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Introduction
Cerebral palsy is a group of chronic nonprogressive dis-
orders characterized by aberrant posture and movements 
caused by abnormal brain development or injury. Cerebral 
palsy occurs in 1–3% of live newborns, and in high-risk ba-
bies such as those with very low birth weight, the incidence is 
increased to 8–40% (Bosanquet et al., 2013). The combined 
motor, sensory, cognitive and occupational impairments 
caused by cerebral palsy may lead to substantial social and 
economic burdens to the families, health care systems, and 
communities of these individuals.

Currently, therapies for cerebral palsy patients are limited 
to supportive interventions (Ruff et al., 2013). Recently, stem 
cell therapies have been investigated as possible new treat-
ment modalities for neuronal repair in young patients with 

cerebral palsy, and bone marrow- or cord blood (CB)-derived 
mesenchymal stem cells (MSCs) are the most commonly 
used sources of cellular therapy. The potential of mobilized 
peripheral blood mononuclear cells (mPBMCs) as a MSC 
source has also been suggested (Deng et al., 2011). Although 
not fully understood, the clinical effects of MSCs seem to 
stem from indirect paracrine effects rather than from direct 
cellular effects or neuronal regeneration (Seo et al., 2012). CB 
mononuclear cells (CB-MNCs) without any manipulation 
have been also used in place of MSCs. CB cell therapies can be 
considered an optimal stem cell source for regenerative med-
icine due to their potential to develop into any tissue in the 
body. In human clinical trials using autologous CB in cerebral 
palsy patients, improvement in gross motor function and 
neurological impairments without critical side effects have 
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been reported (Harris et al., 2009; Papadopoulos et al., 2011; 
Lee et al., 2012). CB-MNCs express neurotrophic factors and 
produce cytokines that play critical roles in repairing brain 
damages associated with cerebral palsy (Fan et al., 2005). 

Granulocyte-colony stimulating factor (G-CSF) is widely 
used for the treatment of neutropenia and has also been 
used for hematopoietic stem cell mobilization in autologous 
and allogeneic transplantation without serious side effects 
(Pulsipher et al., 2006). In addition, it has been suggested 
that G-CSF is an endogenous ligand that counteracts pro-
grammed cell death and precipitates neurogenesis (Schnei-
der et al., 2005). These functions of G-CSF in the central 
nervous system could be explained by autocrine signaling 
by neuroprotective factors such as brain-derived neuro-
trophic factor (BDNF), vascular endothelial growth factor 
(VEGF), and erythropoietin (Kokaia et al., 1993; Shingo et 
al., 2001; Ogunshola et al., 2002). Therefore, G-CSF could 
be safely used for treating cerebral palsy in children when 
administered to mobilize bone marrow stem cells to the 
peripheral circulation, making mobilized peripheral blood 
stem cells, that is, mPBMCs a possible alternative source 
of cellular therapy. In a previous study, we performed a 
clinical trial for mPBMC collections from cerebral palsy 
patients; our data supported the safety and feasibility of 
mPBMCs isolated from cerebral palsy children (Moon et 
al., 2013).

While previous studies have investigated the cytokines and/
or neurotrophic factors of MSCs derived from CB or mPB-
MCs (Urdzikova et al., 2006; Zhang et al., 2011), and pro- and 
anti-inflammatory cytokines may have a large impact on the 
neurological outcome of patients (Moghaddam et al., 2015), 
to our knowledge there have been no comparative studies 
between MNC of CB and mPBMCs. To investigate possible 
therapeutic treatments using mPBMCs for cell therapy in the 
field of neurological disorders and also to reveal the possible 
role of G-CSF for neuroprotection, we compared the expres-
sion of inflammatory cytokines and neurotrophic factors in 
PBMCs (PBMCs means circulating mononuclear cells in the 
peripheral blood before G-CSF injection) and mPBMCs from 
cerebral palsy children and healthy adult donors and in the 
CBs donated from healthy newborns. 

Materials and Methods
Sample preparation and study design
CB, which had been cryopreserved for research use as mono-
nuclear cell fractions after depletion of red blood cells and 
plasma by density gradient method, was supplied from the 
Public Cord Blood Bank at Cha University Hospital, Seoul, 
Republic of Korea. The CB fulfilled the criteria for research 
use as defined by the Cord Blood Management and Research 
Act, Republic of Korea (Lee, 2010). 

