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Prostate cancer is a rising health concern and accounts for 3.8% of all cancer deaths globally.
Uganda has one of the highest incidence rates of the disease in Africa at 5.2%with themajority
of diagnosed patients found to have advanced disease. This study aimed to use the STEAP2
protein (prostate cancer–specific biomarker) for the discovery of new targeted therapy. To
determine the most likely compound that can bind to the STEAP2 protein, we docked the
modeled STEAP2 3D structure against 2466 FDA (Food and Drug Administration)-approved
drug candidates using AutoDock Vina. Protein basic local alignment search tool (BLASTp)
search, multiple sequence alignment (MSA), and phylogenetics were further carried out to
analyze the diversity of this marker and determine its conserved domains as suitable target
regions. Six promising drug candidates (ligands) were identified. Triptorelin had the highest
binding energy (−12.1 kcal/mol) followed by leuprolide (docking energy: −11.2 kcal/mol). All
the top two drug candidates interacted with residues Ser-372 and Gly-369 in close proximity
with the iron-binding domain (an important catalyst of metal reduction). The two drugs had
earlier been approved for the treatment of advanced prostate cancer with an elusive mode of
action. Through this study, further insight into figuring out their interaction with STEAP2 might
be important during treatment.

Keywords: prostate cancer, molecular docking, bioinformactics, computational drug discovery, STEAP2, AutoDock
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1 INTRODUCTION

Cancer is a disease in which abnormal cells divide uncontrollably and progressively destroy body
tissue. It is the second leading cause of death before 70 years in 91 of 172 countries according to the
World Health Organization in 2015 and responsible for an estimated 9.6 million deaths in 2018 (Bray
et al., 2018). One in 5men and 1 in 6 women develop cancer in their lifetime while 1 in 8men and 1 in
11 women die from the disease (Bray et al., 2018). As of 2018, the global cancer burden had risen to
18.1 million new cases (Bray et al., 2018). Worldwide, the total number of people alive with a 5-year
cancer diagnosis, called the 5-year prevalence, was estimated to be 43.8 million (World Health
Organisation, 2018). About 70%–80% of the avoidable cancer mortality occurs in low to middle
income countries (LMICs) (Knaul et al., 2018). Global cancer incidence is on the rise and it is
predicted that by 2050, 70% of the 24 million annual cancer diagnoses will be individuals residing in
LMICs (Kingham et al., 2013).
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Prostate cancer is the second most frequently diagnosed
cancer in men globally and accounts for 3.8% of all deaths
caused by cancer in men as of 2018 (Bray et al., 2018; Ferlay
et al., 2018). In Uganda, for a 16-year period from 1991 to 2006,
there was an increase in cancer risk particularly for breast and
prostate cancer (4.5% annually) (Parkin et al., 2010). The
incidence of prostate cancer in Uganda is among the highest
recorded in Africa at 39.6 per 100,000 after age-standardizing
(Parkin et al., 2010). A recent study on prostate cancer burden
puts its annual incidence at 5.2% (Okuku et al., 2019). Prostate
cancer can be classified into localized and metastatic disease
depending on the absence or presence of spread respectively.
Localized prostate cancer is classified as high risk based on clinical
staging, prostate-specific antigen (PSA) levels, and/or the Gleason
score (Caster et al., 2015). Patients with metastatic prostate cancer
are at a higher risk of disease and death. The disease can be
categorized as castration-sensitive (mCSPC) when surgical
removal of the testicles halts cancer advancement due to
decreased blood testosterone androgen or castration-resistant
(mCRPC) when the cancer continues to progress even in the
absence of testosterone androgen (Caster et al., 2015). The
majority of mCSPC patients have a high risk of progressing to
mCRPC when initial hormonal treatment fails due to resistance
(Caster et al., 2015). Prostate cancer can be treated with
multimodal therapy in a risk-adapted approach. Surgery,
nanotechnology for controlled drug delivery, monoclonal
antibody therapy, hormonal therapy, radiotherapy, and
chemotherapy are some of the treatment methods (Held-
Warmkessel, 2001; Nanus et al., 2003). Chemotherapy
(especially when hormonal treatment fails), surgery, and
radiotherapy are the most commonly used modalities of therapy.

