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Abstract

Background

Salmonella Typhi and Salmonella Paratyphi A are the agents of enteric (typhoid) fever; both

can establish chronic carriage in the gallbladder. Chronic Salmonella carriers are typically

asymptomatic, intermittently shedding bacteria in the feces, and contributing to disease

transmission. Detecting chronic carriers is of public health relevance in areas where enteric

fever is endemic, but there are no routinely used methods for prospectively identifying those

carrying Salmonella in their gallbladder.

Methodology/Principal findings

Here we aimed to identify biomarkers of Salmonella carriage using metabolite profiling. We

performed metabolite profiling on plasma from Nepali patients undergoing cholecystectomy

with confirmed S. Typhi or S. Paratyphi A gallbladder carriage (and non-carriage controls)

using two-dimensional gas chromatography coupled with time-of-flight mass spectrometry

(GCxGC-TOFMS) and supervised pattern recognition modeling. We were able to significantly

discriminate Salmonella carriage samples from non-carriage control samples. We were also

able to detect differential signatures between S. Typhi and S. Paratyphi A carriers. We addi-

tionally compared carriage metabolite profiles with profiles generated during acute infection;

these data revealed substantial heterogeneity between metabolites associated with acute

enteric fever and chronic carriage. Lastly, we found that Salmonella carriers could be signifi-

cantly distinguished from non-carriage controls using only five metabolites, indicating the

potential of these metabolites as diagnostic markers for detecting chronic Salmonella carriers.

Conclusions/Significance

Our novel approach has highlighted the potential of using metabolomics to search for diag-

nostic markers of chronic Salmonella carriage. We suggest further epidemiological investi-

gations of these potential biomarkers in alternative endemic enteric fever settings.
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Author summary

Enteric fever, caused by typhoidal Salmonella serovars, remains a substantial public health

problem in many low- and middle-income countries. The human-restricted nature of

these organisms combined with the development of new vaccines suggests that regional

elimination of enteric fever should be possible. However, individuals that chronically

carry Salmonella in their gallbladder, such as the notorious Typhoid Mary, complicates

enteric fever transmission and maintain circulation of the organisms. The prospective

detection of chronic Salmonella carriers is therefore a critical step for regional enteric

fever elimination. However, there are currently no diagnostic methods routinely in use

for this purpose. Here, we used a novel method for identifying chronic Salmonella carriers

by comparing metabolite patterns in plasma samples from patients with chronic Salmo-
nella carriage against non-carriage controls. We could significantly distinguish Salmonella
carriers from non-carriers based on a large set of metabolites. Five metabolites were then

highlighted, after comparing metabolite patterns obtained during chronic Salmonella car-

riage and acute enteric fever respectively, which could significantly distinguish Salmonella
carriers from non-carriers. These potential biomarkers require further evaluation in epi-

demiological investigations of enteric fever in alternative endemic settings but this study

provides a first step towards improved detection of Salmonella carriers.

Introduction

Enteric fever is a systemic infection caused primarily by Salmonella enterica serovars Typhi (S.

Typhi) and Paratyphi A (S. Paratyphi A); the disease has the highest incidences in low- and

middle-income countries with limited access to clean water and poor hygiene standards [1].

The causative agents are transmitted via the fecal-oral route and, after entering the gastrointes-

tinal tract, they translocate through gut mucosa and spread systemically, reaching the liver,

spleen, bone marrow, and gallbladder [2]. There are limited data on the precise modes of path-

ogenesis and interactions between invasive Salmonella and the human host, but the organisms

are thought to employ several strategies for avoiding immune defenses [3]. One of the princi-

pal covert mechanisms of S. Typhi and S. Paratyphi A is the ability to colonize the gallbladder,

resist the antimicrobial activity of bile [4], and induce a chronic carriage [5,6]. Colonization of

the gallbladder is thought to be facilitated by the formation of biofilms [7], which may be asso-

ciated with an inability to effectively treat carriage with antimicrobials [5].

It is estimated that approximately 2–5% of individuals living in endemic areas that have

experienced an episode of enteric fever will become a chronic carrier [8]. Typically, chronic car-

riers, such as Typhoid Mary, are asymptomatic [9] and many have no history of an acute disease

episode [10], making the prospective detection of S. Typhi or S. Paratyphi A carriers a major

challenge. Nonetheless, intermittent fecal shedding of bacteria is thought to be a major contrib-

uting factor for disease maintenance in endemic areas and the detection of these individuals is

considered to be a public health priority for reducing the disease burden [11,12]. Current meth-

ods for the prospective detection of Salmonella chronic carriers include serial fecal culture[13],

the detection of the bacteria in bile or on gallstones after cholecystectomy[5], and elevated anti-

body responses against the Vi polysaccharide antigen[14]. However, all these methods have var-

ious limitations (e.g. logistics, invasiveness, and sensitivity) and are seldom performed [5,13,15].

New approaches for detecting Salmonella carriers are warranted, and we have previously

used metabolomics for identifying biomarkers associated with acute enteric fever [16,17].

Here, we aimed to identify metabolite biomarkers specific for S. Typhi or S. Paratyphi A
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carriage. Using plasma samples from patients undergoing cholecystectomy with confirmed S.

