using a Chi square test or,

for contingency tables with cell counts ,10, the exact test. For

multivariate analysis of genetic associations, logistic regression was

performed adjusting for age, gender, diabetes, renal disease, or

liver disease. A conservative Bonferroni correction was not

performed as the variants are unlikely to be independent. Effect

modification was assessed by testing the incorporation of an

Figure 1. Tlr5 and Nlrc4 independently contribute to survival in respiratory melioidosis. Wild type (WT), Tlr52/2, Tlr52/2Nlrc42/2, or
Nlrc42/2 mice were infected with A) 361 CFU/lung B) 400 CFU/lung or C) 91 CFU/lung aerosolized B. pseudomallei 1026b and monitored at least daily
for survival. N = 5–7 per group (A), 4 per group (B), and 5 per group (C). *, p#0.05 and **, p#0.01 for Tlr52/2 compared to wild type mice;). {{, p#0.01
for Tlr52/2Nlrc42/2 compared to wild type mice; 11, p#0.01 for Nlrc42/2 compared to wild type mice. No significant differences in survival were
noted for Tlr52/2 or Nlrc42/2 compared to Tlr52/2Nlrc42/2 mice.
doi:10.1371/journal.pntd.0003178.g001

Figure 2. Nlrc4 contributes substantially to Caspase-1/Caspase-11-dependent restriction of B. pseudomallei replication in the lung. Wild
type (WT), Nlrc42/2, and Casp12/2Casp112/2 mice were infected with 314 CFU/lung aerosolized B. pseudomallei 1026b. Lungs (A) and spleens (B)
were harvested and quantitatively cultured 24 and 48 hours after infection. Data displayed are means 6 SD and represent one of two comparable
experiments. N = 4 per group per timepoint except N = 3 for Casp12/2Casp112/2 mice at 24 h. *, p#0.05, **, p#0.01, and ***, p#0.001 for Nlrc42/2

compared to wild type mice; {{{, p#0.001 for Casp12/2Casp112/2 compared to wild type mice; 111, p#0.001 for Nlrc42/2 compared to Casp12/2

Casp112/2 mice.
doi:10.1371/journal.pntd.0003178.g002
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interaction variable into the regression model, using the likelihood

ratio test. Statistics were performed with GraphPad Prism 5.0f

(San Diego, CA) or Stata 11.2 (College Station, TX). A two sided p

value of #0.05 was considered significant.

Results

Given our previous identification of a strong association

between a nonsense TLR5 polymorphism that renders TLR5

insensitive to flagellin and survival from melioidosis [9], we

examined whether the presence of Tlr5 in murine melioidosis

altered survival. We infected mice with 361 CFU B. pseudomallei
per lung, a dose that approximates the median lethal dose

(Figure 1A). We found that Tlr52/2 mice had significantly poorer

survival than wild type mice, a phenotype that contrasts with that

observed in Tlr22/2 or Tlr42/2 mice [23].

We next asked how the absence of Nlrc4 modulated this

phenotype. We infected Tlr52/2 and Tlr52/2Nlrc42/2 mice

with a similar dose (400 CFU/lung) of B. pseudomallei but found

no difference in survival between mouse strains (Figure 1B). This

finding suggested that the absence of flagellin sensing at the cell

surface sufficiently impaired the host response such that impaired

cytosolic detection of the pathogen did not substantially impact

survival further. We then tested whether lack of Nlrc4 alone

altered survival in respiratory melioidosis, and how this differed

from combined deficiency of Tlr5 and Nlrc4. To increase the

sensitivity of our model, we chose a lower inoculum that is

non-lethal to wild type mice (91 CFU/lung). We found that Nlrc4-

deficient mice were more susceptible to melioidosis than wild type

mice, consistent with results from Ceballos-Olvera [24], but that

there was no difference in survival between Nlrc42/2 mice and

Tlr52/2Nlrc42/2 mice (Figure 1C). Together, these experiments

demonstrate that TLR5 and NLRC4 each contribute to host

defense in murine respiratory melioidosis.

Caspase-11 has recently been identified as a component of the

noncanonical, caspase-1-independent inflammasome. We and

others have found that Casp12/2Casp112/2 mice infected with

B. pseudomallei by the respiratory route failed to control infection

(unpublished data, [24,25]). To examine the effects of NLRC4

relative to other caspase-1- and caspase-11- dependent inflamma-

somes, we directly compared bacterial burdens in organs of wild

type, Nlrc42/2, or Casp12/2Casp112/2 mice infected with B.
pseudomallei. Twenty four hours after an inoculum of 314 CFU/

lung, bacterial growth in the lungs of both Nlrc42/2 and Casp12/2

Casp112/2 mice was about 0.87 log10 CFU greater than in wild

type mice, and there was no significant difference between CFU in

Nlrc42/2 compared to Casp12/2Casp112/2 mice (Figure 2).