Six transmembrane antigen of prostate 2 (STEAP2) also
known as the six transmembrane protein of prostate 1
(STAMP1) is a member of the metalloreductase family
important in the metal reduction of copper and iron. In vitro
and in vivo studies show that STEAP2 plays a key role in prostate
cancer progression (Whiteland and Claire, 2014). STEAP2 is
located on the plasma membrane of prostate cells and Golgi
complex. It increases prostate cancer progression, controls cell
proliferation, differentiation, and decreases apoptosis
(Grunewald et al., 2012). Its knockdown from prostate cancer
cells has been shown to reduce their invasive potential, increased
apoptosis, and reduced migration that are responsible for
oncogenesis and disease progression (Wang et al., 2010a;
Burnell et al., 2018). Immunohistochemical staining
significantly demonstrates its expression at the cell–cell
junctions of prostate cancer cells (Hubert et al., 1999). It is
differentially expressed in normal and cancerous tissue making
it a potential target for new therapeutic strategies for disease
treatment (Gomes et al., 2012). STEAP2 is expressed more than
10 times in normal prostate than in other tissues such as the brain
and liver and is exponentially expressed in malignant prostate
cancer cells (Porkka et al., 2002a; Korkmaz et al., 2005). Their
levels in these tissues are too low to have any functional
significance (Porkka et al., 2002a). STEAP2 is highly expressed
at all stages of prostate cancer and is androgen independent, a
characteristic that is key in managing androgen-dependent and

independent/advanced prostate cancer [(Gomes et al., 2012),
(Hubert et al., 1999)]. Its unique and specific upregulation in
cancerous prostate tissue at all stages is likely to make it an ideal
therapeutic drug target.

The exact STEAP2 mechanisms and pathways involved in the
development and progression of the disease, however, remain poorly
understood in addition to other STEAP proteins andwarrant further
investigation. The epithelial–mesenchymal transition (EMT) process
and phoshpatidyinositol-3-kinase protein kinase B mammalian
target of rapamycin (PI3K/Akt/mTOR) signaling pathways seem
to be implicated (Yang et al., 2019; Wu et al., 2020).

Wang et al. (2010b), though inconclusively, found that
STEAP2 may influence the progression of prostate cancer by
activating the extracellular signal–regulated kinase signaling
pathway, the mitogen-activated protein kinase (MAPK)
pathway, cell cycle progression, and inhibition of apoptosis
pathways. The exact regulatory mechanism of synergism or
antagonism of the pathways in prostate cancer remains not
clearly understood (Guo et al., 2020)

Although there has been great improvement in therapeutic
options for prostate cancer over the last decade, the drugs
currently used are still limited and not 100% effective making
the cure elusive (Caster et al., 2015). This is further compounded
by undesirable side-effects from some of the treatments.
Altogether this creates a need for the discovery of novel, safe,
and efficacious chemotherapeutic agents with minimal or no side
effects. Rational drug design if informed by drugs that target
prostate cancer-specific protein biomarkers, can help improve
drug specificity, efficacy, and reduce undesirable side effects.
STEAP2 metalloreductases might be one such prostate-specific
protein biomarker and drug target that may be studied in. This
study aimed at using the STEAP2 prostate cancer biomarker as a
target using in silico methods and promising results were
achieved. STEAP2 targeting may be studied in the future in
the context of developing anti-prostate cancer therapies.

FIGURE 1 | Study design of the methodology. The relationship of data
from multiple sequence alignment of related species to human STEAP2 gave
insight on key protein residues important in function of the protein to look out
for in ligand interaction with the protein during protein–ligand docking.
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2 MATERIALS AND METHODS

2.1 Study Design
The study involved retrieval of STEAP2-related protein
sequences from the protein data bank from a protein BLAST
search. The selected sequences were used for multiple sequence
alignment (MSA) and phylogenetics to determine the most
related species to the human STEAP2 protein. For molecular
docking, a set of FDA-approved drugs were retrieved from the
drug bank and used as ligands for protein–ligand docking. The
protein (STEAP2) 3-D structure was first modeled and evaluated
prior to the docking exercise. The protein–ligand interactions
were characterized using ligplots (Figure 1).

2.2 STEAP2 Relative Tissue Expression
To determine the expression of STEAP2 protein in different
tissues, an expression analysis was conducted using the Human
Protein Atlas (https://www.proteinatlas.org/ENSG00000157214-
STEAP2) (Uhlén et al., 2015). The search term “human STEAP2”
was used to find the expression of the protein in different tissues
within the body.

2.3 Data Retrieval
The amino acid sequence of the query proteinH. sapiens STEAP2
(Uniprot accession number: Q8NFT2) was obtained in a FASTA
format from UniProt (Bateman et al., 2017). This sequence was
used in the protein BLAST search for homologous sequences in
the PDB.