Typhi or S. Paratyphi A gallbladder carriage and appropriate controls we performed two-

dimensional gas chromatography coupled with time-of-flight mass spectrometry (GCxGC-

TOFMS). After generating metabolite profiles, our primary strategy was to use chemometric

bioinformatics to investigate if carriers could be differentiated from non-carriers, thus generat-

ing a biomarker pattern (latent biomarker) of carriage that may be developed into a diagnostic

methodology. As opposed to focusing on single metabolites as diagnostic markers, we hypoth-

esize that a combination of co-varying metabolites could potentially provide a means for more

sensitive and specific biomarkers of typhoid carriage. Additionally, as secondary aims we

sought to distinguish between S. Typhi and S. Paratyphi A carriers and to investigate if the

identified metabolite profiles were unique to carriage with respect to those identified during

acute infection [16].

Methods

Ethics statement

This study was conducted according to the principles expressed in the Declaration of Helsinki

and was approved by the institutional ethical review boards of Patan Hospital, The Nepal

Health Research Council, and the Oxford Tropical Research Ethics Committee (OXTREC,

Reference number: 2108). All enrollees were required to provide written informed consent for

the collection, use and storage of tissue and blood collected surgery.

Study site population and study design

The study was conducted at Patan Hospital, a 318-bed government hospital located in the

Lalitpur Sub-Metropolitan City in the Kathmandu valley, Nepal. Non-specific febrile disease is

common at Patan Hospital and S. Typhi and S. Paratyphi A are the most common bacteria

cultured from blood of febrile patients in this location [18]. The study generating the plasma

samples has for this investigation been previously described [19]. Briefly, EDTA blood was

collected from a subset of patients undergoing cholecystectomy at Patan Hospital from June

2007 to October 2010. A questionnaire related to the patient’s health and demographics was

administered prior to surgery along with a stool sample for microbiological culture. Surgeons

collected bile samples and gallbladder tissue during the procedure. After recruiting 1,377 cho-

lecystectomy patients over three years and culturing their bile we identified 24 and 22 individ-

uals with S. Typhi and S. Paratyphi A inside their gallbladder, respectively; 35/46 (76%) were

female and the median age was 34.5 years (range; 20–67).

Plasma samples

Plasma samples were stored at -80˚C until analysis. The samples constituted a subset of those

enrolled in the study and were comprised of plasma samples from patients with confirmed S.

Typhi (n = 12) and S. Paratyphi A (n = 5) gallbladder carriage i.e. individuals from whom S.

Typhi or S. Paratyphi A was isolated from their bile after cholecystectomy. We additionally

analyzed plasma from individuals who underwent surgery but had sterile bile (n = 20) i.e. a

surgical control population without exhibiting growth of bacteria in their bile. Additional

patient information and patient group metadata can be found in S1 File and S1 Table.

Sample preparation for metabolomics analysis

For extraction and derivatization of the samples prior to analysis with GCxGC-TOFMS we

used the plasma protocol for metabolomics analysis at the Swedish Metabolomics Centre
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(SMC) with a 50μl starting volume [20] (and described in detail in [16]). Quality control (QC)

samples were prepared by pooling 100μl aliquots of seven samples from each class.

GCxGC-TOFMS analysis

The extracted and derivatized plasma samples were analyzed on a GCxGC-TOFMS as

described previously [16] but with minor modifications. The MS transfer line was set at 325˚C

and the detector voltage at 1,700V. The analytical run order was constructed by randomizing

the three sample groups (S. Typhi carriers, S. Paratyphi A carriers, and non-carriage controls).

The run also included QC samples incorporated at the beginning and end of the run and after

every sixth sample. In addition, blank samples (milli-Q water and extraction mix) and n-

alkane series (C8-C40) for retention index calculation were analyzed.

Data processing and metabolite identification

The GCxGC-TOFMS data was processed as NetCDF files using an in-house Matlab script

(MATLAB R2014b, Mathworks, Natick, MA, USA) applying hierarchical multivariate curve

resolution (HMCR) [21] on GCxGC-TOFMS data. The processing resulted in resolved chro-

matographic peaks with semi-quantitative metabolite concentrations and corresponding mass

spectra. The mass spectra were subjected to library search in NIST MS Search 2.0 to give the

peaks a putative annotation. In-house libraries from SMC and publicly available libraries

(from US National Institute of Science and Technology (NIST) and the Max Planck Institute

in Golm (http://gmd.mpimp-golm.mpg.de/)) together with libraries of all sample peaks (to

detect split peaks) and peaks from the acute enteric fever study were used in the identification.

Split peaks and metabolites with a different number of TMS groups were investigated by com-

paring retention indexes, mass spectral matches, raw data profiles and loading positions in a

PCA model and for peaks with comparable values/profiles only one peak was included in fur-

ther analysis. Other criteria for peak exclusion were: low quality peak/mass spectrum, column

bleed artifacts, internal standard, high analytical run order correlation (Pearson correlation

coefficient >❘0.5❘), and highly deviating QC samples (RSD>0.5, peaks with RSD between 0.3

and 0.5 were manually investigated).