Forty eight hours after infection, bacterial growth in the lungs of

both Nlrc42/2 and Casp12/2Casp112/2 mice had increased

significantly compared to wild type mice (by 1.87 log10 CFU and

2.69 log10 CFU, respectively). Despite a trend towards greater

pulmonary bacterial burdens in Casp12/2Casp112/2 mice than in

Nlrc42/2 mice, this did not reach statistical significance. Bacterial

burdens in the spleens are an indication of dissemination beyond the

pulmonary compartment. Although bacteria were detectable

24 hours after infection, there were no significant differences

between the three mouse strains. Forty eight hours after infection,

CFU were significantly greater in Casp12/2Casp112/2 mice

compared to Nlrc42/2 mice which in turn had greater bacterial

burdens compared to wild type mice. These data confirm that

while deficiency of both caspase-1 and caspase-11 severely

impairs control of B. pseudomallei replication in the lung,

NLRC4 accounts for much of the inflammasome-dependent

phenotype [24].

We next evaluated selected cytokine and chemokine responses

in the lungs of these mice (Figure 3). There were no differences in

TNF-a or MIP-2 levels between mouse strains at 24 hours. As

expected, IL-1b was very low in Casp12/2Casp112/2 mice but

was not impaired in Nlrc42/2 mice. Chemokine KC was higher

in Nlrc42/2 mice compared to wild type and to Casp12/2

Casp112/2 mice. By 48 hours after infection, TNF-a levels in

Casp12/2Casp112/2 mice were significantly greater than wild

type. MIP-2 and KC levels in Casp12/2Casp112/2 and Nlrc42/2

mice were higher than in wild type mice. IL-1b was elevated in all

mice compared to 24 hour levels, but was significantly elevated in

Nlrc42/2 mice in comparison to wild type and to Casp12/2

Casp112/2 mice. In serum 24 hours after infection, TNF-a, MIP-2,

and Il-1b levels were low but KC was readily detectable and

higher in Nlrc42/2 mice compared to Casp12/2Casp112/2 mice.

At 48 hours, despite higher bacterial burdens in the spleens of

Nlrc42/2 and Casp12/2Casp112/2 mice compared to wild type

mice, serum TNF-a and IL-1b remained uniformly low. In contrast,

MIP-2 and KC levels increased substantially in both Nlrc42/2

and Casp12/2Casp112/2 mice. In line with previously published

data [24], these results point to non-NLRC4-mediated pathways

of IL-1b production in the lung, but suggest that systemically,

NLRC4 mediates TNF-a and IL-1b but not MIP-2 or KC

release.

Inhalation of B. pseudomallei results in scattered, dense cellular

pulmonary infiltrates [19]. Histopathologic examination of the

lungs of Nlrc42/2 and Casp12/2Casp112/2 mice 24 hours after

airborne infection with B. pseudomallei showed relatively similar

sized neutrophilic infiltrates and percent of lung involved in these

mice compared to wild type mice although there was minor

variation in morphologic features, such as earlier evidence of

nuclear fragmentation in Casp12/2Casp112/2 mice (Figure 4).

However, at 48 hours, inflammation was more severe, particularly

in Casp12/2Casp112/2 mice, which displayed larger and

necrotic parenchymal lesions that lacked identifiable intact

inflammatory cells.

We have found that a human genetic polymorphism in TLR5 is

associated with outcome from melioidosis [9]. Given the clear role

for Nlrc4 in murine respiratory melioidosis, we investigated

whether human genetic variation in the NLRC4 region was

associated with death in human respiratory melioidosis. We

genotyped five NLRC4 region single nucleotide polymorphisms

(SNPs) (rs455060, rs212703, rs410469, rs462878, and rs6757121)

selected as described in the methods in 173 melioidosis patients

with clinical evidence of pulmonary involvement. The call rate for

four SNPs was above 97.5%; one (rs212703) was discarded due to

a low call rate. Fifty eight of the 173 subjects (34%) died. In

survivors, no variant deviated from Hardy-Weinberg equilibrium.

rs6757121 was associated with protection against death in a

general genetic model, p = 0.012 (Table 1). Adjusting for age, sex,

and pre-existing conditions, the effect was strongest in a dominant

model [odds ratio (OR) 0.35, 95% CI:0.13–0.91, p = 0.03].

