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Abstract

Sphingosine 1-phosphate (S1P) is an important regulator of vascular integrity and immune cell migration, carried in plasma by high-density
lipoprotein (HDL)-associated apolipoprotein M (apoM) and by albumin. In sepsis, the protein and lipid composition of HDL changes dramati-
cally. The aim of this study was to evaluate changes in S1P and its carrier protein apoM during sepsis. For this purpose, plasma samples from
both human sepsis patients and from an experimental Escherichia coli sepsis model in baboons were used. In the human sepsis cohort, previ-
ously studied for apoM, plasma demonstrated disease-severity correlated decreased S1P levels, the profile mimicking that of plasma apoM. In
the baboons, a similar disease-severity dependent decrease in plasma levels of S1P and apoM was observed. In the lethal E. coli baboon sepsis,
S1P decreased already within 6–8 hrs, whereas the apoM decrease was seen later at 12–24 hrs. Gel filtration chromatography of plasma from
severe human or baboon sepsis on Superose 6 demonstrated an almost complete loss of S1P and apoM in the HDL fractions. S1P plasma con-
centrations correlated with the platelet count but not with erythrocytes or white blood cells. The liver mRNA levels of apoM and apoA1
decreased strongly upon sepsis induction and after 12 hr both were almost completely lost. In conclusion, during septic challenge, the plasma
levels of S1P drop to very low levels. Moreover, the liver synthesis of apoM decreases severely and the plasma levels of apoM are reduced.
Possibly, the decrease in S1P contributes to the decreased endothelial barrier function observed in sepsis.
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Introduction

Sepsis is a leading cause of death worldwide, the yearly US incidence
being around 300 cases per 100,000 individuals [1]. In sepsis,
microorganisms enter the circulation leading to the development of
septic shock, disseminated intravascular coagulation and organ fail-
ure. The strong acute phase response in sepsis is associated with
major changes in the lipid and protein content of the plasma lipopro-
teins. High-density lipoprotein (HDL) is more affected than low-den-
sity lipoprotein (LDL) with decreased cholesterol-ester content and
changed protein composition. The plasma concentration of
apolipoprotein A1 (apoA1), the major HDL protein, decreases during
sepsis and correlates inversely with survival [2, 3]. HDL has multiple
anti-inflammatory properties [4, 5] and is part of the innate immune
defence. The HDL-associated lipopolysaccharide (LPS)-binding pro-

tein binds and neutralizes LPS and inhibits LPS-induced release of
tumour necrosis factor (TNF)-a in vivo [6–8]. HDL also exerts
endothelial protective effects and stimulates the endothelial barrier
function, properties which have been associated with the bioactive
lipid sphingosine 1-phosphate (S1P) [9, 10]. In plasma, 60% of S1P
is normally bound to the apolipoprotein M (apoM) and the remaining
40% to albumin [11]. ApoM is unusual among the apolipoproteins in
being bound to the lipoproteins (mainly HDL) via its retained signal
peptide [12–14]. It is structurally a member of the lipocalin family,
having a hydrophobic pocket for specific S1P binding [15]. Hepatic
overexpression of apoM in mice leads to increased levels of plasma
S1P, indicating that apoM is involved in S1P-homoeostasis [16, 17].

S1P is a lysophospholipid that activates five different G-coupled
receptors, S1P1-5 [18]. It is mainly derived from erythrocytes,
endothelial cells and platelets. S1P is produced de novo from hydroly-
sis of sphingomyelin, which is converted to ceramide and then to
sphingosine via sphingomyelinase and ceramidase respectively. Two
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kinases, sphingosine kinase 1 and 2 (Sphk1 and Sphk2) phosphory-
late sphingosine to S1P [19]. S1P can be degraded irreversibly by
S1P-lyase (S1PL) or de-phosphorylated to sphingosine by the speci-
fic S1P-phosphatases 1 and 2 (Sgpp1 and Sgpp2) or by broad tar-
geted lipid phosphohydrolases [20, 21].