2.4 STEAP2 Multiple Sequence Alignment
and Phylogenetic Analysis
TheMSAwas performed in JalView using 30 selected FASTA files
from a non-redundant protein BLAST (BLASTp) search of the
reference proteins in the PDB. In the BLASTp search, the
algorithm parameter of maximum target sequences to return
was adjusted to 5,000 and the rest of the parameters were left as
default. A total of 30 sequences of the 5,000 returned were
selected for MSA based on the percentage similarity in bins of
0–40, 41–60, 61–80, and 81%–100%. A number of sequences were
selected from each range (Table 1).

From the table, the 0–40 and 41–60 similarity ranges took an
extra hit to ensure that more distant hits from the query sequence
were considered for confidence purposes.

To generate an evolution tree/dendrogram, a new alignment of
the amino acid sequences from FASTA files of STEAP proteins of
30 species from the BLASTp search and subsequent 15 (only

STEAP2 containing) was created via the align tab in MEGAX
(Kumar et al., 2018). The sequences were copied, pasted, and
alignment was performed on all using Muscle with all alignment
parameters left as default. The output alignment file was used as
an input for phylogenetic analysis. The maximum likelihood tree
was used. In the analysis preferences, the bootstrap method was
used and the number of replications were adjusted to 1,000. The
(Lo and Gascuel)+discrete gamma distribution of rates across
sites (G)+evolutionarily invariable sites (I) model was used and
the rest of the parameter left as default. A dendrogram showing a
phylogenetic relationship of STEAP2 was generated.

2.4.1 Homology Modeling
H. sapiens STEAP2 (Uniprot accession number: Q8NFT2)
FASTA sequence was used as a query sequence in the
different modeling engines that were best-ranked using the
Continuous Automated Model Evaluation (CAMEO) website
and one other from the critical assessment of protein structure
prediction (CASP) website (I-TASSER) to search for similar
sequences for homology modeling (Haas et al., 2019;
Kryshtafovych et al., 2019). The similarity of retuned results
from the BLAST was shown in terms of coverage of the query
sequence, the percentage identity, and the E-value. Also, the
organism that was the source of the sequence and the PDB
identification of each result was shown. The best hit’s
resolution and method of structural determination were
obtained from the protein data bank (Bernstein et al., 1977).
The best sequence in all but those of RaptorX and I-TASSER were
manually chosen for homology modeling. I-TASSER
automatically chose the best nine sequences and made the
homology models of STEAP2 using each, and the best-ranked
result (homology model 1) was chosen as the final homology
model. RaptorX automatically chose its best template and showed
its homology model as a result at the end of the process. The top
templates by the rest of the engines were used to model STEAP2
using Modeler and ProMod3 (Webb and Sali, 2017; Waterhouse
et al., 2018). The homology models were downloaded as PDB files
and visualized using PyMol and Chimera (Pettersen et al., 2004;
Schrödinger and DeLano, 2020)

2.4.2 Model Evaluation of Homology Models
The homology models from the different modeling engines were
evaluated using different structural model evaluation tools: ProSa,
QMEAN, Rampage, DOPE scores, and RMSD. Ramachandran
plot server (URL: https://zlab.umassmed.edu/bu/rama/index.pl).
Using PyMol, the stoichiometry of the homology model was
determined by chain coloration and critically looking at
structures to identify any non-conformity such as long loops
or knots (Schrödinger and DeLano, 2020). RMSD with the 6HCY
(human STEAP4) template was calculated using the PyMol
alignment tool to align the template with the homology
models to determine average structural deviations of the
homology model from that of the used template. The DOPE
score of each homology model was calculated using Modeller.
Z-DOPE scores were calculated for individual homology models
using Modeller (Shen and Sali, 2006; Webb and Sali, 2017)

TABLE 1 | Sequences selected for phylogenetic analysis of STEAP2 by MSA.

Similarity range (%) Sequences selected

0–40 8
41–60 8
61–80 7
81–100 7
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2.5 Molecular Docking
With the best model selected from 6 STEAP2 homology models
after evaluation, the homology model by SWISS-MODEL was
used for the flexible ligand, rigid receptor protein–ligand docking
using a group of approved drug compounds downloaded from
the drug bank. These compounds were downloaded as a
SANCDB file of 2466.