Pattern recognition/multivariate data analysis

Multivariate projection methods provide a statistical tool for deciphering multivariate or latent

biomarkers based on combinations of variables (e.g. metabolites, proteins etc.). Initially unsu-

pervised modeling with principal component analysis (PCA) [22] was used for peak investiga-

tion during the identification process, and for data overview with metabolites selected for

inclusion. From PCA modeling the general trends in the metabolite data can be obtained with

possible outliers. The variable raw data was investigated and highly deviating samples were

detected in a few metabolites. Metabolites with one sample having a centered and UV scaled

value >4 in a PCA model with all samples were investigated. PCA models with and without

missing value replacement were obtained to investigate the effect. In general, metabolites with

a value >5 were selected for missing value replacement but also metabolites where the deviat-

ing sample was affecting the significance of the metabolite (either by reinforcing a weak trend

or creating an opposite trend compared to the majority of the samples in the same class). All

the following models were calculated with missing value replaced data. Unsupervised model-

ing was followed by supervised modeling using orthogonal partial least squares-discriminant

analysis (OPLS-DA) [23]. OPLS-DA models were obtained to investigate the metabolite pro-

files related to chronic carriage for i) a three-class model with S. Typhi carriers, S. Paratyphi A

carriers, and non-carriage controls, ii) a combination of S. Typhi and S. Paratyphi A carriage
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samples compared to non-carriage controls, iii) separate models for S. Typhi and S. Paratyphi

A carriage samples compared to non-carriage controls and iv) for S. Typhi carriage samples

compared to S. Paratyphi A carriage samples. All data was centered and scaled to unit variance

and all OPLS-DA models were validated with a seven-fold cross-validation [24]. The multivar-

iate significance criterion was based on the latent significance concept recently developed in

our research group (Jonsson et al., submitted). The latent significance concept takes advantage

of the unique features of OPLS modeling to highlight significant metabolites. In OPLS, the var-

iation in the measured variables (here metabolite concentrations) can be divided into one part

related to the response of interest (here class information regarding carriage) and into one part

unrelated to the response. In the latent significance concept the orthogonal variation is sub-

tracted, creating latent model covariance loadings, wlatent, to be able to highlight metabolites

with a significant alteration only focusing on the response of interest. Univariate p-values were

calculated using the Mann-Whitney U-test and metabolites with p�0.05 were considered uni-

variate significant. The selection of significant metabolites was based on multivariate signifi-

cance only. To investigate how well metabolite patterns and the individual metabolites could

distinguish between the sample groups receiver operating characteristic (ROC) curves were

constructed. For the metabolite panels the cross-validated scores from the OPLS-DA models

were used to construct the ROC curves and for the individual metabolites the relative metabo-

lite concentrations were used. Area under the curve (AUC) values were calculated from the

ROC curves with values ranging from 0.5 to 1 (where 0.5 represents a random classifier and 1

represents a perfect classifier). The bootstrap percentile resampling method (using 1,000 boot-

strappings) was used to calculate 95% confidence intervals for the AUC values[25]. Modeling

was performed in SIMCA (version 14, Umetrics, Umeå, Sweden), ROC curve analysis was per-

formed in Matlab (R2014b, Mathworks, Natick, MA, USA) and figures were created in Graph-

Pad Prism (5.04; GraphPad Software Inc., La Jolla, CA, USA).

Comparison of metabolites

In order to compare the profiles during acute enteric fever and chronic carriage the metabo-

lites found to be significant for separating carriers from non-carriers in the current study were

compared to significant metabolites separating acute enteric fever samples from afebrile con-

trols in a previous study [16]. Initially, the mass spectra for the carriage samples were com-

pared to the acute enteric fever samples during the identification process to find matches

between both putatively identified and unidentified metabolites. The metabolites were then

compared by significance and direction of change to highlight both similarities and differences

between acute enteric fever and chronic carriage.

Results

Plasma metabolites in Salmonella carriers

Plasma samples from patients with confirmed S. Typhi (n = 12) and S. Paratyphi A (n = 5) gall-

bladder carriage together with control samples without gallbladder carriage of any bacteria

(n = 20) were analyzed by GCxGC-TOFMS (S1 File and S1 Table). This resulted in 691

detected peaks and after further investigation 195 putative metabolites were selected for down-

stream analysis. Exclusion was mainly associated with split peaks, low quality peaks or mass

spectra, peaks with a high correlation with run order, and deviation in quality control samples.

Of the selected peaks 69/195 (35.4%) had a putative annotation, 8/195 (4.1%) had an assigned

metabolite class, 18/195 (9.2%) were of uncertain identity, and 100/195 (51.3%) were of

unknown identity (S2 Table). Examining the raw processed data by principal component anal-

ysis (PCA) further revealed ten putative metabolites that had extremely high concentration
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levels in single samples, these metabolite concentrations were replaced by missing values to

avoid misclassification.