S1P is involved in the regulation of cytokine secretion, mainte-
nance of endothelial barrier function, activation of mast cells and
migration of immune cells [22–27]. In sepsis, the endothelial barrier
function is impaired and the vascular wall becomes leaky leading to
decreased blood pressure, contributing to the development of septic
shock. S1P increases the trans-monolayer electric resistance across
both human and bovine endothelial cells, mainly via S1P1 activation
[9, 24]. The barrier function is enhanced by an induction of cadherin-
containing adherent junctions between endothelial cells following
S1P1-stimulation by S1P [14]. In patients with dengue fever, a dis-
ease associated with endothelial hyperpermeability, S1P levels were
decreased in patients with plasma leakage compared to patients with
no plasma leakage [28]. In addition, S1P-deficient mice have
increased vascular leakage and mortality after anaphylaxis compared
to control mice [29] and rats have reduced loss of plasma volume
during sepsis after administration of the S1P-analogue FTY720 [30],
indicating a role for S1P-regulated events in the pathology of plasma
leakage.

ApoM decreases in both mice and humans during acute inflam-
mation and sepsis [31, 32] and very recently, Winkler et al. [33]
showed that S1P decreases in human sepsis. By analysing a large
patient cohort, we now confirm that the S1P plasma concentration
decreases during sepsis, the level of decrease depending on severity
of the patients’ disease. Moreover, to study in more detail the
changes in S1P and apoM during disease progression in sepsis, we
have used archived samples from a well-characterized non-human
primate model of sepsis and analysed factors contributing to alter-
ations in plasma levels of S1P. We observe that the decrease in S1P
reflects the severity of the septic disease and that the S1P decrease
occurs very early during the septic challenge preceding the drop in
apoM concentration.

Materials and methods

Patients and controls

The local ethical committee at Lund University granted permission for

the human sample collection and analysis (Dnr. 790/2005). The human
study included 202 patients enrolled at the Emergency Department at

the Clinic for Infectious Diseases, University Hospital, Lund, Sweden

[34]. Informed consent was obtained from all participants. The initial

inclusion criteria were suspected infection, fever (≥38°C) and age above
18 years and the patients were then enrolled based on the following

systemic inflammatory response syndrome (SIRS)-criteria: body tem-

perature ≥38°C, white blood cells count >12 9 109 cells/l or

<4 9 109 cells/l, pulse rate >90 beats/min., respiratory rate
>20 breaths/min. or hypotension with systolic blood pressure

<90 mmHg or a decrease in >40 mmHg from baseline. Within 12 hrs

of admission, citrated blood was collected, centrifuged at 2000 9 g for

10 min. and the plasma frozen at �80°C. White Blood Cell count and
platelet count were standard analyses performed at the Clinical Chem-

istry laboratory at Lund University Hospital. Citrated plasma from 23

healthy volunteers from the hospital staff were collected and processed

in the same way as the patient samples. Two independent physicians,
unaware of the S1P and apoM results, classified the patients into the

following five different groups based on SIRS-criteria, the presence or

absence of organ failure, and final diagnosis: septic shock n = 20 (sev-
ere sepsis including resistant hypotension), severe sepsis n = 44 (crite-

ria for severe sepsis were infectious disease, at least two SIRS criteria

and/or development of organ failure or hypotension within 24 hrs after

blood sampling), sepsis n = 83 (infectious disease with at least two
SIRS criteria and absence of organ failure), infection without SIRS

n = 37 and SIRS without infection n = 18 (non-infectious disease with

at least two SIRS-criteria). All patients with severe sepsis (with or with-

out septic shock) were hospitalized, as were 75% of the patients in the
sepsis group, 33% of the patients with infection without SIRS, and

83% of the patients with SIRS without infection. The diagnoses in the

SIRS without infection group were pulmonary embolisms, cardiogenic
shock and haemorrhagic ulcers and 61% had organ dysfunction.

