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Abstract: In this paper, we performed a feasibility study of using a water-based liquid scintillator
(WbLS) for conducting imaging analysis with a digital camera. The liquid scintillator (LS) dissolves
a scintillating fluor in an organic base solvent to emit light. We synthesized a liquid scintillator
using water as a solvent. In a WbLS, a suitable surfactant is needed to mix water and oil together.
As an application of the WbLS, we introduced a digital photo image analysis in color space. A
demosaicing process to reconstruct and decode color is briefly described. We were able to estimate
the emission spectrum of the fluor dissolved in the WbLS by analyzing the pixel information stored
in the digital image. This technique provides the potential to estimate fluor components in the visible
region without using an expensive spectrophotometer. In addition, sinogram analysis was performed
with Radon transformation to reconstruct transverse images with longitudinal photo images of the
WbLS sample.

Keywords: liquid scintillator; water-based liquid scintillator; commission internationale de l’eclairage
(CIE) color space; red green blue (RGB); hue saturation value (HSV); digital camera; complemen-
tary metal oxide semiconductor (CMOS); bayer color filter array (CFA); image analysis; sinogram;
radon transformation

1. Introduction

A conventional LS is a mixture of a base solvent and fluor [1–5]. In general, for a
base solvent, an organic solvent is used. A scintillating fluor is a chemical material that
absorbs photons and re-emits them at a longer wavelength. Its purpose is to pick up
excitation energy from the solvent and emit a fraction of its energy as visible light. This
emitted light is read by a photomultiplier tube (PMT). In addition, a secondary wavelength
shifter (WLS) can be added to match the maximum quantum efficiency of the bi-alkali PMT
around 400−450 nm [6]. In our study, 2,5-diphenyloxazole (C15H11NO, PPO) was used as a
primary fluor, and 1,4-bis (5-phenyl-2-oxazolyl) benzene (C24H16N2O2, POPOP), or 1,4-bis
(2-methylstyryl) benzene (C24H22, bis-MSB) were added as the secondary fluor. Organic LS
has been widely used in the nuclear, particle, and medical physics fields, since it has proper
optical properties and a low energy threshold. In general, the amount of optimized primary
fluor in organic LS used in reactor neutrino experiments is approximately ~3 g/L, while the
secondary WLS is ~30 mg/L [3,7]. In our study, when synthesizing a water-based liquid
scintillator (WbLS), the same fluor concentration used in the reactor neutrino experiments
was maintained.

Even though conventional LS has many advantages, WbLS has been proposed and
studied as a future next generation detector [8–12]. It has a lower cost, is less hazardous, is
more environmentally friendly, and has a longer attenuation length. In order to synthesize
a liquid scintillator using water, it is essential to dissolve the organic liquid scintillator
into water. The water and organic solvent do not mix with one another, and will quickly
separate into two layers due to differences in polarity. A surfactant can be used to reduce
the tension between the polar (hydrophilic) and non-polar (lipophilic) surfaces. In general,
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fluor dissolves in organic solvent, but does not dissolve directly in water. Therefore, with
the help of a surfactant, fluor can be mixed with water and an organic solvent.

A surfactant consists of a polar hydrophilic group and a non-polar lipophilic group.
The HLB index is one of the indicators used to characterize surfactants. This index is a
measure of the degree to which it is hydrophilic or lipophilic, as described by Griffin [13,14]
and Davies [15]. The HLB number usually ranges from 0 to 20. A low HLB value means
that it has a lipophilic tendency to be more soluble in oil and to form water-in-oil emul-
sions, whereas a higher HLB value corresponds to a hydrophilic molecule. For this study,
polyoxyethylene nonylphenylether (IGEPAL CO-630, (C2H4O)n, C15H24O, n = 9~10) was
used to estimate the emission spectrum of fluor components in the WbLS. Its HLB value is
13 and it has a hydrophilic tendency. In sinogram analysis, PEG-60 hydrogenated castor oil
(HCO-60, C18H37NO3) with a HLB value of 14 was used. If we know the HLB index value,
a gel-type WbLS can be synthesized more easily. The original state of HCO-60 is a hard
paste. If the ratio of water to surfactant exceeds (6:4), the viscosity of the WbLS sample
becomes stronger. This sample was used for sinogram analysis later.

A high optical transparency for the WbLS is highly desired. A WbLS has the potential
to provide a sufficient light yield with a long attenuation length and chemical stability
over several years of experiments. Depending on the base organic solvent, types of
fluor, fluor concentration, and surfactants used, our results of transmittance, absorption,
fluorescence, and density were not significantly different from other previously measured
values [9,11,16,17].