Metabolite profiles distinguishing Salmonella carriers from non-carriers

To identify metabolite profiles that may be associated with Salmonella carriage we used unsu-

pervised multivariate modeling and generated a primary PCA model of the 195 metabolites in

the 37 plasma samples. The model indicated a direction of separation of the non-carriage con-

trols from the S. Typhi and S. Paratyphi A carriage samples; this separation was chiefly along

the second principal component (S1A Fig and Table 1). We next applied supervised modeling

through OPLS-DA to further investigate the strength and details of the trend observed in the

PCA model. A three-class OPLS-DA model of S. Typhi carriers, S. Paratyphi A carriers, and

non-carriage controls was fitted to generate an overview of the relation between the sample

classes. The plasma samples from the Salmonella carriers were clearly segregated from the

non-carriage samples along the first component whilst the S. Paratyphi A carriage samples

were separated from the S. Typhi carriage samples along the second component (p = 0.0031)

(S1B Fig and Table 1). For a more detailed investigation of the metabolite profiles separating

the carriage samples from the non-carriage samples a two-class OPLS-DA model was gener-

ated with S. Typhi and S. Paratyphi A carriage samples combined in one class and non-carriage

controls in the other class. The metabolite profiles from the Salmonella carriage samples were

significantly divergent from the profiles of the non-carriage samples (p = 2.8�10−6) (Fig 1A

and Table 1).

Differentiating metabolites between S. Typhi and S. Paratyphi A carriers

We next segregated metabolite profiles generated in the Salmonella carriage plasma samples by

infecting organism and performed further pairwise OPLS-DA comparisons with the non-car-

riage controls. The models revealed that the S. Typhi carriage samples and the S. Paratyphi A

carriage samples were clearly segregated from the non-carriage controls (p = 3.1�10−5 and

Table 1. Multivariate model overview.

Modela Num. met.b Comp.c R2Xd R2Yd Q2d CV-ANOVAe AUC (95% CI)

CV-scoresf

PCA samples, before missing rep. 195 4 0.507 - 0.217 - -

PCA samples, after missing rep. 195 4 0.518 - 0.243 - -

3 classes (S. Typhi carriers vs. S. Paratyphi A carriers vs. non-carriage controls) 195 2+2 0.475 0.817 0.509 0.0031 -

Salmonella carriage vs. non-carriage controls 195 1+1 0.323 0.774 0.613 2.8�10−6 0.974 (0.921–1)

S. Typhi carriage vs. non-carriage controls 195 1+1 0.345 0.781 0.607 3.1�10−5 0.950 (0.864–1)

S. Paratyphi A carriage vs. non-carriage controls 195 1+1 0.234 0.921 0.630 3.7�10−4 0.990 (0.940–1)

S. Typhi carriage vs. S. Paratyphi A carriage 195 1+0 0.198 0.692 0.321 0.070 0.833 (0.524–1)

Salmonella carriage vs. non-carrier controls 5 1+0 0.417 0.635 0.604 1.4�10−7 0.935 (0.836–1)

a All models are two-class OPLS-DA models unless stated otherwise.
b Num. met.: The number of metabolites the model is based on.
c Comp: The number of predictive model components followed by the number of orthogonal model components.
d R2X: The amount of variation in X explained by the model, R2Y: The amount of variation in Y explained by the model, Q2: The amount of variation in Y predicted by

the model.
e CV-ANOVA: p-value based on cross-validated data showing the significance of the model.
f AUC (95% CI) CV-scores: Area under the curve (AUC) values for receiver operating characteristic (ROC) curves based on cross-validated scores (tcv) from the

OPLS-DA models. AUC values ranging between 0.5 and 1. 95% confidence intervals based on 1000 bootstrappings are given within parenthesis.

https://doi.org/10.1371/journal.pntd.0006215.t001
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Fig 1. Pairwise OPLS-DA models of Salmonella carriage and non-carriage control samples. Models based on 195 metabolites generated from GCxGC-TOFMS analysis

of plasma samples from patients in Nepal undergoing cholecystectomy. Panels A-D are showing cross-validated scores for the first predictive component (tcv[1]p) in the

respective OPLS-DA model (error bars: mean scores with 95% confidence intervals). S. Typhi carriage (n = 12), S. Paratyphi A carriage (n = 5), and non-carriage controls

(n = 20). (A) Salmonella carriage samples significantly separated from non-carriage controls (p = 2.8�10−6). (B) S. Typhi carriage samples separated from S. Paratyphi A

carriage samples (p = 0.070). (C) S. Typhi carriage samples significantly separated from non-carriage controls (p = 3.1�10−6). (D) S. Paratyphi A carriage samples

significantly separated from non-carriage controls (p = 3.7�10−4). Panels E-F are showing the distribution of the 195 metabolites using model covariance loadings for the

first predictive component (w�[1]) in the respective OPLS-DA model. (E) More metabolites shifted towards higher relative concentration in non-carriage controls

compared to S. Typhi carriage samples. (F) Metabolites more equally distributed between the S. Paratyphi A carriage samples and the non-carriage controls. Additional

model information is shown in Table 1.

https://doi.org/10.1371/journal.pntd.0006215.g001
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p = 3.7�10−4, respectively) (Fig 1C and 1D and Table 1), as indicated in the combined S. Typhi

and S. Paratyphi A model. Further investigation of the metabolite distributions (using the

model covariance loadings for the first OPLS-DA component w�[1]) highlighted a shift of

metabolites towards the non-carriage control group in the S. Typhi model (Fig 1E) (i.e. more

metabolites with a higher relative concentration in the non-carriage group than in the S. Typhi

group). Notably, this pattern was not observed in the S. Paratyphi A carriage model, in which

the metabolites were more evenly distributed, although the S. Paratyphi A group was com-

prised of few samples (Fig 1F). The three-class OPLS-DA model, together with the different

appearance of the model covariance loadings of the S. Typhi and S. Paratyphi A models, indi-

cated potential differences between metabolite profiles in the S. Typhi carriage samples and S.