Sepsis model in baboons

We used archived plasma and tissue samples from experiments

approved by the Institutional Animal Care and Use Committees of both

Oklahoma Medical Research Foundation and the University of Oklahoma

Health Science Centre (OUHSC). The baboons were between 2–3 years
old and weighed 7–10 kg. They were fasted over night and given water

ad libitum. They were sedated with ketamine hydrochloride (20 mg/kg,

intramuscularly) and anaesthetized with sodium pentobarbital, 25 mg/kg
every 30 min. or as deemed necessary by monitoring the eyelid reflex.

The animals were intubated orally and were breathing freely. For blood

sampling and infusion of E. coli, the femoral vein and the saphenous

vein were cannulated aseptically. The dose of E. coli was 109 colony-
forming units (cfu)/kg to induce LD50 (n = 14) and 1–2 9 1010 cfu/kg

to induce LD100 sepsis (n = 8). Infusion of E. coli started at time-point

0 and was then given continuously for 2 hrs. In the LD50 group, blood

samples were taken before challenge and up to 7 days post-infusion
and in the LD100 group before challenge and up to 24 hrs post-infusion.

Complete blood count was done using a VetScan HM5 hematology ana-

lyzer (Abaxis, Union City, CA, USA). All animals were sacrificed after
completion of the experiments. To study mRNA levels, tissues from

liver and kidney were analysed from 23 and 15 baboons, respectively.

Of the analysed liver biopsies, 11 belonged to the LD50 group, 7 to the

LD100 group and 5 to the control group, which included animals
sacrificed for seizures, a non-inflammation-related condition. The kidney

biopsies originated from seven baboons in the LD50 group, five in the

LD100 group and three in the control group. Baboons in the control

group received saline infusion only and were Sacrificed directly after
infusion. Liver and kidney tissues from septic baboons were collected

from 2 to 34 hrs post-challenge.

S1P quantification
S1P was quantified as previously described [11]. In brief, S1P (D-ery-

thro-sphingosine-1-phosphate) and internal standard (IS) (D-erythro-

sphingosine-d7-1-phosphate) were purchased from Avanti lipids
(Alabaster, AL, USA). Plasma was diluted 1:6.5 in TBS (50 mM
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Tris-HCl, 0.15 M NaCl, pH 7.5) and precipitated in methanol containing
20 nM IS. Samples were centrifuged at 17,000 9 g for 2 min. and 5 ll
of the supernatants were injected for analysis by liquid chromatography

that was coupled to a triple quadropol mass spectrometer (LC-MS/MS)

(API 4000 from Sciex, Framingham, MA, USA). Analytes were separated
on a reversed phase C18-column (XSelect CSH XP C18 130 �A, 2.5 lm,

2.1 mm 9 50 mm from Waters, MA, USA) and ionized by Electro

Spray Ionization operating in positive ionization mode. Scanning mode
was multiple reaction monitoring. The following m/z transitions were

chosen for quantitative and qualitative analysis, respectively, for S1P

380/264, 380/82 and for IS 387/271, 387/82. Obtained results were

integrated and calculated using the Analyst� software (AB Sciex).

ApoM/ApoA1-ELISA

ELISAs developed for human apoM and apoA1 were found to function
well for the measurements of the baboon counterparts in plasma sam-

ples and were performed as previously described [31, 35]. Standard

curves were prepared from pooled plasma samples taken from the
baboons at time-point zero.

ApoE quantification

Plasma (1 ll) was analysed by SDS-PAGE followed by Western blotting

(Biorad, Hercules, CA, USA). ApoE was visualized by probing the blots

with a rabbit polyclonal anti-human apoE antibody (nr A00077) followed

by a HRP-conjugated goat polyclonal antirabbit antibody (nr P0448,
both from DAKO, Glostrup, Denmark). The blots were developed using

ECL in a ChemiDoc MP Imager (Biorad). ApoE levels were normalized

against albumin by probing with rabbit antibovine albumin (nr A11133
from Invitrogen, Eugene, OR, USA).