2.6 Protein–Ligand Docking Using
AutoDock Vina
The ligand and receptor molecules were prepared using
prepare_ligand4.py and prepare_receptor4.py, respectively, by
command line on Linux terminal. The two python scripts add
polar hydrogens (Q) and define atom types (T) in the ligand and
receptor files (in a PDB format), respectively, to generate their
PDBQT files. The search box in the configuration file was set to
dimensions x, y, and z (105 by 105 by 105 Å, with a center at: x =
122.224 Å, y = 118.600 Å, and z = 102.658 Å). These were
determined using MGL tool graphical user interface with
cross-sectional measurements along each axis. The median
point of the line between the two furthest points of the
molecule on that axis guided toward the center point to center
the search box so as to cover the entire protein in all 3 dimensions.

The results of molecular docking were characterized by 3D
proximity to a central residue termed as “Euclidian
distance”— which is the length of a line between two points
in geometrical space which can be 2 or 3D and binding energy of
the ligand to the receptor molecule. All results were screened and
a binding energy threshold of less than or equal to −7 and
Euclidian distance of 50 Å were set. The complexes that met
the selection criteria were then considered for further analysis.

The entire protein was covered by the search box during
molecular docking, a method also known as blind docking to
mitigate bias to any region of the receptor.

2.7 Characterizing Protein–Ligand
Interactions
To determine the nature of the bonds formed between STEAP2
and the different ligands, Ligplot which is a program used to
generate 2D representations of the nature of bonds formed
between protein receptor residues and ligand atoms was used
for this task (Wallace et al., 1995). The program showed the
hydrogen bond interactions in green dotted lines with their
respective lengths in angstroms and the different interacting
protein residues in an arc shape with spokes radiating toward
the atoms they are in contact with. The interactions not only
accounted for hydrogen bonds but all hydrophobic interactions
between the two molecules (Wallace et al., 1995).

2.8 Docking Validation Using Independent
Docking Engines
The order of binding energy was validated using PatchDock
server and AutoDock4. (Huey and Morris, 2005; Schneidman-
Duhovny et al., 2005). The receptor PDB file and ligand pdbqt

files were uploaded on a PactchDock server. In AutoDock4, the
protocol in the tutorial by Huey et al. was followed (Huey and
Morris, 2005). The binding site of STEAP2 was validated using
Protein Binding Site (ProBiS) and PrankWeb webservers (Konc
and Janežič, 2010a; Jendele et al., 2019). Chain A of the homo-3-
mer without its HETATOMs and water molecules was the input
file and was uploaded in a PDB format. All other parameters were
left as default and the job was submitted for analysis at both
submission webpages. The druggability of the protein was
assessed using CAVIAR in the Linux terminal to identify
potential cavities for ligand binding based on scores and size
and ligandability among other criteria (Marchand et al., 2021).
The protein chain A PDB file was used as the input file.

3 RESULTS

3.1 STEAP2 Relative Tissue Expression
Messenger ribonucleic acid (mRNA) expression analysis of the
FANTOM5 dataset showed that STEAP2 was most abundantly
expressed in prostate tissue followed by ovarian and vaginal tissue
(Supplementary Figure S2). Prostate tissue had the most
STEAP2 in mean protein coding transcripts per million as
compared to all other listed body tissues using the HPA
dataset (Supplementary Figure S3). The analysis of STEAP2
mRNA transcripts from different tissue in mean protein coding
transcripts per million in comparison to 33 other listed tissues
using the GTex dataset showed prostate tissue to have the highest
quantity of STEAP2 (Supplementary Figure S4). The three
datasets were combined by a normalized expression level and
showed the same trend (Figure 2).

3.2 STEAP2 Phylogenetic Analysis
A dendrogram generated using Molecular Evolution Genetic
Analysis (MEGA) showed that STEAP2 was conserved mostly
in species under phylum Chordata (Figure 3). The values at each
node indicate the percentage times of 1,000 that particular node
was redrawn as a result of genetic relationship of its taxons.

The STEAP2 containing species clustered alone in one clade
and also happen to be under phylum Chordata, H. sapiens falls
together with its most similar species G. gorilla (Figure 3). The
rest of the clades contain other STEAP proteins and one NADP
from other classes such as Pisces.

A secondary phylogenetic tree of only STEAP2s further
demonstrated that the mammalian species baring STEAP2
clustered together, followed by those of Reptilia, Pisces, and
Vertebrata species, A. radiata with the tree having been rooted
to a yeast species S. cerevisiae (Figure 4).

