
Accurate and visualiable discrimination of Chenpi age using 2D-CNN and 
Grad-CAM++ based on infrared spectral images

Li Jun Tang 1, Xin Kang Li 1, Yue Huang , Xiang-Zhi Zhang , Bao Qiong Li *

School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China

A R T I C L E  I N F O

Keywords:
FTIR spectral image
Chenpi
2D-CNN
Grad-CAM++

Feature visualization

A B S T R A C T

Dried tangerine peel (“Chenpi”), has numerous clinical and nutritional benefits, with its quality being signifi
cantly influenced by its storage age, referred to as “Chen Jiu Zhe Liang” in Chinese. Concequently, the rapid and 
accurate identification of Chenpi's age is important for consumers. In this study, Fourier transform infrared 
spectroscopy (FTIR) was employed to capture spectral images of Chenpi. These FTIR images were then analyzed 
using a two-dimensional convolutional neural networks (2D-CNN) model, achieving a discrimination accuracy of 
97.92%. To address the “black box” nature of the 2D-CNN, Gradient-weighted Class Activation Mapping Plus 
Plus (Grad-CAM++) was utilized to highlight the important regions contributing to the model's performance. 
Additionally, six other machine learning models were developped using features identified by the 2D-CNN to 
validate their effectiveness. The results demonstrated that the combination of FTIR spectral images and 2D-CNN 
provides a highly effective method for accurately determining the age of Chenpi.

1. Introduction

Chenpi, also known as dried tangerine peel, is created by sun-drying 
the peel of tangerines, which is known for its health benefits, including 
regulating qi, aiding digestion and reducing phlegm (Wang et al., 2023). 
Chenpi is highly valued for its medicinal properties, with the age of 
Chenpi being a key factor in determining its quality, which is known as 
“Chen Jiu Zhe Liang” in Chinese (Sun et al., 2023). The traditional 
methods for identifying the age of Chenpi involve sensory and physical 
examinations, such as surface observation, aroma identification, and 
taste testing. However, these methods require a high level of skill and 
experience and lack quantitative data, making it difficult to standardize 
evaluations and compare results across different batches. In contrast, 
chemical methods provide a more precise and objective approach to 
identifying the age of Chenpi by analyzing its chemical composition and 
the changes that occur over time. The commonly used techniques 
including high-performance liquid chromatography (HPLC) (Li et al., 

2019), gas chromatography–mass spectrometry (GC–MS) (Shi et al., 
2024), and liquid chromatography-mass spectrometry (LC-MS) (Yang 
et al., 2022). These methods demonstrate high sensitivity and resolution 
in detecting chemical components such as flavonoids, phenolic acids, 
polysaccharides, and volatile oils. When combined with data processing 
methods like artificial neural network (ANN), principal component 
analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), 
the accuracy and efficiency of these detection techniques are enhanced. 
For instance, GC–MS combined with ANN allows for precise analysis of 
volatile compounds (Qu et al., 2015). Similarly, PCA and PLS-DA can be 
employed alongside HPLC or LC-MS for the differentiation of Chenpi 
from different years based on the analysis of flavonoids, and phenolic 
acids (Liang et al., 2022; Wang et al., 2016). However, despite the 
improved capabilities offered by these combined approaches, there are 
certain limitations. High-precision analytical techniques typically 
require complex and expensive equipment, as well as specialized skills, 
which limits their widespread application. Additionally, these methods 

Abbreviations: Chenpi, dried tangerine peel; FTIR, Fourier transform infrared spectroscopy; HPLC, high-performance liquid chromatography; GC–MS, gas chro
matography–mass spectrometry; LC-MS, liquid chromatography-mass spectroscopy; ANN, artificial neural network; PCA, principal component analysis; 2D-CNN, 
two-dimensional convolutional neural networks; Grad-CAM++, Gradient-weighted Class Activation Mapping Plus Plus; GNN, graph neural networks; LSTM, long 
short-term memory networks; GAN, generative adversarial networks; RNN, recurrent neural networks; DRL, transformer models and deep reinforcement learning; 
DA, data augmentation; AdaBoost, adaptive boosting; GBDT, gradient boosting decision tree; PLS-DA, partial least squares-discriminant analysis; LR, logistic 
regression; KNN, K-nearest neighbors; DT, decision tree; XGBoost, extreme gradient boosting.

* Corresponding author at: Dongcheng Village, Jiangmen, Guangdong 529020, PR China.
E-mail address: libq201406@163.com (B.Q. Li). 