Analysis of LDL, HDL and albumin

Plasma levels of total cholesterol, LDL and HDL were measured using

the EnzyChrom HDL and LDL/VLDL Assay Kit (EHDL-100; Bioassay Sys-

tems, Hayward, CA, USA) and albumin by QuantiChrom BCG Albumin
Assay Kit (Bioassay Systems).

Total RNA extraction from liver and kidney
tissues

Liver or kidney tissues weighing 40–60 mg were ground in liquid nitro-

gen using a mortar and pestle. The tissue was re-suspended in 1 ml of
TRIzol (Invitrogen, Carlsbad, CA, USA) and extraction of RNA was per-

formed according to the manufacturer’s instructions. The RNA was fur-

ther purified by the Qiagen mini RNEasy-kit (Qiagen, Hilden, Germany).

mRNA Quantification

To RNA, a mastermix made of 2ROX, Taq-polymerase (SuperscriptTM III
RT Platinum� Taq-mix 1325133; Invitrogen), probes for apoM

(Hs01597780_g1), apoA1 (Hs0098500_g1), apoE (Rh0279929_m1),
albumin (Rh02828765_m1), Sgpp1 (Mf04372495_m1), Sgpp2

(Rh00544786_m1), S1PL (Rh00393705_m1), Sphk1

(Hs00184211_m1), Sphk2 (Rh02876562_m1), serum amyloid A (SAA)

(Hs00293702_m1) and the housekeeping gene glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH, Rh02621745_g1), (Applied Biosystem,

Foster City, CA, USA) were added. qRT-PCR reactions were performed

on an ABI Prism 7900 HT Sequence Detection System (Applied Biosys-
tems) or CFX384 C1000 Thermal cycler (Bio Rad, USA). Changes in

mRNA levels were calculated according to the 2�DDC
T method [36].

Gel filtration

Plasma was pooled from 10 healthy volunteers and from 10 human

patients with severe sepsis (500 ll total volume) and from four

baboons at time-point zero and 48 hrs (LD50) or 24 hrs (LD100) (total
volume 200 ll). The plasma pools were separated on Superose 6 10/

300 GL column connected to an €AKTA AVANT system (GE Healthcare,

Uppsala, Sweden). Gel filtration was performed in TBS with a flow rate
0.4 ml/min. and 30 fractions containing 300 ll each were collected.

Statistic analysis

The statistical significance of differences between the groups in the

human sepsis cohort was determined using a Kruskal–Wallis test with

Dunn’s multiple comparison test. In the baboon cohort, statistical signif-

icance of the decrease in analytes between different time-points was
determined by Durbin–Skillings–Mack test. This paired non-parametric

ANOVA was chosen because of the possibility to handle missing data

points in the data set that emerged when some baboons had to be
sacrificed at early time-points. Statistical analysis between different

time-points in the mRNA analysis was made by Kruskal–Wallis test with

Dunn’s multiple comparison test. For evaluating correlations, the Spear-

man’s rank correlation coefficient was calculated. P values <0.05 were
considered statistically significant. Statistics were calculated in Graph-

Pad Prism 4.0 (GraphPad Software, La Jolla, CA, USA) or XLSTAT

2015.4.01.20578 (Addinsoft, Paris, France).