3.4 Analysis of Highly Conserved Residues
From theMultiple Sequence Alignment That
Might be Responsible for the Phylogenetic
Relationships of the Different Species
The MSA image depicts the conserved residues across 15 selected
sequences of STEAP2 baring species and S. cerevisiae from the
original 30 from the protein BLAST search. The local regions that
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are highly conserved are shown with respective weblogos
including the Rossman fold (amino acids residues 33–38)
closely associated with the NADP domain and six other trans-
membrane (TM) domains (TM1 with residues 211–232, TM4
with residues 261–284, Tm5 with residues 305–326, TM6 with
residues 359–379, TM12 with residues 391–412, and TM17 with
residues 432–454) associated with iron binding (Figure 5). An
MSA image of all the 30 sequences is shown in Supplementary
Figure.S1

3.5 Homology Modeling
Template 6HCY/6HDY (human STEAP4) was the most common
top hit for five of the six modeling engines with a better coverage
than 2VNS identified using PRIMO (Table 2).

The homology model from SWISS-MODEL was a homo-3-
mer. Homology models from the different engines (images
generated in cartoon format using PyMol) (Figure 6).

The homology model from SWISS-MODEL (Figure 6A) was a
homo-3-mer made up of 437 amino acids per chain. The template
used was 6HCY and the homology model had the least RMSD of
0.086 when superimposed with the 6HCY template (Table 3).
Additionally, on average it had the best score by the used
evaluation tools. For example, the Modeller normalized DOPE
score of−5.95, the Ramachandran plot having 94.4 of its residues
lying within the favored region a−3.06, and−6.33 Z-score from
QMEAN and ProSA, respectively. Altogether, these results show
that the SWISS-MODEL homology model was most similar model
to the used template (Table 3). The comparative results of the
SWISS-MODEL homology model and ab initio structural folding
using AlphaFold2 are shown in Supplementary Figure S5 and a
respective table. The results suggest that the homology model was a
better predicted structure of human STEAP2 than the structure from
AlphaFold2 that was derived by ab initio protein folding, a method
better suited for query sequences with no or very low sequence
identity to structurally solved sequence structures.

The rest of the results are summarized in Table 3.
From Table 3, SWISS-MODEL on average had the best

homology model after validation by the listed validation tools.
Figure 7 showed the ProSA evaluation of SWISS-MODEL

which was the best homology model together with its
Ramachandran plot on the right. It had a z-score of−6.33.

3.6 Molecular Docking
Some of the receptor residues interacting with the drug ligands
from the ligplots were found to be within highly conserved motifs
of the STEAP2 protein with some forming hydrogen bonds in
addition to other hydrophobic interactions. The 2D interactions
are shown in panel A and the respective 3D in panel B of the
images. The images of the top 3 complexes, Figures 8–10, are
shown while the remaining three are attached as Supplementary
Figures S6–8.

In the protein–ligand complex with Drugbank 1543
(triptorelin), Ser-372 with the hydrogen bond lies in the 6th
TM domain which is part of the iron-binding domain and this is
shown to be highly conserved from the MSA of only STEAP2
containing species (Figure 5). It together with many other
shown protein amino acids binds with triptorelin a drug
approved for the treatment of advanced prostate cancer
(Figure 8).

In the protein–ligand complex with Drugbank 2 (leuprolide),
the interacting protein amino acids such as Ser-372 with
leuprolide lie within the TM domains that are highly
conserved as shown in the MSA. These are associated with the
iron-binding domain and bind to the ligand leuprolide which is
also approved for the treatment of advanced prostate cancer
(Figure 9).

In the protein–ligand complex with Drugbank 2328 (1,2
icosapentoyl-sn-glycero-3-phosphoserine), some of the listed
residues such as Thr-210 are conserved under the NADP
domain, the 5th TM domain having residues Glu-390 and

FIGURE 2 |Consensus normalized expression (NX) levels for 55 tissue types and six blood cell types, created by combining the data from the three transcriptomics
datasets (HPA, GTEx, and FANTOM5) using the internal normalization pipeline. (Source: https://www.proteinatlas.org/ENSG00000157214-STEAP2/tissue). The graph
maintains the initial observation that prostate tissue contains significantly high amounts of STEAP2 that any other body tissue of the 55 considered.
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Lys-303. The residues together with others form bonds with
ligand Drugbank 2328 which is 1,2 icosapentoyl-sn-glycero-3-
phosphoserine, an approved experimental drug for Corona virus-
19 disease treatment (Figure 10).