2. Motivation

There were two motivations for this paper. The first was to develop a new liquid
scintillator using water as the main base solvent. Most WbLS research groups have mainly
focused on finding a new surfactant, and then water and surfactant are mixed. But in our
study, we synthesized a WbLS using only a combination of water, surfactant, and fluor
according to the HLB index value. Secondly, we investigated the possibility to reconstruct
the dissolved fluor components in a WbLS by analyzing photographic images taken with a
digital camera (EOS 450D, manufacturer: Canon, Seoul, Korea) equipped with a CMOS
(APS-C sensor, manufacturer: Sony, Seoul, Korea) image sensor. In general, an expensive
UV/vis spectrometer and fluorescence spectrophotometer are used to obtain information
on the absorption and emission spectrum of fluors. Our method will provide an inexpensive
and indirect method to estimate fluor components in a sealed LS or gel-type materials.
In addition, we tried to show that two-dimensional images could be reconstructed from
projection data obtained from various directions of a WbLS sample. A tomographic image,
or an axial cross-section image based on the reference line, was reconstructed by sinogram
or Radon transformation.

3. Photo Color Image Processing Analysis
3.1. Color Filter Array (CFA) Image Sensor

Digital cameras equipped with CMOS technology were used for the digital image
analysis. Each pixel of most commercial CMOS image sensors is equipped with a CFA. The
CFA configuration in the CMOS is a Bayer filter mosaic consisting of red (R), green (G), and
blue (B) filters that can cover a broad area of color space. In CFA, only one color among
RGB is recorded at each pixel. The other missing two color values are estimated from the
recorded mosaic data of RGB values through an interpolation process called demosaicing
(or demosaicking) [18,19]. Numerous demosaicing algorithms have been proposed and
among them Bayer CFA is widely used. The missing data for each color channel is estimated
based on neighboring pixel information. On the contrary, the diffraction grating-based
spectrometer has a different grating constant according to the refractive index, so it can
form a fine baseline that can be distinguished at the level of 1 nm. Several integration
technologies of CFA-based CMOS image sensors have been developed [20]. One workflow
example is shown in Figure 1. The disadvantage of a CFA-based camera is that the original
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color is decomposed into three color filters and cannot be accurately expressed when
converted back to the original color during the demosaicing process. In other words, the
demosaicing process in Bayer CFA cannot represent the original color due to the lack of
information when converting back to the original color. In addition, the effects of optical or
electrical cross talk due to CMOS pixel structure cannot be ignored, so color correction is
required [21]. Manufacturers apply an algorithm that optimizes the signal-to-noise ratio
in order to achieve accurate color reproduction. In the neutrino experiment, there is no
need to distinguish the wavelength of light entering the PMT down to a few nanometers.
Therefore, we considered a method which could easily identify the fluor contents by
analyzing the WbLS emission spectrum, and hence adopted the Bayer CFA approach for
the demosaicing process.
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XYZ color space was defined by the Commission Internationale de l′Eclairage (CIE, 
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Figure 1. A workflow example of CFA arrangement and the demosaicing process for an interpolated full color image.
(a) Repetitive patterns consisting of R, G, and B are called mosaics. (b) Demosaicing according to each RGB color component.
Input raw (mosaiced) image from CFA. (c) Spatial arrangement (lowercase of rgb) of each pixel is assigned based on
neighboring pixel color information. The result of red, green and blue channel interpolation at white locations. (d) The final
result of RGB interpolation of each pixel. The final result of red, green, and blue channel interpolation at red, green and
blue locations.

3.2. Color Spaces

XYZ color space was defined by the Commission Internationale de l′Eclairage (CIE,
International Commission on Illumination) in 1931 [22,23]. The CIE 1931 color space is
used today as a standard to define colors, and as a reference for other color spaces. When
(R, G, B) values are combined, the CIE model can reproduce almost any color that a human
eye can perceive. However, the hue (H), saturation (S), value (V) model, an alternative
representation of the RGB model, says that color is not defined as a simple combination of
adding or subtracting primary colors, but that it is a non-linear mathematical transforma-
tion [24]. If RGB values are known, RGB can be converted to HSV values. Physically, hue
is related to wavelength for spectral colors. Therefore, a wavelength can be obtained by a
dominant hue value of the spectrum using the appropriate conversion method.
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3.3. Emission Spectrum of Fluors from a Color-Decoded Image of WbLS

As an application, we investigated the possibility of determining the fluor components
dissolved in the WbLS through a digital photo image analysis in color space after irradiating
UV lights on the sample. For the background rejection, experiments were performed in
a darkroom. Pictures were taken with the CMOS camera approximately 50 cm in front
of the WbLS sample container. The camera was focused at the desired point by taking
several pictures in advance, and efforts were made to place the camera as perpendicular
as possible to the front of the sample plane. The angle between the camera and the WbLS
sample container needed to be well aligned. By marking the coordinates of each point, we
were able to position them as square to each other as possible. In addition, the refraction
effect was examined. A WbLS sample was placed in the center of the camera view and
photographed without magnification.