Figure 3. Differential Nlrc4- and Caspase/Caspase11-dependent lung and serum cytokine responses in respiratory melioidosis. Wild
type (WT), Nlrc42/2, and Casp12/2Casp112/2 mice were infected with 314 CFU/lung aerosolized B. pseudomallei 1026b. TNF-a, MIP-2, KC, and IL-1b
were measured in lung homogenate (A–D) and serum (E–H) 24 and 48 hours after infection. Data displayed are means 6 SD and represent one of
two comparable experiments. N = 4 per group per timepoint except N = 3 for Casp12/2Casp112/2 mice at 24 h. *, p#0.05. **, p#0.01, ***, p#0.001.
doi:10.1371/journal.pntd.0003178.g003
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Figure 4. Nlrc4- and Caspase-1/Caspase-11-dependent histologic changes in the lung during respiratory melioidosis. Wild type (WT),
Nlrc42/2, and Casp12/2Casp112/2 mice were infected with 314 CFU/lung or 194 CFU/lung aerosolized B. pseudomallei 1026b in two separate
experiments. Lungs were fixed and stained with hematoxylin and eosin 24 and 48 hours after infection. The average size of each focal pulmonary
infiltrate normalized to measures from wild type mice at 24 hours (A) and the fraction of total lung area that was abnormal (B) were quantified for
each group of mice. Data displayed are means 6 SD from the two experiments. N = 4–7 per group per timepoint. *, p#0.05, **, p#0.01. (C)
Representative histologic features of pulmonary infection with B. pseudomallei. At 24 h post-infection lesions are similar between the groups in
pattern, distribution and size but have slightly varying morphologic features. Inflammatory foci in WT mice are composed of moderately dense
aggregates of nearly pure, intact neutrophils that fill vessels and alveolar spaces but preserve architectural elements. In contrast focal inflammatory
cell aggregates in Nlrc42/2 and Casp12/2Casp112/2 while also predominately neutrophilic (with few mononuclear cells) are much more densely
packed, slightly obscuring some normal structures and, in the case of Casp12/2Casp112/2 showing early evidence of nuclear fragmentation. By
48 hours post-infection phenotypic differences are more distinct. Focal lesions within WT mice while modestly larger remain predominately
neutrophilic with limited evidence of parenchymal tissue necrosis and relatively mild neutrophil condensation and fragmentation. Nuclear
condensation and fragmentation is a hallmark of lesions in Nlrc42/2 mice at 48 h but parenchymal injury remains relatively modest with many
alveolar wall outlines preserved and small airway involvement very limited. Mixed inflammatory cells surround these lesions. This contrasts with the
severe injury evident in Casp12/2Casp112/2 mice at 48 h. In these mice lesions are substantially larger and efface all or most parenchymal and
vascular structures which are focally replaced by necrotic cells and a dark pink coagulum containing variably fine nuclear debris. This debris
commonly extends into small airways. Intact inflammatory cells of any type are rarely evident within these lesions although adjacent vessels are
surrounded by small numbers of intact mononuclear cells.
doi:10.1371/journal.pntd.0003178.g004
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rs6757121 is located about 0.3 kb downstream of NLRC4 and

occurs with a minor allele frequency of 10%.

We next tested whether our previously reported association

between TLR51174C.T – a nonsense polymorphism that truncates

the receptor in the extracellular domain rendering it non-

responsive to flagellin – and survival in melioidosis [9] is also

seen in the subset of melioidosis patients with respiratory disease.

We found that the adjusted OR of death was 0.14, 95% CI 0.03–

0.64, p = 0.01. To determine whether co-inheritance of this TLR5
variant and the NLRC4 region variant rs6757121 alters the risk of

death from respiratory melioidosis, we assessed the effect of

including both together in the model. The OR of death for each

variant remained unchanged, although the effect of a cross-product

interaction term could not be determined due to 100% survival in

carriers of both variants. The estimated OR of death for carriers of

both variants was 0.04, 95% CI: 0.006–0.27, p = 0.001 (Table 2).

Together, these data show that the NLRC4 and TLR5 variants are

each associated with survival and that co-inheritance of the variants

has an additive but not synergistic effect.