Residues from Supplementary Figures S6 that form hydrogen
bonds are all conserved highly in the NADP-binding domain and
the 12th TM domain which is associated with iron binding. The
ligand Drugbank 2154 is etelcalcetide, a calcimimetic drug used
for the treatment of hyperparathyroidism.

The mentioned residues of Supplementary Figures S7 in
TM12 are associated with the iron-binding domain of
STEAP2 proteins in the MSA. The ligand Drugbank138 is
lymecycline, a second generation tetracycline antibacterial
used for the broad-spectrum treatment of various bacterial
infections.

From the images, the protein–ligand complex of ligand 1,543 had
the least number of hydrogen bonds between the ligand and protein
but had the most number of hydrophobic contacts within the

FIGURE 3 | Phylogenetic tree ofH. sapiens STEAP2 shows that it is most related toG. gorilla since it is redrawn 78% of 1,000 times by the bootstrap method. This,
therefore, indicates that these species’ have the most conserved regions.
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FIGURE 4 | From the phylogenetic tree, which is a result of 1,000 bootstraps, it is shown that the STEAP2 protein fromG. gorilla (mammal) is most related to human
STEAP2 from 99% of the 1,000 redrawn trees and the least related is A. radiata. The first four listed species from top belong to class Mammalia, followed by an alligator
(Reptilia), birds (Aves) fish (Pisces), and a turtle (Vertebrata) all under phylum Chordata.

FIGURE 5 |MSA of STEAP2 proteins from 14 species from 4 different classes of chordates. The most conserved residues are associated with functional roles of
the protein. From top, the Rossman fold, an alpha beta alpha secondary structure with sequence GxGxxG is closely associated with the dinucleotide phosphate group of
NADP followed by the first trans-membrane domain (TM1) (Hanukoglu, 2015). The second, third, fourth, and fifth TM domains (TM4, 5, 6, and 12, respectively) in close
contact with the iron binding TM domain and finally the sixth TM domain.

Frontiers in Bioinformatics | www.frontiersin.org May 2022 | Volume 2 | Article 8693757

Ongaba et al. STEAP2 Anti-Prostate Cancer Chemotherapeutic Target

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


receptor. The summation of these bonds was, therefore, responsible
for the observed high-binding energy associated with the complex
(Table 4). The ligand Drugbank 1423 is droxidopa, a drug used in
treatment of Parkinsonism (Supplementary Figure S8).

Table 4 shows the protein–ligand complexes that met the
thresholds of the binding energy.

The complex, 01_SWISS-MODEL and Drugbank 1543 had
the least binding energy.

TABLE 2 | Top homology modeling templates from selected model engines and respective parameter of the hits.

Engine Sequence identity (%) Coverage Organism PDB ID Stoichiometry Resolution (Å) Structural determination

HHpred 46.00 18–171 H. sapiens 6HCY_A Homo-3-mer 3.1 EM
SWISS-MODEL 47.61 30–466 H. sapiens 6HCY.1.A Homo-3-mer 3.1 EM
Primo 53.00 33–215 H. sapiens 2VNS Homo-2-mer 2.0 X-ray Diffraction
Raptorx — 31–466 H. sapiens 6HD1C Homo-3-mer 3.8 EM
Robetta 47.83 1–490 H. sapiens 6HCYA Homo-3-mer 3.1 EM
I-Tasser 47.90 8–90 H. sapiens 6HCYC Homo-3-mer 3.1 EM

FIGURE 6 | Images of the homology models were shown in cartoon format and colored by chain. Image A shows the homology model by SWISS-MODEL, (B) top
homology model by I-Tasser, (C) homology model by HHPRED, (D) homology model by RaptorX, (E) homology model by Robetta and. (F) homology model by Primo.
Only the homology model by SWISS-MODEL was a homo trimer, the rest were single chain models and the used template; human STEAP4 is a homotrimer.

TABLE 3 | Structural evaluation of homology models by different validation tools.

Modeling
engine

Model
stoichiometry

ProSA
(Z-Score)

QMEAN
(Z-Score)

Favored
allowed
outlier

Rampage Allowed Modeler
(normalized

Dope
Z Score)

Aa
modeled

RMSD
with
6HCY

HHpred Monomer −6.33 −3.03 96.7 2.2 1.1 0.454 448 1.445
SWISS-
MODEL

Homo-3-Mer −6.33 −3.06 94.4 4.8 0.2 −0.595 437 0.086

I-Tasser Monomer −6.95 −6.36 87.5 9.8 2.7 −0.238 490 0.339
Raptorx Monomer −6.06 −2.91 96.7 2.7 0.6 0.867 487 0.367
Robetta Monomer −0.59 −0.19 88.0 12.0 0.0 0.285 28 3.789
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FIGURE 7 | ProSA z-score and Ramachandran plot of the SWISS-MODEL homology model. The z-score of −6.33 suggests that the homology model is properly
folded and 96.7% of the protein residues being under the favored region shows that almost all the protein residues are properly sterically placed in 3D space.