Samples from healthy adults were obtained from volunteer 
donors who donated their peripheral blood stem cells after 
informed consent and permission from the Korea Marrow 
Donor Program. Blood samples from cerebral palsy children 
were obtained from participants in a clinical research trial 
involving mPBMC therapy for cerebral palsy children, which 

was approved by the Institutional Review Board of Hanyang 
University Hospital (HYUH IRB 2011-C-21) in the Re-
public of Korea and in compliance with the World Medical 
Association outlined in the Declaration of Helsinki. PBMCs 
were separated from the peripheral venous blood using a 
Ficoll-Paque (GE Healthcare, Uppsala, Sweden) density gra-
dient method (Fuss et al., 2009) and collected via a central 
venous catheter prior to apheresis from 14 cerebral palsy 
children and 14 healthy adult volunteers. 

mPBMCs were harvested from the apheresed products us-
ing a blood cell separator (CS3000®, Baxter Healthcare Corp., 
Deerfield, IL, USA) on the 5th day after 5 consecutive days of 
10 μg of intravenous or subcutaneous G-CSF (Leucostim®, 
Dong-a ST, Seoul, Korea) treatment. Thereafter, mPBMCs 
were prepared by red blood cell lysis using lysis buffer (BD, 
San Diego, CA, USA) from an aliquot of apheresed prod-
ucts. Separated PBMCs and mPBMCs were cryopreserved at 
–196°C for over 3 months and then analyzed after thawing. 

We compared the intracellular expression of five neuro-
trophic factors (BDNF, gial cell-derived neurotrophic factor 
[GDNF], G-CSF, VEGF, insulin like growth factor [IGF]-1) 
and seven inflammatory cytokines (tumor necrosis factor 
[TNF]-α, interleukin [IL]-1β, IL-2, IL-3, IL-6, IL-8, IL-9) 
with flow cytometry analysis from each sample. This study 
was approved by the Institutional Review Board of Hanyang 
University (HYI-11-013-1).

Total nucleated cell (TNC)/CD34+ cell count and viability
The TNC count was measured using a Sysmex K-800 (Sys-
mex Corporation, Kobe, Japan) automated cell counter. For 
CD34+ cell count, isolated MNCs were stained with CD34 
antibodies and analyzed with Lysys II software flow cytom-
etry (BD, San Jose, CA, USA). Cell viability of pre-freezing 
and post-thawing was measured by trypan blue staining 
(Xiao et al., 2003). 

Intracellular staining
Cells were stimulated to express cytokines by 100 ng/mL 
lipopolysaccharide or 50 ng/mL phorbol 12-myristate 13-ac-
etate and 1 μg/mL ionomycin for 6 or 24 hours. In order to 
accumulate the cytokines within the cells, protein secretion 
needed to be inhibited by addition of protein scretion-in-
hibiting reagents during the stimulation. Therefore, cells 
were cultured in a 37°C CO2 incubator with 0.667 μL per 
well of Becton-Dickinson (Franklin Lakes, NJ) golgistop 
protein transport inhibitor (containing monensin). After in-
cubation, cells were transferred to a 5 mL polystyrene round 
bottom tube, and 250 μL of fixation/permeabilization solu-
tion was added to each well and incubated for 20 minutes 
at 4°C. Harvested cells were washed twice with 1 mL of 1X 
BD Perm/Wash buffer and centrifuged at 100 × g at 20°C for 
5 minutes. After removing the supernatant, fixed/permea-
bilized cells were resuspended in 200 μL of BD Perm/Wash 
buffer containing a PE-conjugated antibody (BDNF, GDNF, 
G-CSF, VEGF, IGF-1, TNF-α, IL-1β, IL-2, IL-3, IL-6, IL-8, IL-
9) at pre-determined optical concentrations and appropriate 
isotype control, and incubated at 4°C for 30 minutes in the 
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dark. Samples were then prepared for flow cytometric analy-
sis after washing. 