1 These authors contributed equally to this work.

Contents lists available at ScienceDirect

Food Chemistry: X

journal homepage: www.sciencedirect.com/journal/food-chemistry-x

https://doi.org/10.1016/j.fochx.2024.101759
Received 30 July 2024; Received in revised form 19 August 2024; Accepted 20 August 2024  

Food Chemistry: X 23 (2024) 101759 

Available online 22 August 2024 
2590-1575/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 
nc/4.0/ ). 

mailto:libq201406@163.com
www.sciencedirect.com/science/journal/25901575
https://www.sciencedirect.com/journal/food-chemistry-x
https://doi.org/10.1016/j.fochx.2024.101759
https://doi.org/10.1016/j.fochx.2024.101759
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


still rely on traditional machine learning algorithms, which may fall 
short when handling complex, non-linear data. These liminations un
derscore the need for simpler, innovative, and accurate methods for 
identifying the age of Chenpi.

Fourier transform infrared spectroscopy (FTIR) is a powerful spec
troscopy technique that offers the advantages of non-destructive anal
ysis, comprehensive chemical information, high sensitivity, and rapid 
data acquisition. FTIR covers a broad spectral range, enabling the 
detection of a wide variety of functional groups and molecular vibra
tions, thus providing detailed chemical information. For example, Pan 
et al. (Pan et al., 2022) and Zhang et al. (Zhang et al., 2022) successfully 
identified the geographical origin and storage age of Chenpi using near- 
infrared spectroscopy combined with machine learning methods. With 
the increasing computational power, deep learning techniques such as 
convolutional neural networks (CNN), graph neural networks (GNN), 
long short-term memory network (LSTM), autoencoder, generative 
adversarial networks (GAN), recurrent neural networks (RNN), trans
former models, and deep reinforcement learning (DRL), have been 
developed and made remarkable advancements in a wide range of 
research fields (Dou et al., 2023). Li et al. (Qin et al., 2024) applied FTIR 
combined with CNN-LSTM model to classify Chenpi samples of different 
ages, achieving a discriminant accuracy higher than 96.5%. However, 
while these methods have enabled rapid, non-destructive and accurate 
discrimination of Chenpi with different ages, they face challenges with 
model interpretability, making it difficult to understand how specific 
input features influence the model's predictions. Therefore, developing 
rapid, efficient, accurate, and interpretable methods for identifying the 
age of Chenpi is crucial. Such advancements would not only enhance the 
reliability of the models but also provide deeper insights and support for 
scientific research and practical applications.

In recent years, the need for reliable methods to authenticate and 
evaluate the quality of Chenpi has driven the exploration of advanced 
analytical techniques. Li et al. (Li et al., 2024) highlighted in their re
view that infrared spectroscopy has emerged as an important technique 
for identifying Chenpi authenticity, offering more distinctive identifi
cation characteristics compared to other physical and chemical 
methods. Among the above mentioned deep learning methods, CNN 
demonstrated excellent performance in image classification (Liu et al., 
2022), due to their ability to capture local and spatial hierarchies of 
features within images. By integrating the detailed chemical information 
provided by FTIR with the powerful image classification capabilities of 
CNN, this study aims to develop an accurate and novel model for 
determining the age of Chenpi based on FTIR spectral images. To 
enhance model interpretability, we employ Gradient-weighted Class 
Activation Mapping Plus Plus (Grad-CAM++) (Chattopadhay et al., 
2018), an advanced visualization technique that can highlight critical 
regions in the spectral images, providing insights into the CNN's 
decision-making process. Although the combination of CNN and Grad- 
CAM++ has been used to identify the geographical origins of traditional 
Chinese medicine samples based on hyperspectral imaging (Cai et al., 
2023), our study is the first to apply this approach using FTIR spectral 
images to determine the age of Chenpi. Additionally, we have conducted 
a more in-depth analysis to emphasize both the interpretability and 
accuracy of the model.

The objectives of this study are: (1) to develop a two-dimensional 
convolutional neural networks (2D-CNN) model capable of accurately 
classifying the age of Chenpi using FTIR spectral images, (2) to utilize 
Grad-CAM++ for visualizing the focus areas of the 2D-CNN model 
during age determination, thereby avoiding a “black box” phenomenon 
and enhancing the transparency of the model's predictions, and (3) to 
validate the effectiveness of features identified by the 2D-CNN by 
establishing six different machine learning models using these high
lighted features. By addressing these objectives, this study aims to pro
vide a reliable and interpretable solution for Chenpi age identification, 
benefiting the food industry in quality control and increasing consumer 
confidence in Chenpi products.