Results

S1P decreases in human sepsis

The endothelial protective sphingolipid S1P stimulates the assem-
bly of cadherin junctions between endothelial cells. Since the
endothelium becomes leaky in sepsis, we suggested that S1P
decreases in sepsis, thus contributing to the endothelial pathology.
We therefore quantified plasma S1P in a cohort of 202 patients
previously investigated for apoM [31]. S1P was decreased in most
groups as compared to controls; �46% in severe sepsis with
shock (P < 0.0001), �34% in SIRS without infection
(P < 0.0001), �27% in severe sepsis without shock (P < 0.0001),
�21% in sepsis (P < 0.001) and �14% in infections without
SIRS (non-significant) (Fig. 1A). The S1P concentration in patients
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with severe septic shock was significantly lower as compared to
patients with sepsis (P < 0.01) and infection without SIRS
(P < 0.001) (Fig. 1A). These results followed the pattern of
plasma apoM, previously analysed in this cohort [31]. There was
a weak but significant correlation between plasma levels of apoM
and S1P in the sepsis patients (rS = 0.22, P = 0.0021) (Fig. 1B).

S1P and apoM decrease in non-human primate
sepsis

To study S1P and apoM in further detail, we used a well-characterized
baboon model of sepsis where the disease progression is similar to
that of human sepsis [37]. By administering two doses of E. coli, dif-
ferent severities of sepsis were established, the LD50 group where
50% of the baboons survived and the LD100 group where all baboons
got terminally ill and were sacrificed within 24–36 hrs post-challenge
[38]. In baboons administered a high dose of E. coli (LD100 group),
plasma S1P decreased by 59% (Fig. 2) and apoM by 42% (Fig. 2)
within 24 hrs. Albumin, the second carrier of S1P, decreased by 12%
(Fig. 2). The levels of LDL and HDL were not significantly altered
(Fig. 2), although a 29% reduction in apoA1 was seen at 12–24 hrs
(Fig. 2). Since there was no effect on the HDL cholesterol despite
lowering of both apoA1 and apoM, we analysed apoE, which is
reported to be increased in sepsis [39]. However, in the LD100 group,
apoE was strongly decreased at 12–24 hrs (Fig. 2). Serum Amyloid A

has been suggested to be increased in HDL during severe inflamma-
tion [40, 41] and we hypothesize that SAA could possible replace the
other apoliproproteins in the HDL-particle during an acute phase
response in our model. However, we could not detect any SAA in
baboon plasma (using anti-human antibodies in western blotting) and
in the liver there was a slight decrease in transcription of SAA
(Fig. S1).

In the LD50 group, the decrease in S1P and apoM reflected dis-
ease severity. S1P decreased significantly in the non-survivors by up
to 56%, whereas a 35% decrease was observed in the survivors
(Figs 3 and 4). ApoM correspondingly decreased significantly in both
non-survivors (by 61%) and survivors (by 28%), reaching the lowest
levels after 48–72 hrs (Figs 3 and 4). A weaker decrease was
observed for albumin, 12% in the non-survivors and 14% in the sur-
vivors after 48–72 hrs (Figs 3 and 4). ApoA1 decreased by 53% after
48–72 hrs in the non-survivors and by 30% in the survivors (Figs 3
and 4). Similarly to the LD100 sepsis group, apoE was decreased in
the non-survivors at 12–24 hrs (Fig. 3). However, in contrast to
apoM and apoA1, the initial decrease in apoE was followed by a sub-
stantial increase at later time-points in many but not all animals
(Figs 3 and 4). HDL was unchanged at 24 hrs but after 48–72 hrs
levels decreased by 74% in the non-survivors and by 37% in the sur-
vivors (Figs 3 and 4). High-density lipoprotein has been reported to
decrease also in human sepsis [42]. In contrast, VLDL/LDL decreased
at 24 hrs and thereafter increased in both the non-survivors and sur-
vivors (Figs 3 and 4), following the pattern of apoE.
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study based on the systemic inflammatory response syndrome (SIRS)-criteria. Plasma was collected from patients with severe sepsis with shock

(n = 20), severe sepsis without shock (n = 44), sepsis (n = 83), infections without SIRS (n = 37), SIRS without infection (n = 18) and healthy
controls (n = 23). Plasma S1P was quantified by LC-MS/MS (A) and correlated with plasma apoM (B). Statistical analysis was performed with a