After a photo is taken with a digital camera, users can choose lossless raw data or
lossy compressed data formats. In our case, we used a jpeg format corresponding to the
second case. Only a certain number of pixels in the digital world were used through
down-sampling, discrete Fourier integral transformation, and encoding processes. Then, R,
G, and B values of each pixel were stored in a color look-up table with a scale of 256, since
we were using an 8-bit digital camera.

A schematic diagram for taking digital image photographs is shown in Figure 2a.
To prevent external background lights from entering the camera lens, a wall between
the camera and the WbLS sample was installed. The digital camera was positioned at a
90◦ angle to the axis of the beam, so the light emitted from the UV lamp did not enter
the camera directly. In addition, we tried to prevent any stray lights from entering the
camera. Figure 2b shows a light image emitted from the WbLS sample using IGEPAL
CO-630 surfactant. These images were taken with a digital camera using a few seconds
exposure time. Only those pixels whose V value in the HSV model was greater than
roughly 60% were selected to remove background. This boundary line was indicated as a
rectangular box. The fourth box was selected for the analysis. By using a desktop computer
with a CPU (Ryzen 7 3700X, manufacturer: AMD, Seoul, Korea), GPU (Radeon RX5700,
manufacturer: AMD, Seoul, Korea), and 32 GByte of RAM (DDR4-3200, manufacturer:
Samsung Electronics Co., Ltd., Seoul, Korea) the analysis of the stored image can be
performed within several minutes.
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Figure 2. (a) Experimental setting for taking digital image photographs. The camera was placed approximately 50 cm in
front of the WbLS sample. Because there was a wall between the camera and the WbLS sample the UV lamp light did not
directly enter the camera. Only the desired light reached the camera. A cylindrical quartz container with a diameter of 4 cm
and a height of 7 cm was filled with WbLS using IGEPAL CO-630 surfactant. It was placed on top of the rotating disk. UV
light illuminated the sample from the top of the container. The camera was remotely controlled. (b) Rectangular boxes
represent regions of interest. Only those pixel regions whose V value in the HSV model was greater than 60% were selected
and their boundary lines were displayed as a rectangular box. The fourth box was selected for the background rejection.
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Figure 3a−c shows each (R, G, B) component distribution in color space as a function
of the color intensity value. The pixel intensity value was obtained from the look-up
table with a 256 value scale. Our WbLS contains three fluor substances that convert
from UV to visible light. Those were PPO, POPOP, and bis-MSB. Emission peaks of PPO,
POPOP, and bis-MSB lie near wavelengths 360, 410, and 420 nm, respectively [6,25,26].
The blue side light intensity is greater compared to the red or green pixel intensity value.
Extracted emission spectrum of PPO, PPO+POPOP, and PPO+bis-MSB from each hue
value after background subtraction is shown in Figure 3d) as a function of wavelength.
That the emission peak of PPO appears around 380 nm rather than 360 nm is due to the
intrinsic limitations of the CMOS Bayer CFA configuration. The camera we were using
is not sensitive below 375 nm and does not reconstruct colors properly [27]. Therefore,
special care and attention were required in this wavelength region. The emission spectrum
difference between POPOP and bis-MSB is about 10 nm. We could clearly distinguish
the difference of emission spectrum between PPO, POPOP, and bis-MSB fluors especially
in the blue-like color region. This method has sufficient potential to estimate emission
spectrum in the visible region without opening or extracting samples from a sealed liquid
scintillation detector.
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Figure 3. (a) Red, (b) Green, and (c) Blue components extracted from the photographed images in Figure 2b taken by a
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are listed. Among R, G, and B values, blue values are dominant in each fluor case. (d) Extracted emission spectrum of PPO,
POPOP, and bis-MSB from hue value after background subtraction as a function of wavelength.
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3.4. Sinogram and Optical Tomography

As a second example, we examined the sinogram [28]. This is a visual representation of
the raw data by taking photos from different angles. In 1917, Johann Radon demonstrated
the theory that two-dimensional images could be reconstructed from projection data taken
from multiple directions of an object. The accumulated value of light transmission passing
through the object is displayed from 0◦ to 180◦ (or 360◦) on the horizontal axis, and
the height of the graph for each angle is visualized using contrast. Mathematically, the
sinogram is a result of performing the radon transformation. In order to get the original
image, inverse Radon transformation is performed.