2. Sample and data description

In this study, 39 Chenpi samples were purchased from ten different 
companies located in Jiangmen, Guangdong Province, China, specif
ically sourced from the Xinhui region. These samples were harvested in 
the years 2014, 2016, 2018 and 2020. Detailed information of the 
Chenpi samples is summarized in Table S1 (Supporting information). 
Notably, the production of Xinhui Chenpi follows the traditional process 
of sun-drying fresh citrus peels and then storing them in a ventilated and 
dry environment to mature. In order to minimise the influence of un
known external factors on the analysis results, all samples were sub
jected to experimental analysis as soon as possible after purchase.

FTIR data were collected from the 39 Chenpi samples in the mid- 
infrared spectral range of 400–4000 cm− 1 (FTIR, Nicolet iS5, Thermo 
Fisher Scientific Inc., USA). The samples were pre-treated, milled and 
removed by a 60 mesh sieve. The FTIR spectrum of the Chenpi powder 
was measured by potassium bromide (KBr, purchased from Shanghai 
Macklin Biochemical Co., Ltd., Shanghai, China) pellet method. The 
samples were weighted 1 mg and mixed with 100 mg of KBr uniformly, 
pressed it into a transparent flake for measurement. The accompanying 
OMNIC software was used for infrared spectroscopy analysis.

The objective of this study was to accurate classify and analyze these 
samples based on their harvest year. Each sample was measured six 
times, generating a total of 234 spectral data from the original 39 
samples. The data were organized into a data matrix of size 234 × 7468.

3. Methodology

3.1. Deep learning

3.1.1. Two-dimensional convolutional neural networks
FTIR spectral classification using 2D-CNN involves treating spectral 

data as two-dimensional images, extracting spatial and spectral features 
through convolution and pooling, and progressively learning abstract 
features to achieve accurate classification. This approach has high po
tential in infrared spectral tasks due to its ability to handle complex 
features, improve classification accuracy, and reduce overfitting. By 
carefully designing the network structure and appropriately adjusting 
the parameters, these advantages can be fully utilized to enhance 
spectral analysis.

This paper introduces a 2D-CNN model specially designed for FTIR 
spectral image processing tasks. The model employs three successive 
convolutional layers to extract hierarchical features from the input im
ages. Each convolutional layer consists of convolution operations fol
lowed by batch normalization, ReLU activation, and maximum pooling. 
This design not only enhances feature extraction capabilities but also 
reduces the model's parameter count, thereby improving computational 
efficiency. Starting with a three-channel input image, the initial con
volutional layer progressively transforms it into feature maps with 16, 
32, and 64 channels, respectively. These feature maps are further 
compressed through fully connected layers, enabling the mapping from 
high-dimensional data to the final classification predictions. The output 
layer utilizes the log softmax function to generate probabilities for each 
category, making the model suitable for multi-category classification 
tasks.

The structured 2D-CNN architecture exemplifies the efficacy of deep 
learning in image recognition and classification. By stacking convolu
tional layers, the model extracts intricate details from input images, 
enabling precise classification. The architectural diagram of the 2D-CNN 
structure was illustrated in Fig. 1.

3.1.2. Visualization method
The 2D-CNN is often considered as a “black box” model in deep 

learning. To gain deeper insights into the decision-making process of the 
2D-CNN model and validate its interpretability, we employed the Grad- 
CAM++ method for model visualization in this study. Grad-CAM++ is 
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an advanced version of the Grad-CAM technique, which generates class 
activation maps by leveraging gradient information to highlight the 
image regions the model focuses on when recognizing target categories 
(Moujahid et al., 2022). In the present study, we first propagated the 
input images through the trained 2D-CNN model to obtain its pre
dictions. Subsequently, we used the Grad-CAM++ method to compute 
the gradients of the output layer with respect to the convolutional 
feature maps, generating class activation maps based on these gradients. 
Finally, these maps were overlaid onto the original images to create 
intuitive heatmaps, revealing the critical regions the model relies on 
during classification decisions.

By utilizing Grad-CAM++ for visualization, we not only validated 
the model's performance on specific tasks but also uncovered its internal 
mechanisms, providing a clearer understanding of the model's behavior. 
This visualization method provides strong support for interpreting deep 
learning models, thereby enhancing their transparency and credibility.