Flow cytometry analysis
Flow cytometry was used to divide the cell population by rel-
ative size and either relative granularity or internal complex-
ity into four fractions: P1, P2, P3 and P10 (Figure 1). Since 
a large number of dead cells were observed in the P1 and 
P3 fractions by staining with propidium iodide, they were 
gated out, and only the P2 and P10 fractions were analyzed. 
Samples were run using a FACS Canto II (BD) with FACS 
Diva Software (BD, Franklin Lakes, NJ, USA) that was set 
to acquire 10,000 events in a tight side scatter and forward 
scatter. The expression of cytokines was determined by the 
percentage of positive stains of each monoclonal antibody. 
The degree of auto-fluorescence and non-specific binding of 
antibodies was determined with an isotype control (Freer et 
al., 2013). 

Figure 2 Differences of cytokine expression in mPBMCs and PBMCs in children with cerebral palsy. 
The expression of IL-6 was significantly increased in mPBMCs (n = 14) than in PBMCs (n = 14, P = 0.035), and IL-3 was significantly decreased 
in mPBMCs as compared to PBMCs (P = 0.048). The Wilcoxon signed-rank test, Kriskal-Wallis tests and Mann Whitney U test were used for in-
ter-group comparisons. All statistical analyses were conducted using IBM SPSS software. The data were expressed as the mean ± SD and *P < 0.05. 
BDNF: Brain-derived neurotrophic factor; GDNF: glial cell-derived neurotrophic factor; G-CSF: granulocyte-colony stimulating factor; VEGF: vas-
cular endothelial growth factor; IGF-1: insulin-like growth factor-1; TNF-α: tumor necrosis factor alpha; IL: interleukin; PBMC: peripheral blood 
mononuclear cell; mPBMC: mobilized peripheral blood mononuclear cell.

Figure 1 Cell population of mobilized peripheral blood mononuclear 
cells in children with cerebral palsy.
Dot plots show a gating strategy for four fractions: A large number of 
dead cells were observed in the P1 and P3 fractions, and only the P2 
and P10 fractions were aralyzed. For this analysis, 10,000 cells were ac-
quired. FSC: forward scatter; SSC: side scatter.

Table 1 Number and viability of PBMCs and mPBMCs from children with cerebral palsy, healthy adults and CB-MNCs

PBMCs (n = 14) mPBMCs (n = 14)
CB-MNCs 
(n = 14)Cerebral palsy children Healthy adults P Cerebral palsy children Healthy adults P

TNC (× 105/μL) 0.07±0.01 0.05±0.01 0.003 2.55±2.10 9.43±3.13 0.001 0.14±0.01

Viability before freezing (%) 98±2 97±2 > 0.05 98±1 88±2 0.001 97±2

Viability after thawing (%) 90±19 93±6 > 0.05 81±17 59±9 0.003 90±3

CD34 (× 103/μL) 1.51±1.71 5.60±3.11 0.002

PBMCs: Peripheral blood mononuclear cells; mPBMCs: mobilized peripheral blood mononuclear cells; CB-MNCs: cord blood mononuclear cells; 
TNC: total nucleated cell.
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Figure 3 Differences in cytokine expression in mPBMCs and PBMCs from healthy adults. 
The expression of IL-1β (P = 0.048) and IL-6 (P = 0.006) was significantly increased in mPBMCs (n = 14) than in PBMCs (n = 14). The Wilcoxon 
signed-rank test, Kriskal-Wallis test and Mann Whitney U test were used for intergroup comparisons. All statistical analyses were conducted using 
IBM SPSS software. The data were expressed as the mean ± SD and *P < 0.05. BDNF: Brain-derived neurotrophic factor; GDNF: glial cell-derived 
neurotrophic factor; G-CSF: granulocyte-colony stimulating factor; VEGF: vascular endothelial growth factor; IGF-1: insulin-like growth factor-1; 
TNF-α: tumor necrosis factor alpha; IL: interleukin; PBMC: peripheral blood mononuclear cell; mPBMC: mobilized peripheral blood mononucle-
ar cell.