Paratyphi A carriage samples. Therefore, we generated an OPLS-DA model comparing the

metabolite profiles between the S. Typhi and S. Paratyphi A carriers. This analysis resulted in a

weaker model for the identification of differences in metabolite profiles between the two Sal-
monella serovars during carriage (p = 0.07) (Fig 1B and Table 1).

Further investigation of metabolite patterns during Salmonella carriage

To further investigate the diagnostic potential of the metabolite patterns and the individual

metabolites ROC curves were constructed. ROC curves for the metabolite patterns based on

the cross-validated scores from the pairwise OPLS-DA models are shown in Fig 2. For all pair-

wise OPLS-DA models comparing Salmonella carriage samples and non-carriage controls

(with S. Typhi and S. Paratyphi A carriage samples combined or separated) the ROC curves

indicated strong diagnostic potential with AUC values� 0.95 (Fig 2A–2C). The weaker

OPLS-DA model obtained when comparing S. Typhi and S. Paratyphi A carriage samples

resulted in a ROC curve with an AUC value of 0.833 (Fig 2D). Focusing only on the compari-

son between the combined Salmonella carriage samples and the non-carriage controls ROC

curves were constructed for each of the 195 metabolites (included in the OPLS-DA model)

based on the relative metabolite concentrations. AUC values from these ROC curves are listed

in S2 Table. None of the individual metabolites had an AUC value as high as or higher than

the AUC value for the metabolite pattern (Fig 2A).

Comparison of acute enteric fever and chronic carriage

In a prior study we investigated metabolites associated with acute enteric fever in patients with

culture-confirmed acute S. Typhi infections, S. Paratyphi A infections, and afebrile controls

[16]. Using these existing data, we compared the metabolite profiles related to acute enteric

fever and chronic carriage; both conducted in the same setting in Nepal. As our aim was to seg-

regate Salmonella carriers from non-carriers, we used models where S. Typhi and S. Paratyphi

A infections were combined and compared to controls (non-carriage controls from the cur-

rent investigation and afebrile controls from the former investigation) to identify significant

metabolites differentiating between the sample groups. The resulting metabolite comparison is

summarized in Fig 3A (S3 Table). Investigating comparable metabolites between acute enteric

fever and chronic carriage highlighted three metabolites that were increased in the S. Typhi/S.

Paratyphi A group; seven were increased in the control group. However, there were more

metabolites with different directions of change in acute infection and carriage with 16 metabo-

lites increased in the S. Typhi/S. Paratyphi A group in acute infection. Notably, we observed a

substantial number of metabolites that were significantly different in only acute infection or

carriage respectively. Of particular interest were five metabolites (glutaric acid, hexanoic acid,

and three metabolites with unknown identity) that were elevated in the S. Typhi/S. Paratyphi

A group in the carriage samples only (Fig 3B). These metabolites were potentially differential
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and may have utility for prospectively identifying Salmonella carriers. Using these five metabo-

lites to calculate an OPLS-DA model for Salmonella carriage in comparison to the non-

Fig 2. ROC curves for metabolite patterns in OPLS-DA models of Salmonella carriage and non-carriage control samples. Panels A-D are showing ROC curves with

false positive rates (i.e. 1-specificity) and true positive rates (i.e. sensitivity) on the x- and y-axes respectively. The ROC curves are constructed from cross-validated scores

(tcv) from pairwise OPLS-DA models based on 195 metabolites. AUC values are presented along with 95% confidence intervals. (A) Salmonella carriage samples

compared to non-carriage controls, AUC = 0.974 (0.921–1). (B) S. Typhi carriage samples compared to S. Paratyphi A carriage samples, AUC = 0.833 (0.524–1). (C) S.