3.1.3. Data augmentation
Deep learning models relys on large datasets for effective training, 

and data augmentation (DA) techniques can be used to enhance model 
performance by increasing the diversity of instances through synthe
sized data (Shorten & Khoshgoftaar, 2019). In addition, DA helps to 
prevent overfitting problems during the training phase of the model and 
maintain the model's generalization ability, making it an effective 
method for improving the overall performance of deep learning models 
(Hao et al., 2023). When performed in image classification assignment, 
DA methods commonly include flipping (flipping the image horizontally 
or vertically), rotation, scaling and cropping, panning, contrast and 
brightness adjustments, noise addition, Gaussian blurring, etc. (Khalifa 
et al., 2022).

3.2. Machine learning methods

3.2.1. Variable selection methods
When optimizing model performance through variable selection, 

choosing the appropriate algorithms is crucial. In this study, we employ 
AdaBoost (adaptive boosting) and Boruta as the primary methods for 
variable selection. These methods address the challenges of high- 
dimensional data and complex relationships, enhancing prediction ac
curacy and ensuring that the selected variables significantly contribute 
to the interpretability and practicality of the research.

AdaBoost is a powerful ensemble learning algorithm that works by 
iteratively training a multiple weak classifiers, typically simple models 
like decision trees and then combining them into a strong predictive 
model, resulting in a highly accurate ensemble model (Tang et al., 

2021). In variable selection, AdaBoost effectively identifies features that 
have significantly impact on predicting the target variable. Unlike 
traditional methods such as stepwise regression or simple filtering 
methods, AdaBoost excels at capturing complex interactions between 
features, which are often missed by simpler methods. This capability 
leads to enhanced prediction accuracy and better generalization per
formance of the model. In this study, AdaBoost was chosen for variable 
selection because of its ability to handle high-dimensional data and 
complex feature structures, ensuring that the selected variables provide 
maximal information and predictive power.

Boruta algorithm is a robust feature selection method based on 
random forests classifer, specifically designed to assess the importance 
of variables in predicting the target variable (Kursa & Rudnicki, 2010). 
Unlike standard random forests, which directly rank features based on 
their importance, Boruta introduces a more rigorous comparison by 
adding randomly generated “shadow features” to the dataset (Yu et al., 
2024). These shadow features are duplicates of the original features with 
their values randomly shuffled, serving as a baseline to test the impor
tance of each real feature. This method helps avoid overfitting and bias 
in feature selection, making Boruta particularly suitable for complex 
datasets and high-dimensional scenes, such as infrared spectral data. In 
this study, Boruta was chosen for its ability to rigorously evaluate the 
significance of each variable, ensuring that only the most relevant fea
tures are selected, thereby improving the model's interpretability and 
reducing the risk of including irrelevant or redundant information.

3.3. Classification methods

Classification in FTIR spectroscopy involves categorizing spectra into 
distinct groups based on their unique patterns or features. Typically, 
machine learning models are trained on a dataset of known FTIR spectra, 
enabling them to classify new, previously unseen spectra accurately. In 
this study, we employed six widely-used machine learning algorithms 
for FTIR data analysis: gradient boosting decision tree (GBDT) (Wu 
et al., 2021), partial least squares-discriminant analysis (PLS-DA) 
(Naeim Mohamad Asri et al., 2022), logistic regression (LR) (Akturk 
et al., 2024), K-nearest neighbors (KNN) (Cunningham & Delany, 2021), 
decision tree (DT) (Chen et al., 2020), and extreme gradient boosting 
(XGBoost) (Sheridan et al., 2016).

GBDT is an ensemble machine learning algorithm that combines 
multiple decision trees as base learners to improve model performance. 
The algorithm iteratively builds decision trees by focusing on the re
siduals (errors) of the previous trees, allowing the model to gradually 
correct its mistakes. In each iteration, a new decision tree is trained 
using the residuals from the previous iteration, optimizing the model by 

Fig. 1. The architectural diagram of the 2D-CNN structure.

L.J. Tang et al.                                                                                                                                                                                                                                  Food Chemistry: X 23 (2024) 101759 

3 



minimizing the loss function along the negative gradient direction 
(Liang et al., 2020). This process continues until the model achieves the 
desired accuracy or a pre-set number of iterations is eached. In this 
study, the parameters for the bosted tree were fine-tuned using a grid 
search method, and the model's performance was cross-validated with 4 
folds. The optimal parameters were set as follows: “n_estimators” to 300, 
“learning_rate” to 0.01, and “max_depth” to 3, ensuring a balance between 
model complexity and prediction accuracy.