Figure 4 Cytokine profiles of CB and mPBMCs in CP children versus healthy adults.
The expression of BDNF was significantly increased in mPBMCs (n = 14) from CP children as compared to either mPBMCs (n = 14) from healthy 
adults (P = 0.027) or CBs (n = 14, P = 0.035). The expression of G-CSF was significantly increased in mPBMCs from CP children as compared to 
mPBMCs from healthy adults (P = 0.001) and was significantly increased in CBs as compared to mPBMCs of healthy adults (P = 0.002). The ex-
pression of IL-1β was significantly increased in mPBMCs from healthy adults as compared to mPBMCs of CP children (P = 0.001) and in the CB 
(P < 0.0001). The expression of IL-8 was significantly increased in mPBMCs from CP children as compared to that in healthy adults (P = 0.012) 
and was also significantly increased in the CB as compared to mPBMCs from healthy adults (P = 0.044). The expression levels of IL-3 (P = 0.004) 
and IL-6 (P = 0.031) were significantly increased in mPBMCs of healthy adults as compared to those in the CB. IL-9 was significantly increased in 
mPBMCs from the CB as compared to that in healthy adults (P = 0.014). The Wilcoxon signed-rank test, Kriskal-Wallis test and Mann Whitney U 
test were used for intergroup comparisons. All statistical analyses were conducted using IBM SPSS software. The data were expressed as the mean ± 
SD and *P < 0.05. BDNF: Brain-derived neurotrophic factor; GDNF: glial cell-derived neurotrophic factor; G-CSF: granulocyte-colony stimulating 
factor; VEGF: vascular endothelial growth factor; IGF-1: insulin-like growth factor-1; TNF-α: tumor necrosis factor alpha; IL: interleukin; PBMC: 
peripheral blood mononuclear cell; mPBMC: mobilized peripheral blood mononuclear cell; CP: cerebral palsy; CB: cord blood.
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Statistical analysis
Each value was described as the median value with stan-
dard deviation and range. The Wilcoxon signed-rank test, 
Kriskal-Wallis test and Mann-Whitney U test were used 
for intergroup comparisons. All statistical analyses were 
conducted using IBM SPSS software (version 21; IBM Co., 
Armonk, NY, USA). P values < 0.05 were considered as sta-
tistically significant.

Results
Number and viability of PBMCs, mPBMCs and CB-MNCs 
We compared the number and viability just between PB-
MCs and mPBMCs because the comparison of the number 
of CB-MNCs and PBMCs or mPBMCs was not appropri-
ate. The median number of TNC and their viabilities in 
PBMCs in cerebral palsy children were comparable to those 
of healthy adults. However, TNC count (P = 0.001) and 
CD34+ cell count (P = 0.002) of mPBMCs were significant-
ly higher in healthy adults than in cerebral palsy children 
(Table 1). Conversely, mPBMC viabilities before freezing 
(P = 0.001) and after thawing (P = 0.003) were higher in 
mPBMC from cerebral palsy children than in those from 
healthy adults (Table 1).

Differences in cytokine expression between mPBMCs 
and PBMCs in children with cerebral palsy and in healthy 
adults
No significant differences in the expression of neurotrophic 
factors were found between PBMCs and mPBMCs. How-
ever, in cerebral palsy children, the expression of IL-6 was 
increased in mPBMCs over PBMCs (P = 0.035), and IL-3 was 
significantly decreased in mPBMCs as compared to PBMCs (P 
= 0.048) (Figure 2). In healthy adults, the expression levels of 
both IL-1β (P = 0.048) and IL-6 (P = 0.006) were significantly 
increased in mPBMCs as compared to PBMCs (Figure 3).

Comparison of cytokine profiles between CB and
mPBMCs of cerebral palsy children and healthy adults 
The expressions of most cytokines in mPBMCs of cerebral 
palsy children were comparable to those in healthy donated 
CBs and adult volunteers (Figure 4). However, the expres-
sion of BDNF was significantly increased in mPBMCs from 
cerebral palsy children as compared to either mPBMCs 
from healthy adults (P = 0.027) or CBs (P = 0.035). The ex-
pression of G-CSF was significantly increased in mPBMCs 
from cerebral palsy children as compared to mPBMCs from 
healthy adults (P = 0.001) and was significantly increased 
in the CB as compared to mPBMCs of healthy adults (P = 
0.002). The expression of IL-1β was significantly increased 
in mPBMCs from healthy adults as compared to mPBMCs 
of cerebral palsy children (P = 0.001) and in the CB (P < 
0.0001). The expression of IL-8 was significantly increased 
in mPBMCs from cerebral palsy children as compared to 
that in healthy adults (P = 0.012) and was also significantly 
increased in the CB as compared to mPBMC from healthy 
adults (P = 0.044). The expression levels of IL-3 (P = 0.004) 
and IL-6 (P = 0.031) were significantly increased in mPB-

MCs of healthy adults as compared to those in the CB. IL-9 
was significantly increased in mPBMCs from the CB as com-
pared to that in healthy adults (P = 0.014). 