Kruskal–Wallis test *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, rs = Spearman’s correlation coefficient.
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Decreased transcription of apolipoproteins and
albumin in sepsis

Apolipoproteins are mainly synthesized in the liver although both
apoM and apoE mRNA are present in the kidney [12, 43]. To study
whether the decrease in plasma concentrations of apolipoproteins
was associated with reduced production, qRT-PCR analyses of liver
and kidney biopsies were performed. In both the LD50 and LD100-
groups, the mRNA levels of apoM and apoA1 were decreased sub-
stantially in the liver already after 6–8 hrs, reaching the lowest val-
ues at 12–34 hrs (Fig. 5A). Despite an increase in plasma levels of
apoE in the LD50 sepsis-group after 24 hrs (Figs 3 and 4), the
transcription of apoE was strongly decreased in the liver at 12–
34 hrs, which was the latest time-point where tissue samples were
available (Fig. 5A). There was a similar but less pronounced
decrease in mRNA levels of apoM and apoE in the kidneys

(Fig. 5B). The transcription of albumin was strongly decreased in
the liver (Fig. 5A). The long half-life of albumin (e.g. up to 19 days
[44]) explained that the plasma albumin levels were fairly stable
(Figs 2–4).

We also evaluated the liver mRNA-levels for enzymes involved in
the S1P metabolism, for example, Sphk1, Sphk2, Sgpp1, Sgpp2 and
S1PL, even though the liver is not a major organ contributing to circu-
lating plasma S1P and the changes observed are therefore of uncer-
tain significance for the S1P levels. qRT-PCR analysis of liver mRNA
showed that transcription of the S1P-generating Sphk2 mRNA was
decreased already after 2 hrs compared to controls (Fig. S1),
whereas Sphk1 was transiently up-regulated, reaching a peak after
6–8 hrs (Fig. S1). Sgpp1 was unaffected at early time-points and
mildly decreased at 12–34 hrs, whereas Sgpp2 was transiently
increased after 6–8 hrs and stayed above basal levels at 12–34 hrs
(Fig. S1). mRNA levels of S1PL were down-regulated after 2 hrs and
stayed low after 12–34 hrs (Fig. S1).
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S1P levels correlate with bacterial count in
plasma

The number of circulating live bacteria measured 2 hrs after start of
the E. coli infusion correlated significantly to the decrease in S1P at
24 hrs (r = 0.55, P = 0.02) (Fig. S2) indicating that the decrease in
S1P correlated with the severity of the bacteraemia. The correlation
between the bacterial count and the decrease in apoM and apoA1 did
not reach statistical significance (Fig. S2). No correlation was found
between albumin changes and bacterial count (Fig. S2).

S1P correlates with platelet counts but not with
erythrocytes and white blood cells

In the baboon experiment, plasma apoM decreased later than S1P,
which suggests that it is not the loss of apoM that causes the decrease
in S1P. S1P is produced mainly by erythrocytes and platelets in human

blood and during sepsis blood cells are highly affected [45, 46]. We
therefore analysed the relation between blood cells and S1P in both
humans and baboons. Platelets decreased rapidly upon sepsis induc-
tion in the baboons (as described before [47]) (Fig. 6A), whereas ery-
throcytes decreased at later time-points (after 6–8 hrs) but were only
mildly affected (Fig. 6C). The white blood cells decreased directly upon
sepsis induction in all sepsis groups but increased at later time-points
(Fig. 6E). S1P correlated significantly with platelet counts in both
baboons (Fig. 6B) and in humans (6G). However, S1P did not correlate
with erythrocyte levels in baboons (Fig. 6D) or with white blood cells in
either baboons (Fig. 6F) or humans (Fig. 6G).