Typhi carriage samples compared to non-carriage controls, AUC = 0.950 (0.864–1). (D) S. Paratyphi A carriage samples compared to non-carriage controls, AUC = 0.990

(0.940–1).

https://doi.org/10.1371/journal.pntd.0006215.g002
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carriage samples resulted in a significant separation between the groups (p = 1.4�10−7) (Fig 3C

and Table 1). A ROC curve constructed using the cross-validated scores from this five metabo-

lite OPLS-DA model indicated that the strong diagnostic potential for distinguishing between

Fig 3. Comparison of metabolites between acute enteric fever and chronic carriage. (A) Venn diagram of metabolites significant in OPLS-DA models separating

Salmonella carriage samples from non-carriage controls and patients with acute S. Typhi or S. Paratyphi A infections from afebrile controls. Metabolites with the same

direction of change in chronic and acute infection are shown in the overlapping circles while metabolites with different direction are shown in the overlapping ellipses and

metabolites only significant in one infection stage are shown in the reminder part of the circle. The numbers after the plus sign represent metabolites that are not present

in the acute infection dataset. (B) Table of metabolites only significant in chronic infection having a higher relative concentration in the S. Typhi/S. Paratyphi A carriage

group compared to non-carriage controls. a RT1: 1st dim. retention time (s), RT2: 2nd dim. retention time (s) and RI: retention index. b Direction: direction of change in

relative metabolite concentration; metabolites having higher relative concentration in the S. Typhi/S. Paratyphi A group marked with T/P, non-significant metabolites

marked with n.s. and metabolites not present marked with -. (C) Cross-validated scores for the first predictive component (tcv[1]p) in an OPLS-DA model based on the

five metabolites highlighted in B and showing the separation of Salmonella carriage samples (S. Typhi carriage–n = 12 and S. Paratyphi A carriage–n = 5) from non-

carriage controls (n = 20) but with overlap of four Salmonella carriage samples (p = 1.4�10−7). Error bars represent mean score values with 95% confidence intervals.

Additional model information is shown in Table 1. (D) ROC curve with false positive rates (i.e. 1-specificity) and true positive rates (i.e. sensitivity) on the x- and y-axes

respectively. The ROC curve was constructed with cross-validated scores (tcv) from the pairwise OPLS-DA model comparing Salmonella carriage samples and non-

carriage controls based on five metabolites. AUC value with 95% confidence interval: 0.935 (0.836–1).

https://doi.org/10.1371/journal.pntd.0006215.g003
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Salmonella carriers and non-carriage controls was maintained using only these five metabolites

(Fig 3D). This ROC curve had an AUC value (0.935) that was higher than any of the AUC val-

ues from ROC curves of the five individual metabolites (S2 Fig and S2 Table).

Discussion

Typhoid carriage remains one of greatest enigmas in infectious disease research. Due to the

imperceptible nature of carriers the mechanisms and precise epidemiological role of S. Typhi

carriage in humans are poorly defined. However, carriers are thought to be essential for disease

maintenance and may be important for generating new genotypes. Therefore, prospectively

detecting carriers is a key objective in regional enteric fever elimination. Here we employed

metabolomics and chemometric bioinformatics to analyze plasma samples from patients in

Nepal undergoing cholecystectomy that were confirmed carriers of S. Typhi or S. Paratyphi A.

Using this patient population in an endemic enteric fever area we were able to generate meta-

bolomic biomarker profiles indicative of Salmonella carriage. The descriptive nature of the

study makes it difficult to reveal what the detected metabolite profiles physiologically reflect.

However, notable patterns with diagnostic potential were identified and some of these aspects

will be discussed.

By exploiting specific metabolite profiles we were able to separate Salmonella carriers from

non-carriers in a multivariate model. Further, segregating the carriage group into S. Typhi car-

riers and S. Paratyphi A carriers and comparing them independently to non-carriage controls

generated an equivalent separation of the two carriage groups from non-carriage controls.

Notably, metabolite profiles, as appose to individual metabolites, showed greater diagnostic

potential (in terms of AUC values for ROC curves). In addition, differences in the distribution

of the metabolites between the two models were highlighted. We observed that the majority of

the metabolites had a lower relative concentration in the S. Typhi carriage samples than the

non-carriage controls. We are uncertain of the precise reason for a relative reduction in metab-

olite concentrations in the carriers compared to the controls, but speculate that this is evidence

of S. Typhi controlling the inflammatory response. S. Typhi is a covert pathogen that has the

ability to hide from the immune system and regulate inflammation during infection [26]. The

Vi capsule polysaccharide, which protects outer membrane proteins from immunological

interactions, likely controls much of this immune regulation [27,28]. During chronic carriage

S. Typhi is within a protected, immune-privileged environment inside the gallbladder, and

provoking an inflammatory response is incompatible with long-term persistence. Our data are

consistent with S. Typhi manipulating systemic inflammatory responses during carriage, indi-

cating that S. Typhi is perfectly adapted for long-term persistence in the gallbladder. Further-

more, S. Paratyphi A does not express the Vi polysaccharide and does not, therefore, regulate

the inflammatory response in the same manner; the trend of increased metabolite concentra-

tions in the non-carriage controls was not observed in the S. Paratyphi A model. Our data

additionally indicated differences in metabolite profiles between S. Typhi and S. Paratyphi A

carriers, but these differences were weaker than those observed between carriers and non-car-

riage controls. Although the key aim of this study was to differentiate carriers from non-carri-

ers, distinguishing S. Typhi carriers from S. Paratyphi A carriers may be relevant in disease

epidemiology and for studying the carriage mechanisms of these two organisms.