FIGURE 8 | Protein–ligand complex of STEAP2 and Drugbank1543 shows residue Ser-372 from the 6th TM domain according to the MSA of STEAP2s and this
forms a hydrogen bond with an atom of the ligand (Drugbank 1543). The rest of the interacting receptor residues are shown as crescents and these form other bonds
with the receptors. These interacting residues are many compared to other complexes and contribute a significant binding energy of the complex.
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3.7 Docking Validation Using Independent
Docking Engines
The docking validation by PatchDock produced the same order in
terms of scores based on the geometric shape complementarity of
solutions. The scores were ranked in the same order as the
binding energy measured using AutoDock Vina. The complex
of STEAP2 and Drugbank 1543 ligand had the highest score of
11,346 followed by the complex with Drugbank 2 and Drugbank
2328 with scores 11,274 and 11,224, respectively. The least ranked
complex was that with Drugbank 3300 (Table5).

Table 5 shows the top 3 solution of each complex ranked in order
of their scores by PatchDock. The area stands for the approximate
interface area of the complex and atomic desolvation energy is
measured according to Zhang et al. (2001)

The exact docking poses from AutoDock Vina could not be
reproduced by PatchDock despite maintaining the same ranking
order. Another docking engine, AutoDock4, could not reproduce
the exact docking poses.

The results from the ProBiS analysis of STEAP2 for potential
binding sites found STEAP4 as the most locally and structurally
similar protein as it was also the used template for homology
modeling. The most structurally conserved residues in binding
site one, for small molecules, appeared red and were in the
NADP-binding domain. All six identified binding ligands were
NADP’s with confidences of 4.21–3.58. Binding site two, for
proteins, had all amino acids unconserved as they appeared blue
and confidence from 2.42 to 2.29. No binding sites were found for
nucleic acids and ions (Supplementary Figure S9A).

Consistent with these findings were those from PrankWeb
whose pocket 1 was HEM binding (pocket score 24.48), 2 (pocket
score 10.48) was NADP binding with the most conserved
residues, pockets 3 and 6 with pocket scores 6.26 and 3.09,
respectively, were also within the NADP-binding domain.
Pockets 4 and 5 were all within the FAD-binding domain with
scores 5.86 and 3.75, respectively. Surface pockets 4 and 5 and
pocket 3 were shown to be in close proximity with docked ligands,
triptorelin and leuprolide (Supplementary Figure S10).

The results from CAVIAR analysis for binding sites found 7
cavities, cavity 5 with ligandability score 0.8 lays in the most
conserved residues of the chain that also bind NADP, 1 and 6 lay
in the HEM-binding domain that is not very conserved with
ligandability scores of 0.6 and 0.8, respectively, and 2 with
ligandability score 0.8 lays in the FAD-binding domain. Cavity
2/pocket 2 was close to bound ligands triptorelin and leuprolide.
Cavities with ligandability score of 0.8–1 are considered easy to
the ligand and of these, cavity 5 had the best score, size (109 A),
and degree of conserved residues in comparison with
conservation residue score results from PrankWeb. These
results are detailed in a text file of cavity identification and
Supplementary Figure S9.

4 DISCUSSION

Our study aimed to identify potential compounds that could be
used in the development of anti-prostate cancer drugs that target

FIGURE 9 | Protein–ligand complex of STEAP2 and Drugbank 2 shows residues Glu-390, Gly-369, Ser-372, and Gly-369 within the 6th and 12th TM domain form
hydrogen bonds with ligand Drugbank 2.
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STEAP2 using molecular docking. To our knowledge at the time,
there are no studies in the literature that have used this approach
with the aim of treating prostate cancer. Findings from our study
showed that drugs such as triptorelin and leuprolide earlier
prescribed for advanced prostate cancer could be effective in
early-stage diseases with a more defined mode of action.

With a modeled homolog and docking process of a pool of
approved candidates from the drug bank, a number of drug
compounds that formed significant interactions with the
homology model gave insight to some of the current
drugs that could be repurposed for the treatment of
prostate cancer.