Decrease in apoM-associated S1P during sepsis
revealed by gelfiltration chromatography

To investigate whether S1P during sepsis was lost from both apoM
and albumin, plasma samples from human controls, human patients

0

1

2

3

R
el

at
iv

e 
ap

oE

0.0

0.2

0.4

0.6

0.8

S
1P

(µ
M

)

0

50

100

150

200

A
po

M
 (%

)

0

50

100

150

200

A
po

a1
 (%

)

0.0

0.2

0.4

0.6

0.8

A
lb

um
in

 (m
M

)

0

20

40

60

80

100

H
D

L 
(m

g/
dl

)

0

50

100

150

200

LD
L 

(m
g/

dl
)

   0    0.5-2    3-5     6-8   12-24  48-72    0     0.5-2   3-5     6-8   12-24  48-72    0     0.5-2   3-5     6-8   12-24  48-72

   0     0.5-2   3-5     6-8   12-24  48-72    0     0.5-2   3-5     6-8   12-24  48-72    0     0.5-2   3-5     6-8   12-24  48-72

   0     0.5-2   3-5     6-8   12-24  48-72

S1P ApoM Albumin

ApoA1 ApoE HDL

LDL

LD50, non-survivors

Hours after E.coli administration

Hours after E.coli administration

P = 0.004 P = 0.008

P = 0.02

P = 0.014 P = 0.02 P = 0.02

Hours after E.coli administration

Fig. 3 S1P and apoM in non-survivors in the LD50 sepsis-group. Baboons (n = 6) were challenged with 109 cfu/kg of E. coli (LD50). Blood samples

were collected at intervals from zero to 72 hrs post-infusion except for from the baboons that had to be sacrificed earlier. S1P was measured by
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with severe sepsis, LD50 and LD100 septic baboons were subjected to
gel filtration chromatography. Confirming our earlier published results
[11], around 60% of S1P was bound to apoM and 40% to albumin in
human controls (Fig. 7A). However, in patients with severe sepsis,
S1P was distributed equally between apoM and albumin (Fig. 7A),
indicating that during sepsis S1P is mainly lost from apoM.

In normal baboon plasma, essentially all S1P eluted in the apoM-
containing fractions well separated from the albumin peak (Fig. 7B).
Upon sepsis induction in both the LD50 (Fig. S3) and LD100 groups,
the apoM-associated S1P peak decreased, being too low to be mea-
surable in the LD100-group (Fig. 7B). No translocation of S1P to the
albumin-fractions could be observed.

Discussion

Sepsis is the leading cause of death in intensive care units and affects
approximately 31 million individuals per year worldwide [1]. Treat-

ment options are limited and basic mechanisms involved need to be
further clarified. S1P has recently emerged as an interesting diagnos-
tic and therapeutic target, not only in sepsis but also in viral infections
[28, 33]. This study aims at elucidating the response of the endothe-
lial-protective S1P and its carrier protein apoM to the inflammatory
challenge associated with sepsis and SIRS. We investigated in detail
the time-dependent effects on these molecules as well as factors reg-
ulating their expression and secretion in disease. In a human sepsis
cohort, previously studied for apoM, we found disease-severity corre-
lated decrease in plasma S1P levels, the profile mimicking that of
plasma apoM. To further characterize changes in S1P and apoM
during sepsis we have investigated archived plasma and tissue sam-
ples from a well-characterized E. coli sepsis model in baboons [37]. A
major advantage with this model is that immunological reagents
developed for humans recognize the baboon counterparts as a result
of the high degree of genetic similarity. Similar to the human sepsis
cohort, where the S1P and apoM levels decreased in relation to the
severity of disease, baboons with the most severe disease had the
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most pronounced decrease in S1P and apoM. Importantly, the
decrease in S1P and apoM observed in the baboon sepsis model,
which is based on induction of acute bacteraemia, mimicked that
observed in the human cohort, where a natural disease progression
occurred.

This shows that the levels of in particular S1P reflect the severity
of the disease and being a very important molecule for the endothelial
integrity, its decrease possibly contributes to the increased vascular
leakage.