There is a need for improved diagnostic methods for acute enteric fever and chronic car-

riage; therefore we additionally compared the metabolite profiles between chronic carriers and

acute enteric fever cases. We identified a greater number of differences than similarities in

metabolite profiles between the acute infection and chronic carriage. Among the differences

there were metabolites with a different direction of change in both conditions and also
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metabolites found significant in one of the two disease stages only. In identifying diagnostic

biomarkers with the potential for prospectively detecting S. Typhi and S. Paratyphi A carriers,

the most suitable candidates are metabolites with a higher concentration in carriers than non-

carriers (more appropriate for point-of-care test development), and not relevant during acute

infection. We identified five metabolites, including glutaric acid and hexanoic acid, which ful-

filled these criteria. The profile of these five combined metabolites exhibited a stronger diag-

nostic potential in comparison to the five individual metabolites, highlighting the utility of

using a combination of metabolite markers. We are uncertain of the relevance of these carbox-

ylic acids, but these chemicals have antibacterial properties [29] and may be the result of

altered gut microbiome substrate fermentation. Short-chain fatty acids, including hexanoic

acid, are major fermentation products of the gut microbiome and concentrations can fluctuate

by a shift in the composition of the gut microbiome [30–32]. Similarly, the same phenomenon

can induce an increased catabolism of amino acids, resulting in an increase in the concentra-

tion of glutaric acid. It is speculative, but Salmonella spp. have been shown to alter the gut

microbiome in murine models of infection [33,34]. The increase in hexanoic acid and glutaric

acid observed during Salmonella carriage was not observed during acute enteric fever, suggest-

ing that the release of organisms from the gallbladder into the duodenum may impact on the

gastrointestinal microbiota. However, whether this discrepancy is a result of Salmonella associ-

ated alterations of the gut microbiome arising during the two disease stages or due to other

metabolic processes remains unclear.

The major limitation of this study was the small sample size, which was difficult to over-

come given the ethical, surgical, and diagnostic issues of identifying and confirming invasive

Salmonella carriers. We suggest that resulting metabolite profiles should be validated in an

additional, independent cohort. However, this was not possible in this setting due to the fac-

tors stated above. Furthermore, as all patients included in this study presented with gallbladder

conditions we cannot rule out that the primary cause for the cholecystectomy may impact on

the metabolite signatures. However, the surgical conditions were comparable for both carriers

and non-carriers and, as there is a known association between Salmonella carriage and chole-

cystitis [35] there is significant value in investigating carriage in this patient cohort. The non-

carrier controls included in this study were culture-negative, meaning that there was no

growth of any bacteria in their bile. It would be of additional interest to include controls with

gallbladder carriage of other bacteria in this comparison to be able to demonstrate that these

metabolite are truly Salmonella-specific. Further studies in alternative endemic enteric fever

populations are required to investigate the metabolite markers associated with S. Typhi and S.

Paratyphi A carriage. If a set of metabolite markers for Salmonella carriage passes a further rig-

orous validation the next challenge is to convert this diagnostic panel into an accurate and

inexpensive test suitable for use in resource-limited areas. An important feature of such a test

is simultaneous detection of multiple biomarkers. A recent review summarizes current advan-

tages in the field of multiplexed point-of-care testing[36]. In general, differing microfluidic

techniques have great potential for such multiplexing, although many challenges remain. One

promising example shows the measurement of three metabolites in human serum using

microfluidic paper-based analytical devices[37].

In conclusion, our novel approach highlights the potential of using metabolomics to search

for diagnostic markers of chronic Salmonella carriage. We identified metabolite patterns signi-

fying carriage of S. Typhi and S. Paratyphi A in the gallbladder among a cohort of patients

with cholelithiasis in Nepal. These findings are encouraging in the search for a diagnostic assay

that may be able to access the reservoirs of S. Typhi and S. Paratyphi A carried asymptomati-

cally within human populations.

Salmonella carriage biomarkers

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006215 January 26, 2018 12 / 15

https://doi.org/10.1371/journal.pntd.0006215


Supporting information

S1 Fig. Unsupervised modeling and multi-class supervised modeling of Salmonella carriers

and non-carriage controls. Scores for the two first components (t[1] and t[2]) in models

based on 195 metabolites generated from GCxGC-TOFMS analysis of plasma samples from

patients in Nepal undergoing cholecystectomy. Sample numbers: S. Typhi carriage–n = 12, S.

Paratyphi A carriage–n = 5 and non-carriage control–n = 20. (A) PCA scores showing the dis-

tribution of the three sample groups, S. Typhi carriage, S. Paratyphi A carriage, and non-car-

riage controls with an indication of separation of non-carriage controls from the Salmonella
carriage samples. (B) OPLS-DA scores showing the separation of non-carriage controls from

the Salmonella carriage samples along the first component and the separation of S. Typhi car-

riage samples from the S. Paratyphi A carriage samples along the second component

(p = 0.0031). Additional model information is shown in Table 1.

(TIF)

S2 Fig. ROC curves for five individual metabolites significant during Salmonella carriage.