PLS-DA is a statistical analysis method that combines PLS regression 
and linear discriminant analysis to classify data sets into different cat
egories. The method is particularly useful for high-dimensional data, 
where it reduces the number of latent variables by finding the most 
relevant features that contribute to the prediction of the target variable 
(Pokhrel et al., 2023). PLS-DA simultaneously models the relationships 
between predictor and response variables, allowing for effective classi
fication even in the presence of multicollinearity among the predictors. 
In this study, five-fold cross-validation was employed to determine the 
optimal hyperparameters, with the best performance achieved when the 
number of components (“n_components”) was set to 10.

LR is a classic machine learning algorithm widely used for binary 
classification problems. The algorithm fits a decision boundary, which 
can be linear or polynomial, to separate the data into different classes 
(Jin et al., 2022). It then calculates the probability of each data point 
belong to a particular class based on this boundary, using a logistic 
function as the predictor function. One of the key advantages of LR is its 
ability to avoid making inaccurate assumptions about the data distri
butions, making it robust in various situations. In this study, L2 regu
larization was applied to LR model to prevent overfitting, with the 
regularization parameter “C” set to 100, which controls the trade-off 
between maximizing the likelihood and minimizing the magnitude of 
the coefficients.

KNN is a popular parameter-free supervised learning algorithm that 
is widely used in classification problems. The algorithm classifies a data 
point by analyzing the “K” closest data points (neighbors) in training set 
and assigning the most common class among them to the new data point 
(Ali et al., 2019). The distances between data points is typically 
measured using Euclidean distance, although other metrics can also be 
used. In this study, we utilized 5-fold cross-validation to determine the 
optimal number of neighbors (“k”). The accuracy was evaluated for “k” 
value ranging from 1 to 20, and the optimal “k” value was identified as 5, 
providing the best balance between bias and variance.

DT is a popular supervised learning method used for both classifi
cation and regression problems. The algorithm works by recursively 
splitting the dataset into smaller subsets based on the value of the most 
informative feature at each step. It selects a feature as the current node 
and calculates its information gain or entropy. The feature with the 
highest information gain or entropy is chosen for the split. This process 
repeats until the stopping condition is met (Kim, 2016). In this study, 
grid search was employed to tune the hyperparameters of the decision 
tree model, and each parameter configuration was evaluated using 4- 
fold cross-validation. The optimal settings were determined to be a 
maximum depth of 3, a minimum number of samples required to split an 
internal node of 2, and a minimum number of samples required to be at a 
leaf node of 4.

XGBoost is an advanced implementation of gradient boosting that 
has gained widespread recognition for its high performance in both 
classification and regression tasks. It enhances model accuracy through 
the integration of multiple weak classifiers (typically decision trees) into 
a single strong learner (Qiu et al., 2022). XGBoost introduces additional 
regularization terms and penalty functions in its objective function to 
control model complexity and assess overfitting risks, making it more 
robust than standard gradient boosting. In this study, the model's pa
rameters were carefully tuned to optimize performance. The final set
tings were “n_estimators” at 400, “learning_rate” at 0.2, and “max_depth” 
at 2, allowing the model to achieve high predictive accuracy while 
maintaining a controlled complexity.

3.4. Model evaluation

In all models, the entire dataset was randomly divided into training, 
validation and test sets in a 6:2:2 ratio. Model hyperparameters were 
initially adjusted using the training set. The accuracy or loss on the 
validation set was then used to further tune the hyperparameters, 
helping to accelerate the model's convergence. Finally, the test set was 
used to evaluate the model's performance.

Evaluating the performance of a classifier model is crucial. Common 
evaluation metrics include classification accuracy, precision, recall, and 
F1_score (Adegun et al., 2023). The metrics were definedas follows:

Accuracy measures the proportion of correct predictions out of the 
total number of cases examined, providing an overall evaluation of the 
model's classification performance. It is calculated as: 

Accracy =
TP + TN

TP + TN + FP + FN
(1) 

where, TP (True Positives) is the number of samples correctly predicted 
as positive, FP (False Positives) is the number of negative samples 
incorrectly predicted as positive, TN (True Negatives) is the number of 
samples correctly predicted as negative, and FN (False Negatives) is the 
number of positive samples incorrectly predicted as negative.