Discussion

The results of our investigations show that NLRC4 and TLR5,

key components of two flagellin sensing pathways, each contrib-

utes to host defense in murine respiratory melioidosis. We did

not detect any additional impact of deficiency of both Nlrc4
and Tlr5 on survival. Furthermore, NLRC4 is responsible for

much of the failure of pulmonary bacterial containment seen in

Table 1. Association of NLRC4 region variants with death in respiratory melioidosis.

Variant Genotype Death P

Yes No

rs455060

CC 24 55

CT 24 46 0.50

TT 10 13

HWE P = 0.52

rs410469

TT 13 28

TG 30 47 0.46

GG 15 37

HWE P = 0.13

rs462878

AA 17 33

AG 29 53 0.88

GG 12 27

HWE P = 0.57

rs6757121

CC 50 85

CT 5 28 0.012

TT 1 0

HWE P = 0.21

Hardy-Weinberg P values calculated by the exact test.
General genetic model P values calculated by the Chi square test or, for cell counts ,10, Fisher’s exact test.
doi:10.1371/journal.pntd.0003178.t001

Table 2. Association of co-inheritance of NLRC4 rs6757121 and TLR51174C.T with death in respiratory melioidosis.

rs6757121 TLR51174C.T
Death OR (95%CI) P

Yes No

0 0 48 (42%) 66 (58%) reference

1 0 6 (21%) 23 (79%) 0.32 (0.12–0.86) 0.02

0 1 2 (10%) 18 (90%) 0.13 (0.03–0.61) 0.009

1 1 0 (0%) 5 (100%) 0.04 (0.006–0.27) 0.001

1 and 0 indicate the presence or absence of the dominant genotype for each variant.
P values calculated by logistic regression.
doi:10.1371/journal.pntd.0003178.t002
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caspase-1/-11-deficient mice. In humans, we show that an

NLRC4 genetic variant is associated with survival in respiratory

melioidosis, and there is an additive effect of co-inheritance of risk

variants in TLR5 and NLRC4.

Recent investigations have demonstrated that NLRC4 is

involved in recognition of several bacterial ligands such as

components of the T3SS or flagellin, and this specificity is

determined by various NAIPs [13–16]. In contrast, the only

reported ligand of TLR5 is flagellin [4]. B. pseudomallei activates

TLR5 [9] and aflagellated B. pseudomallei induces impaired

TLR5-dependent NF-kB activation in vitro [unpublished data].

Our present results show that Tlr52/2 mice are more susceptible

to B. pseudomallei in a model of respiratory infection, in contrast

to deficiency in Tlr2, which actually confers resistance, or Tlr4,

which has no apparent effect on survival [23]. Although MyD88 is

an adapter molecule for all three of these TLRs, mice deficient in

Myd88 show a similar phenotype to deficiency in Tlr5 after

respiratory infection with B. pseudomallei [26]. Flagellin-sensing

appears to be a crucial element of host defense in murine

respiratory melioidosis. However, we have not observed significant

impairment in TNF-a production from Tlr52/2 alveolar macro-

phages stimulated ex vivo with killed B. pseudomallei [unpublished

data] and it is notable that our studies of murine respiratory

infection with B. thailandensis (a related and flagellated but less

virulent organism) have not shown any Tlr5-dependent phenotype

[20]. Thus, in vitro data, and infections with model organisms may

not fully recapitulate the complexity of in vivo infections with fully

virulent B. pseudomallei.
Like TLR5, NLRC4 appears to play a central role in host

defense in respiratory murine melioidosis. Interestingly, while

NLRC4 detects flagellin from many bacterial species, it appears to

not detect B. thailandensis (and presumably B. pseudomallei)
flagellin [14], thus, the effect of NLRC4 in vivo may be

attributable to T3SS sensing. B. pseudomallei expresses several

T3SSs [27] and T3SS3 facilitates virulence in a number of ways

[28–31]. The B. pseudomallei T3SS rod and needle proteins BsaK

and BsaL, respectively, are detected in an NLRC4-dependent

fashion in mice [15,32]. Recent work by Bast et al demonstrates

the importance of BsaK for NLRC4-dependent caspase-1

activation in B. pseudomallei-infected macrophages and for

virulence in murine melioidosis [33]. Intriguingly, despite the

different sensing functions of TLR5 and NLRC4, absence of only

one sensor imparts significant clinical impairment; there is no

additive effect on survival of combined Tlr5 and Nlrc4 deficiency

in murine melioidosis, even at doses that are non-lethal to wild

type mice.