A WbLS sample for sinogram analysis is shown in Figure 4. Gel-type WbLS using
HCO-60 surfactant was synthesized. We can easily make and check non-homogeneity with
a gel-type WbLS. This gel-type WbLS has the advantage that an air bubble can be created
in a specific part of the sample. Figure 4a shows the procedure of the sinogram. UV lights
with wavelength of 250, 310, and 360 nm were illuminated from the top to the bottom of
the WbLS sample. The disk on which the WbLS sample was placed rotated at a constant
speed. The digital camera and rotating disk were operated by a drive control module. A
digital photo was taken after rotating the disk every 0.25◦.
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sample using HCO-60 surfactant placed on a rotating disk before rotation. Then, the disk rotated at a constant speed.
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The tomographic image was extracted and reconstructed based on this line. The camera was focused on the center of the
container and a picture was taken after rotating the disk every 0.25◦. Only a portion of the 1,400 projected images is shown.

Because the rotation plate and camera were fixed, only the sample rotated about the
rotational axis without moving up and down in the front camera view. The z-axis height of
the sample and the z-axis height of the acquired image were the same. The camera was
focused on the horizontal dashed line passing through the center of a small tube embedded
in the WbLS sample. The dashed line is the baseline used to reconstruct the tomography
image, and the z-axis pixel number is 542. The image was extracted from this line. A total
of 1.400 photos were taken, and only a fraction of them are shown in Figure 4b.

Figure 5a shows a 360◦ sinogram reconstructed from images with the air bubbles in
WbLS. The air bubble was formed as a hard gel, and the size of the bubble was relatively
small, so the structural shape of the gel was maintained for a long time. As already
mentioned in Figure 4a, when looking at the sample container from top to bottom, and
assuming Cartesian coordinates, the air bubble was created at the center of WbLS container.
In addition, the tomographic top view image can be reconstructed after inverse Radon
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transformation. When viewed from the top down, Figure 5b provides the information
that there is an object (two air bubbles) at the central region of the WbLS sample container.
This shows that we can accurately reconstruct the position of the air bubbles we created.
Therefore, from this result we can acquire a cross-sectional view image with a longitudinal
photo image taken while rotating the WbLS sample. The ring shape of the WbLS sample
container was also visible. Unlike the X-ray used in computed tomography (CT), the optical
tomography technique we attempted here was the visible light. Due to diffraction and
reflection between photons, the wave properties become more prominent. If diffraction and
reflection are very severe, parallel beam attenuation assumptions cannot be satisfied, and
then ill-posed inverse problems result in ghost (or artifact) images in the final reconstructed
image. Therefore, the air bubble was reconstructed as a distorted or slightly deformed
circle rather than a perfect circle due to its high diffraction and high reflectivity.
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4. Summary

We synthesized a WbLS based on the HLB index value of surfactant. To date, most
WbLS research groups have mainly focused on finding a new surfactant, and then water,
organic solvent, flours, and surfactant are mixed. In our case, water, fluors, and surfactant
are mixed based on the HLB index. Two surfactants (IGEPAL CO-630, HCO-60) were
synthesized for the WbLS. IGEPAL CO-630 was used to estimate the emission spectrum
of the fluor dissolved in the WbLS. HCO-60 was used for sinogram analysis with a gel-
type WbLS. By applying a combination of WbLS and CMOS sensor, it was possible to
perform imaging analysis related to the fluor component of the WbLS. Photo images of
UV lights onto the WbLS sample were taken by a CMOS digital camera. CMOS image
sensors with Bayer CFA and a demosaicing process were used to reconstruct and decode
color. By analyzing these images, the possibility to obtain the flour component dissolved
in the WbLS was investigated. This method provides a simple technique to identify the
emission spectrum of fluors in the WbLS, even with a mobile phone camera. For a second
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example, a rotating measurement system for sinogram analysis was implemented. A gel-
type WbLS was prepared and an air bubble was created in the sample. It was possible to
reconstruct transverse images with longitudinal photo images of the WbLS sample through
Radon transformation.
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