Precision measures the proportion of true positive cases out of all 
predicted positive cases, helping us understand the reliability of the 
model in correctly identifying samples belonging to a particular class. It 
is calculated as: 

Precision =
TP

TP + FP
(2) 

Recall, also known as sensitivity, measures the proportion of actual 
positive cases that are correctly identified by the model. It is calculated 
as: 

Recall =
TP

TP + FN
(3) 

F1_score is the weighted average of Precision and Recall, providing a 
balanced assessment of the model's performance, particularly when 
dealing with inbalanced datasets. It is calculated as: 

F1 score =
2 × Precision × Recall

Precision + Recall
(4) 

Confusion matrix can provide a detailed analysis of the model's 
performance by reporting the counts of FP, FN, TP and TN, allowing for 
straightforward comparsion between different models on the same test.

Spectral/image data processing and classification model develop
ment were carried out using Python (version 3.7.0, 64-bit) with 
PyCharm Professional (version 2021.1.4) on a Windows 10 platform. 
The machine learning algorithms were implemented using scikit-learn 
(version 1.0.1). The 2D-CNN model was developed using PyTorch 
(version 1.10.0). All data analysis procedures were executed on a 
computer equipped with an Intel(R) Core(TM) i9-9900K processor 
clocked at 3.6 GHz and an NVIDIA GeForce GTX 1660 graphics card.

4. Result and discussion

4.1. Spectral profile of samples

The mid-infrared spectra of four Chenpi samples, each with different 
storage year, was illustrated in Fig. S1 (see supporting information). The 
results reveal a significant overlap in the spectral features among Chenpi 
samples from different years, which propose a challenge for differenti
ating the sample classes using conventional methods such as cosine 
similarity or Euclidean distance. To overcome this limitation and 
improve the classification accuracy, we constructed a 2D-CNN specif
ically designed for spectral image classification. This model's perfor
mance was then compared with traditional machine learning methods 
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that utilize spectral data. The analysis and validation process for the 2D- 
CNN model is illustrated in Fig. 2.

4.2. Deep learning classification results

4.2.1. Classification results of 2D-CNN
Plotting the loss value and accuracy curves of datasets is an essential 

method for evaluating the learning progress and detecting overfitting or 
underfitting in a deep learning model (Zhao et al., 2021). The loss curves 
indicate a trend of convergence and reduction, suggesting that the 
learning process is been optimized. Meanwhile, the accuracy curves 
show the model's performance improvements on both the training and 
validation sets, highlighting its ability to learn and generalise. As shown 
in Fig. 3a, the training and validation loss and accuracy for the 2D-CNN 
model demonstrate a clear reduction in training loss and a corre
sponding increase in accuracy over the epochs, reflecting the model's 
learning efficiency (Dong, 2024), which is a positive outcome. After 
evaluating the relationship between the number of iterations and the 
model's runtime, we identified the optimal parameter settings for the 
2D-CNN model as follows: “epoch” at 50, “learning rate” at 0.008, and 
“batchsize” at 12.

Then, the 2D-CNN model was established using the optimized pa
rameters (as depicted in Step 1 in Fig. 2). The classification results for 
the test set are illustrated in Fig. 4a and Fig. 4b. The model achieved 
impressive performance on the test set, misclassifying only one out of 47 
samples. The final evaluation metrics on the test set obtain an accuracy 
of 97.92%, precision of 98.12%, recall of 97.91%, and F1_score of 
97.92% (Table 1). These results highlight the robustness and precision of 
the 2D-CNN architecture in making accurate predictions, validating its 
potential for application in classification tasks. Moreover, the high ac
curacy and consistency across multiple evaluation metrics suggest that 
the 2D-CNN model is well-suited for applications that require precise 
and reliable classification.