Discussion
Stem cell therapy has been proven effective for improving 
neuronal recovery in both animal models and human trials 
(Chicha et al., 2013). Among a series of stem cell sources 
used to repair neurological diseases, intravenous adminis-
tration of autologous CB has been used to try to counteract 
neurological injuries and impairments. CB-MNCs are a 
rich source of stem cells and are easy to obtain by nonin-
vasive procedures. It induces neurotrophic factor produc-
tion, which may remove abnormal synapses from damaged 
neurons and guide the formation of newly formed synapses 
(Morgan et al., 2004). 

Because autologous CB is limited in supply, the clinical 
usage of CB is restricted. However, we suggest that mPBMCs 
could potentially be used for treating neurological impair-
ments. Pettengell et al. (1994) suggested that stem cells from 
the CB and leukapheresis products are comparable in long-
term culture-initiating cells. Tondreau et al. (2005) assessed 
the potential of mobilized peripheral blood and CB as a 
source of MSCs. In addition, it would be possible to perform 
a clinical trial of mPBMC treatment in cerebral palsy chil-
dren, since we have already observed the safety of administer-
ing G-CSF and collecting mPBMCs in cerebral palsy children 
(Moon et al., 2013).

It remains unresolved whether stem cells have the ability to 
pass across the blood-brain barrier and migrate to targeted 
brain lesions. In vivo, stem cells possess certain molecular 
mechanisms involving adhesion molecules, chemokines, and 
proteases, which enable transmigration of stem cells into 
the brain (Liu et al., 2013). Although inflammation-induced 
blood-brain barrier disruption and increased permeability 
can result in developmental damage to the brain in early 
human life, it is assumed that proinflammtory cytokines ex-
pressed by infused stem cells may affect the junctional struc-
tures at the blood-brain barrier and leave a way open for mi-
gration of stem cells from the circulatory blood; some of these 
stem cells may differentiate into the microglia in the brain 
(Stolp et al., 2009). Microglia can then release neurotrophic 
factors involved in regeneration of the brain. Neurotrophins 
and cytokines are co-expressed at the location of neuronal in-
jury. The interactions of these factors modulate both neuronal 
degeneration and regeneration (Otten et al., 2000).

The expression and roles of neurotrophic factors and cy-
tokines in transplanted cells have not been fully elucidated, 
nor has their expression in cerebral palsy children been in-
vestigated. In this study, we analyzed neurotrophic factors 
and cytokines expressed in mPBMCs from the cerebral 
palsy children as compared with those found in healthy 
adults and donated CBs. Among the neurotrophic factors 
used in this study, BDNF is known as a factor that regulates 
neuronal development and function (Allen et al., 2013). 
Overexpressing BDNF in gene-modified human bone mar-
row stem cells further increases the potential therapeutic 
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effect of BDNF in spinal cord injury (Sasaki et al., 2009). 
GDNF, which is secreted by astroglial cells (Qu et al., 2007), 
has been shown to protect motor neurons in a number of 
different animal models (Acsadi et al., 2002). G-CSF also 
plays an important role in functional recovery and neu-
roprotection (Pereira Lopes et al., 2003). VEGF promotes 
nerve regeneration and enhances neuronal survival, which 
is involved in endothelial cell survival and also known to 
be an angiogenic factor (Pereira Lopes et al., 2003). IGF-
1 is synthesized in the neurons and glia, which has been 
suggested to suppress apoptosis and enhance the paracrine 
function of muscle-derived stem cells under oxidative stress 
via enhancing IGF-1R/PI3K/AKT signaling (Daftary et al., 
2005; Chen et al., 2014) 