NLRC4 is just one of many pathogen recognition receptors that

activate the caspase-1-dependent inflammasome. The inflamma-

some processes pro-IL-1b and pro-IL-18 to their active forms and

also induces pyroptosis, a caspase-1-dependent lytic cell death

pathway. In our studies, Nlrc42/2 mice did not show a significant

difference compared to Casp12/2Casp112/2 mice with respect to

bacterial replication in the lung following respiratory infection, but

did show a difference in disseminated infection to the spleen,

consistent with the work of Ceballos-Olvera et al [24]. This

difference in dissemination may be due to caspase-11, which also

has been implicated in defense against B. pseudomallei [18].

Relative to Casp12/2Casp112/2 mice, Nlrc42/2 mice showed

preserved pulmonary IL-1b production. These data raise the

possibility that much of the early effect of inflammasome-

dependent control of bacterial replication in the lung is primarily

NLRC4-dependent and the function of NLRC4 may be due to

pyroptosis or as-yet-undefined roles of NLRC4 rather than

cytokine processing. It may be that a secondary canonical

inflammasome, perhaps NLRP3, responds to B. pseudomallei
infection only once bacterial burdens become extremely high,

resulting in the observed IL-1b secretion. These observations are

concordant with the work by Ceballos-Olvera et al, who

additionally showed that processing of pro-IL1b to the active

form was not impaired in Nlrc42/2 bone marrow-derived

macrophages or in the bronchoalveolar lavage fluid of Nlrc42/2

mice infected with B. pseudomallei [24]. Furthermore, despite

differences in experimental methods and timing, the histology of

lungs from Nlrc42/2 mice infected with B. pseudomallei in our

study appeared comparable to that of wild type mice treated with

IL-1b and infected with B. pseudomallei by Ceballos-Olvera et al

[24]. Notably, however, we found that systemic IL-1b and TNF-a
levels were almost undetectable in Nlrc42/2 mice, despite high

bacterial burdens in the spleen. This contrasted with high MIP-2

and KC concentrations in the serum, suggesting that there may be

distinctly different regulatory effects of NLRC4 in various

compartments.

Our data also demonstrate that NLCR4 inflammasome-

dependent innate immune signaling is not the same for B.
pseudomallei as other Gram-negative pulmonary pathogens.

Respiratory infection with Legionella pneumophila, another

Gram-negative, flagellated, intracellular pathogen is also restricted

by NLRC4 and this effect is dependent on the presence of flagellin

[21,34]. However, following L. pneumophila infection there was

no difference in bronchoalveolar lavage fluid cell counts or in lung

cytokine levels of Nlrc42/2 mice compared to wild type mice,

although there was greater histologic inflammation in the lungs of

Nlrc42/2 mice [21]. As in B. pseudomallei infection, Nlrc42/2

mice are more susceptible to Klebsiella pneumoniae (a non-

flagellated, extracellular pathogen) infection by the pulmonary

route, with greater bacterial replication in the lungs, dissemination

to the spleen, and death [35] although this effect was not observed

at higher doses [36]. In contrast to our findings, pulmonary

inflammation as assessed by TNF-a, KC, IL-1b, and MIP-2 levels

and histologic score is reduced in Nlrc42/2 mice infected with K.
pneumoniae [35]. These differences may be due to the presence of

flagellin or the intracellular nature of B. pseudomallei, or to the

apparent lack of NLRC4-mediated pyroptosis induced by K.
pneumoniae [35].

Our human genetic study provides adjunctive evidence for the

importance of NLRC4 in respiratory melioidosis although it

requires validation. Few clinically associated polymorphisms in

NLRC4 have been described thus far and the function of

rs6757121 is otherwise unknown. We have previously reported

the association of variation in TLR5 with survival in melioidosis

regardless of site of infection and here show that the association

holds in respiratory disease [9,10]. Unlike in mice, modeling

suggests that co-inheritance of variants in NLRC4 and in TLR5
increases the effect in an additive manner. Another important

difference between mice and humans is that in humans, blunting

of TLR5 function – as found in carriers of a nonsense

polymorphism – is in fact protective against death from melioidosis

[9,10]. This seemingly opposite phenotype from mice underscores

the challenges of mimicking human sepsis in mice [37–39].

In conclusion, we show that NLRC4 and TLR5 are essential

elements of host defense in murine respiratory melioidosis, and

that genetic variation in these genes is associated with outcome

from human respiratory melioidosis.
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