In human plasma, the concentrations of S1P and apoM are
both around 0.9 lM and approximately 60% of S1P is carried by
apoM and 40% by albumin. As judged by the gel filtration analysis,
baboons are different in having all their S1P bound to HDL-asso-
ciated apoM and no albumin/S1P complexes. In the baboon sepsis
model, the decrease in plasma S1P was observed at earlier time-
points than the decrease in apoM, indicating that the S1P-apoM
interaction is dynamic and the molecules have distinct clearance
pathways. These results also suggest that it is not the decrease in
apoM per se that induces a decrease in plasma S1P as has been
suggested by others [28, 33]. The reduced S1P levels we observed
could be because of increased degradation/consumption or
decreased synthesis/secretion from S1P-producing cells, for exam-
ple platelets, erythrocytes and endothelial cells. Erythrocytes are
believed to be the most important source of S1P in plasma and the
excessive eryptosis (apoptosis of erythrocytes) that occurs during
fever and sepsis [46] may be a reason for decreased S1P-levels.

However, in the baboon model erythrocytes decreased later than
S1P and we observed no correlation between erythrocyte numbers
and S1P. Instead platelet levels followed closely the pattern of S1P
and S1P correlated very well with platelets in both human and
baboon sepsis, which agrees well with recent observations made in
dengue fever [28]. Thrombocytopenia is common in sepsis and is
an independent predictor of mortality [45]. Whether there is a cau-
sal relationship between the thrombocytopenia and the decreased
S1P levels in sepsis remains to be elucidated.

In the septic baboons, the liver mRNA levels of apoM, apoA1,
apoE and of albumin decreased to very low levels demonstrating that
they behave as negative acute phase proteins with decreased synthe-
sis during inflammatory challenges. Interestingly, apoM and apoE
mRNA decreased also in the kidney during the septic challenge. The
apoM-gene is located in the major histocompatibility complex (MHC)
Class III region on human chromosome 6p21.3. Together with apoM,
seven genes (e.g. the TNF Family and BAT3) within MHC III are
believed to be involved in the inflammatory response [48]. The poten-
tial role of apoM in immune defence is not obvious but it has been
indicated to be protective against atherosclerosis and to inhibit vascu-
lar endothelial inflammation [49, 50]. Regulation of the apoM-gene
during sepsis has not been analysed in this study but it might be
achieved by alterations in, for example, TGF-b and HNF1, proteins
suggested to regulate apoM expression and which have been demon-
strated to be increased and decreased, respectively, in sepsis [51–
55]. ApoA1, apoE and albumin also demonstrated significantly
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decreased plasma levels in the severely sick animals. However, in the
surviving animals, plasma levels of apoE and to a lesser extent also
apoM tended to increase at the later time-points. We have no experi-
mental explanation for this late increase, as liver tissues were not
available after 34 hrs. In humans, plasma levels of apoE are report-
edly increased during severe inflammation [39, 56]. This increase in
apoE may be because of a decreased expression of apoE-receptors
(low-density lipoprotein receptor (LDLr) and low-density lipoprotein
receptor-related protein) with lowering of the clearance of apoE [57].
LDLr�/� mice have increased plasma levels of apoM and apoE [54].
Moreover, in LDLr-overexpressing mice, apoM and S1P levels are

both decreased, an effect which is abolished when additionally knock-
ing out apoE in the LDLr-overexpressing mice [58]. This indicates
that apoE and apoM may be eliminated via similar pathways.

In conclusion, our results demonstrate that S1P and apoM are
strongly reduced in both human and non-human primate sepsis, the
degree of decrease in concentration reflecting the severity of the dis-
ease. The decrease in S1P may contribute to the pathogenic mecha-
nisms of the disease, in particular to the increased vascular leakage.
The strong correlation between the decreased S1P-levels and disease
severity may potentially have clinical value in terms of prognostic
evaluation.
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