Panels A-E are showing ROC curves with false positive rates (i.e. 1-specificity) and true posi-

tive rates (i.e. sensitivity) on the x- and y-axes respectively. The ROC curves are constructed

from relative metabolite concentrations comparing Salmonella carriage samples to non-car-

riage controls. AUC values are presented along with 95% confidence intervals. (A) Hexanoic

acid (Caproic acid), AUC = 0.841 (0.680–0.968). (B) Unknown_087, AUC = 0.697 (0.521–

0.864). (C) Unknown_118, AUC = 0.756 (0.589–0.904). (D) Glutaric acid, AUC = 0.774

(0.565–0.887). (E) Unknown_399, AUC = 0.876 (0.726–1).

(TIF)

S1 File. Patient information.

(XLSX)

S1 Table. Patient group metadata.

(DOCX)

S2 Table. Detected metabolites in plasma samples of Salmonella carriers analyzed with

GCxGC-TOFMS.

(DOCX)

S3 Table. Comparison of metabolites between acute enteric fever and chronic carriage.

(DOCX)
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receptor 4 recognition of Salmonella. Cell Microbiol. 2008; 10: 876–890. https://doi.org/10.1111/j.1462-

5822.2007.01090.x PMID: 18034866

29. Vázquez JA, Durán A, Rodrı́guez-Amado I, Prieto MA, Rial D, Murado MA. Evaluation of toxic effects of

several carboxylic acids on bacterial growth by toxicodynamic modelling. Microb Cell Factories. 2011;

10: 100. https://doi.org/10.1186/1475-2859-10-100

30. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003; 62:

67–72. https://doi.org/10.1079/PNS2002207 PMID: 12740060

31. Krajmalnik-Brown R, Ilhan Z-E, Kang D-W, DiBaise JK. Effects of Gut Microbes on Nutrient Absorption

and Energy Regulation. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr. 2012; 27: 201–214.

https://doi.org/10.1177/0884533611436116

32. Ktsoyan ZA, Mkrtchyan MS, Zakharyan MK, Mnatsakanyan AA, Arakelova KA, Gevorgyan ZU, et al.

Systemic Concentrations of Short Chain Fatty Acids Are Elevated in Salmonellosis and Exacerbation of

Familial Mediterranean Fever. Front Microbiol. 2016; 7. https://doi.org/10.3389/fmicb.2016.00776

33. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, et al. Salmonella enterica

Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biol. 2007;

5. https://doi.org/10.1371/journal.pbio.0050244

34. Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol.

2011; 2. https://doi.org/10.3389/fmicb.2011.00101

35. Vaishnavi C, Kochhar R, Singh G, Kumar S, Singh S, Singh K. Epidemiology of Typhoid Carriers

among Blood Donors and Patients with Biliary, Gastrointestinal and Other Related Diseases. Microbiol

Immunol. 2005; 49: 107–112. https://doi.org/10.1111/j.1348-0421.2005.tb03709.x PMID: 15722595

36. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed Point-of-Care Testing–xPOCT. Trends

Biotechnol. 2017; 35: 728–742. https://doi.org/10.1016/j.tibtech.2017.03.013 PMID: 28456344

37. Dungchai W, Chailapakul O, Henry CS. Electrochemical detection for paper-based microfluidics. Anal

Chem. 2009; 81: 5821–5826. https://doi.org/10.1021/ac9007573 PMID: 19485415

Salmonella carriage biomarkers

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006215 January 26, 2018 15 / 15

https://doi.org/10.1371/journal.pone.0013988
https://doi.org/10.1371/journal.pone.0047342
http://www.ncbi.nlm.nih.gov/pubmed/23077595
https://doi.org/10.1021/ac051211v
https://doi.org/10.1021/ac051211v
http://www.ncbi.nlm.nih.gov/pubmed/16351159
https://doi.org/10.1021/ac050601e
http://www.ncbi.nlm.nih.gov/pubmed/16131076
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1002/cem.1006
https://doi.org/10.1002/cem.1006
https://doi.org/10.2307/1267639
https://doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://www.ncbi.nlm.nih.gov/pubmed/10797513
https://doi.org/10.1146/annurev-micro-091313-103739
http://www.ncbi.nlm.nih.gov/pubmed/25208300
https://doi.org/10.1371/journal.ppat.1002131
http://www.ncbi.nlm.nih.gov/pubmed/21829346
https://doi.org/10.1111/j.1462-5822.2007.01090.x
https://doi.org/10.1111/j.1462-5822.2007.01090.x
http://www.ncbi.nlm.nih.gov/pubmed/18034866
https://doi.org/10.1186/1475-2859-10-100
https://doi.org/10.1079/PNS2002207
http://www.ncbi.nlm.nih.gov/pubmed/12740060
https://doi.org/10.1177/0884533611436116
https://doi.org/10.3389/fmicb.2016.00776
https://doi.org/10.1371/journal.pbio.0050244
https://doi.org/10.3389/fmicb.2011.00101
https://doi.org/10.1111/j.1348-0421.2005.tb03709.x
http://www.ncbi.nlm.nih.gov/pubmed/15722595
https://doi.org/10.1016/j.tibtech.2017.03.013
http://www.ncbi.nlm.nih.gov/pubmed/28456344
https://doi.org/10.1021/ac9007573
http://www.ncbi.nlm.nih.gov/pubmed/19485415
https://doi.org/10.1371/journal.pntd.0006215