Cytokines are secreted from cells and function as com-
municators between cells in both paracrine and endocrine 
fashions. They mediate inflammatory responses and are also 
important for the repair and defense of neuronal tissues 
following trauma (Lin et al., 2013). Well-studied cytokines 
include TNF-α, IL-1 family (IL-1α, IL-1β, IL-18), IL-6, and 
IL-10. TNF-α is a classic pro-inflammatory factor and stim-
ulates macrophages, monocytes and NK cells. Increased 
concentrations of TNF-α after diffuse axonal injury in head 
trauma imply that TNF-α participates in secondary neuronal 
injury (Ciallella et al., 2002; Campbell et al., 2007; Lin et al., 
2013). However, even pro-inflammatory cytokines such as 
IL-1, IL-6 and TNF-α have both deleterious and beneficial 
effects on neuronal cells (Winter et al., 2004). Their roles 
in stem cell therapy for neuronal regenerative treatment 
should be further investigated. IL-2 is an essential factor for 
immune homeostasis, normal regulatory T cell function, 
and self-tolerance in the immune system. Brain-derived IL-2 
plays an essential role in the maintenance of septohippo-
campal projection neurons in vivo (Meola et al., 2013). IL-
3, expressed in hematopoietic and nonhematopoetic cells, 
is an important regulator that exhibits pleiotropic activities. 
The major roles of IL-3 are increasing the activity of Bcl-2, 
activating neuroprotection, and preventing apoptosis (Rojo et 
al., 2008). We have limited research data to provide a concrete 
base of changes in IL-6 expression. We need further research 
on that matter. IL-6 has been recognized as an important 
pro-inflammatory cytokine secreted by leukocytes and acti-
vated glia in the nervous system. IL-6 is involved in the etio-
pathogenesis of acute or chronic neuroinflammatory diseases 
such as Alzheimer’s disease and Parkinson’s disease (Rojo et 
al., 2008). However, IL-6 is not only involved in inflammation 
and infection but is also related to the regulation of meta-
bolic, regenerative, and neuronal processes. The regenerative 
and anti-inflammatory activities of IL-6 are mediated by 
gp130-associated classic signaling (Scheller et al., 2011). IL-
8, known as neutrophil-activating peptide 1, is generated by 
monocyte-derived macrophages, microglia, and astrocytes. 
It functions as a trophic factor in the maintenance of normal 
neurons and promotes neuronal survival and angiogenesis 
(Langford et al., 2002). IL-9 may exert both aggravating and 
suppressive roles in experimental encephalomyelitis. In an ex-
perimental model, treatment with anti-IL-9 neutralizing an-
tibodies can attenuate autoimmune encephalomyelitis (Zhou 

et al., 2011).
In the present study, the yield of apheresis (TNC and 

CD34+ cell number) on the 5th day of G-CSF administration 
was significantly lower in cerebral palsy children than in 
healthy adults, even with higher viability. We also observed 
that the intracellular expression of inflammatory cytokines 
rather than neurotrophic factors could be altered by G-CSF 
mobilization, when comparing the expression of PBMCs 
and mPBMCs between cerebral palsy children and healthy 
adults. IL-6 levels were commonly increased, along with the 
decrement of IL-3 in cerebral palsy children and the incre-
ment of IL-1β in healthy adults. Comparisons of cytokine 
expression between stem cell sources revealed that the ex-
pression of BDNF in mPBMCs from cerebral palsy children 
were significantly higher than that from the CB or mPBMCs 
of healthy adults. The expression of G-CSF in mPBMCs 
from cerebral palsy children was comparable to that from the 
CB, and both were significantly higher than that in healthy 
adults. The lower expression of pro-inflammatory cytokines 
(IL-1β, IL-3, IL-6) and higher expression of anti-inflamma-
tory or trophic cytokines (IL-8, IL-9) in the CB or mPBMCs 
of cerebral palsy children as compared to healthy adults 
suggests a positive effect on neuronal regeneration, although 
some cytokines have both deleterious and beneficial effects 
on neuronal cells. These findings also suggest that the CB or 
autologous mPBMCs may be a potential source of cellular 
therapy for cerebral palsy children.  

In conclusion, mPBMCs from cerebral palsy children  and 
MNCs from the CB provide a new potential source for cellu-
lar therapy for cerebral palsy children. Further investigations, 
including clinical trials to reveal clinical efficacy as well as 
therapeutic mechanisms, are warranted.
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