In order to enhance the diversity and complexity of the data, reduce 
model overfitting, and improve model robustness, ten data augmenta
tion methods were employed, as illstarted in Fig. 5. While the perfor
mance of a model often depends on the richness of the provided 
information (Luo et al., 2022), excessive augmentation can lead to in
formation loss, making it challenging for the model to learn effective 

features. Additionally, it increases computational demands, prolongs 
training time and escalates resource costs. Therefore, it is crucial to 
carefully selected appropriate augmentation methods. To explore the 
impact of different augmentation strategies, we randomly performed 
combinations of 3, 7, and all 10 augmentation methods, resulting in 
datasets of different sizes (Table 1). These datasets were also split into 
training, validation and test sets, and 2D-CNN models were established 
accordingly. Among them, the model utilizing the three augmentation 
(3-DA) methods achieved the highest classification accuracy. The cor
responding training and validation loss and accuracy for this model are 
presented in Fig. 3b. In constrast, the models based on 7-DA and 10-DA 
combinations, although benefiting from larger data sizes, exhibited a 
significant drop in model performance. When comparing the accuracy 
before (Fig. 4a and Fig. 4b) and after augmentation (Fig. 4c and Fig. 4d), 
it was found that the model's accuracy remained consistent, suggesting 
that the original data was sufficiently diverse and representative, 
providing the important features needed for the model to learn effec
tively. As a result, further augmentation did not lead to significant im
provements in performance. This enabled the 2D-CNN to achieve 
optimal discrimination accuracy without the need for additional 
augmentation. Consequently, we opted to use the original data for 
subsequent analyses.

4.2.2. Visualization of 2D-CNN identified features
The Grad-CAM++ algorithm is employed to generate a heatmap of 

the gradients of the weights in the final convolutional layer, thus 
providing a visual representation of the network model's decision- 
making process (as illustrated in Step 2 of Fig. 2). On the Grad- 
CAM++ heatmap, the darker red areas indicate the features that are 
most critical for category localisation. In this study, these features were 
visualized, and the results for Chenpi samples from four different years 
are displayed in Fig. 6a. It is evident that the highlighted areas vary 
across different years, reflecting how the model's focus shifts based on 
the imput spectral images. This visualization enhances the transparency 
and interpretability of the model's decisions, allowing us to intuitively 
grasp the key features the model focuses on when distinguishing be
tween categories.

Following this, the effectiveness of the features selected by 2D-CNN 
were validated, through successful validation of the 2D-CNN selected 

Fig. 2. The process of 2D-CNN for classification and model performance validation.
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features can further confirm their relevance and importance in accurate 
classification.

4.2.3. Validation effectiveness of 2D-CNN identified features
To validate the effectiveness of the features identified by the 2D- 

CNN, we combined the most critical features pinpointed by the Grad- 
CAM++ method, as depicted in Fig. 6b. These features were subse
quently input into six machine learning methods-GBDT, LR, DT, 
XGBoost, KNN and PLS-DA (as illustrated in Step 3 of Fig. 2). The per
formance of six machine learning models established using 2D-CNN 
identified features were presented in Table 2. In addition, the compar
ison of reference year and predicted year of Chenpi samples in test set 
was illustrated in Fig. S2. Among the models, the GBDT and LR models 
established using 2D-CNN identified features show similar high perfor
mance with 2D-CNN model established on original images. This suggests 
that the feature selection process was successful in isolating the most 
informative aspects of the spectral images, thereby maintaining high 
classification accuracy. Although the DT, XGBoost and KNN moldes on 
2D-CNN identified features show a drop in performace compared to 
previous methods, they still perform reasonable well, underscoring the 
robustness and generalizability of the features. These findings are sta
tistically supported by cross-validation, further confirming the effec
tiveness of the features extracted by the 2D-CNN. Finally, the PLS-DA 
model on the 2D-CNN identified features shows the lowest performace 
among all the models. This deviation from the expected results suggests 
the need for further investigation. To address this, we extend our 
research by appliying the six aforementioned machine learning methods 
in conjunction with different variable selection methods to establish 
discriminant models.

4.3. Machine learning modelling results

At first, six machine learning models were established without 
applying any feature selection techniques. As can be seen from Table 2, 
models such as XGBoost and DT showed high accuracy values of 93.62% 
and 91.49%, respectively, demonstrating their strong performance in 
the classification task. Similarly, the LR, KNN, and PLS-DA models also 
performed relatively well, with accuracy values of 87.13%, 87.23% and 
85.21%, respectively, indicating their ability to handle the dataset 
effectively despite the presence of potentially irrelevant features. 
However, GBDT model had a lower accuracy of 70.21%, indicating that 
the model might be negatively affected by irrelevant or redundant 
variables. This observation underscores the importance of feature se
lection in enhancing model performance by eliminating noise and 
focusing on the most informative variables.

Then, we applied Adaboost and Boruta algorithms to achieve feature 
selection, resulting in the extraction of 37 and 358 features from the 
original 7468 spectral data points (Fig. 6c and Fig. 6d), respectively. The 
results presented in Table 2 indicated that the introduction of feature 
selection had a significant impact on model performance. Specifically, 
AdaBoost feature selection markedly improved the classification accu
racy of GBDT, DT and XGBoost models, maintained the accuracy of KNN, 
while slightly decreased the accuracy for LR and significantly for PLS- 
DA. On the other hand, Boruta feature selection improved the accu
racy of GBDT, LR and DT models, while reduced the accuracy of KNN, 
PLS-DA and XGBoost models. These results highlight the importance of 
integrating machine learning algorithms with appropriate feature se
lection methods to improve classification accuracy.

Finally, the results of six models based on three feature selection 

Fig. 3. Loss and accuracy curves: (a) 2D-CNN model before data augmentation, (b) 2D-CNN model after data enhancement.
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methods were compared (Fig. S3). The comparsion reveals that models 
such as GBDT, LR, KNN, and PLS-DA built on 2D-CNN identified features 
exhibit higher accuracy than those established using other two feature 
selection methods (Fig. S3a). This demonstrates the superior ability of 
2D-CNN to extract relevant and informative features, thereby enhancing 
the performance of these models compared to Adaboost and Boruta. In 
addition, the accuracy of the DT model remains unchanged regardless of 
the feature selection method, while the XGBoost model established on 
2D-CNN identified features achieves better accauacy with Boruta and 

lower with AdaBoost. The other three parameters (Fig. S3b-d) followed a 
similar trend as accuracy. Overall, these analysis results highlight the 
effectiveness of the features extracted by 2D-CNN. Moreover, the 2D- 
CNN model established on the FTIR spectral images demonstrated su
perior performance, and the features selected by 2D-CNN exhibited good 
classification accuracy accross machine learning models.

4.4. Key advantages of the proposed method

Compared to some reported methods used for Chenpi age discrimi
nation (Liang et al., 2022; Qu et al., 2015; Wang et al., 2016), the pro
posed method's novelty lies in its unique integration of FTIR spectral 
images with 2D-CNN, a combination that has not been widely explored 
in Chenpi analysis. While traditional techniques like PCA and PLS-DA 
focus on data processing, this approach takes advantage of 2D-CNN's 
powerful image classification abilities. Additionally, the use of Grad- 
CAM++ for model interpretability introduces a new level of trans
parency to the analysis, addressing the common issue of interpretability 
in traditional models and allowing researchers to understand how the 
model arrives at its decisions.

Fig. 4. Radar chart of classification results: (a) 2D-CNN model before data augmentation, (c) 2D-CNN model after data enhancement. Confusion matrix of classi
fication results: (b) 2D-CNN model before data augmentation, (d) 2D-CNN model after data enhancement.

Table 1 
The discrimination performance of 2D-CNN model before and after data 
augmentation.

Inputs Data 
size

Accuracy 
(%)

Precision 
(%)

Recall 
(%)

F1_score 
(%)

Original 
images

234 97.92 98.12 97.91 97.92

3-DA 936 99.47 99.48 99.47 99.47
7-DA 1872 75.73 64.45 75.73 67.23
10-DA 2574 87.02 89.13 87.02 85.57
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Fig. 5. The different kinds of employed data enhancement methods.

Fig. 6. (a) Grad-CAM++ visualization of 2D-CNN identified features, (b) combination of 2D-CNN extracted characteristic features, (c) AdaBoost extracted features, 
(d) Boruta extracted features.
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Overall, this method stands out from traditional approaches by 
combining a fast and non-destructive spectral technique, a deep learning 
algorithm, and easy-to-understand results, making the analysis more 
thorough and insightful.

5. Conclusions

The present study has illustrated the success of using 2D-CNN com
bined with FTIR spectral images for the discrimination of Chenpi age, 
achieving the classification accuracy of 97.92%. Moreover, the features 
identified by the 2D-CNN were visualized using the Grad-CAM++

technique, which helps to avoid the “black box” phenomenon commonly 
associated with deep learning models. To further validate the effec
tiveness of the features identified by the 2D-CNN, they were input into 
six different machine learning methods to establish classification 
models. The results indicated that the 2D-CNN model established on the 
FTIR spectral images not only outperformed other used methods but also 
demonstrated that the features selected by 2D-CNN show good inter
pretability and classification accuracy across various machine learning 
models. Therefore, our research lays a solid foundation for further 
research and the optimisation of deep learning based feature extraction 
methods.
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