FIGURE 10 | In the aforementioned complex, receptor residues Thr-210 (NADP domain), Glu-390, and Lys-303 (TM5) form hydrogen bonds with ligand
Drugbank 2328.

TABLE 4 | Protein–ligand complexes that met the binding energy threshold with respect to the different chains of the protein.

Complex of 01_swissmodel
3D model with
different drug compound

Compound name Homologous chain Binding energy (kcal/mol)

Drugbank1543 Triptorelin A −12.1
Drugbank2 Leuprolide −11.2
Drugbank2328 1,2 Icosapentoyl-sn-glycero-3-phosphoserine −8.3
Drugbank2154 Etelcalcetide −8.2

Drugbank1543 Triptorelin B −12.1
Drugbank2 Leuprolide −11.2
Drugbank2328 1,2 Icosapentoyl-sn-glycero-3-phosphoserine −8.3
Drugbank138 Lymecycline −8.1
Drugbank1423 Droxidopa −7.1

Drugbank1543 Triptorelin C −12.1
Drugbank2 Leuprolide −11.2
Drugbank2328 1,2 Icosapentoyl-sn-glycero-3-phosphoserine −8.3
Drugbank138 Lymecycline −8.1
Drugbank1423 Droxidopa −7.1
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The best homology model of STEAP2 was generated by the
SWISS-MODEL as shown by the results from assessment by the 5
evaluation tools used (Figure 8A). SWISS-MODEL, in a study by
Wallner, has been shown to accurately model homologs whose
templates are of as low as 40% similarity (Wallner and Elofsson,
2005) suggesting that the modeling engine is reliable.

On model analysis, a lower score below 100% in the favored
region on a Ramachandran plot shows that there are residues
whose phi and psi angles are not sterically possible whenmodeled
(Ramachandran et al., 1963). A lower percentage of residues in
the favored region, therefore, indicates a poor homology model as
shown for models from Robetta and I-Tasser. Our best homology
model, by SWISSMODEL, had 96.7% of the protein residues
being under the favored region and this shows that most of the
protein residues are properly sterically placed in 3D space.

From the docking results, ligand Drugbank 1543 had the least
binding energy and highest affinity from a selected set of 2,466
ligands. Having the least binding energy means the complex is
more naturally stable due to affinity between the two constituent
molecules with no or less external energy applied. The ligand
formed its hydrogen bond with a residue Ser372 in the
transmembrane domain of the receptor molecule as most of
its other non-hydrogen bond interactions. From a key of the
Drugbank, Drugbank 1543, accession number DB06825, generic
name triptorelin is a synthetic decapeptide gonadotrophin
releasing hormone (GnRH) agonist. The drug is proven for
the palliative treatment of advanced stage prostate cancer (N
A et al., 2015). With the results from this study, this drug could
potently be used to treat early-stage diseases targeting STEAP2
that is shown to be responsible for disease progression as shown

in the study by Whiteland et al. (2014). This still requires
corroboration from further studies in the future.

The study by Ravenna et al. (2000) demonstrates that
triptorelin has an inhibitory-stimulatory effect on lymph node
carcinoma of the prostate (LNCaP) cells at lower and high doses,
respectively. In the experiment, in Pc3 cell lines, only low affinity
but high capacity receptors were expressed as a biological reaction
to the drug. Both low and moderately high affinity with high and
low capacity receptors, respectively, were expressed in LNCaP
cells. This shows the potency of triptorelin and its binding energy
in the treatment of prostate cancer at different stages. Since
STEAP2 is present in both cell types and given the binding
relationship between the protein and drug, this study suggests
a mode of action of the latter.

Drugbank 2 accession number DB00007 generic name
leuprolide is a synthetic 9 residue peptide analog of GnRH
shown to have a quicker onset of action in achieving serum
testosterone levels equivalent to medically castrated men
compared to triptorelin (Heyns et al., 2003). The findings
from this study suggest STEAP2 as a target route for action.

Data from the protein atlas places brain tissue (pituitary gland,
cerebral cortex, and basal ganglia) third with the STEAP2 content
after the ovary and vagina [(Korkmaz et al., 2005), (Porkka et al.,
2002b)] In men, brain tissue becomes second after the prostate
though with a significant difference in tissue STEAP2 expression.
This could account for some of the potency of the GnRH receptor
analog agonists in treating prostate cancer as mentioned earlier.

Drugbank 2328, accession number DB14096, 1,2
icosapentoyl-sn-glycero-3-phosphoserineis an approved
experimental drug for the treatment of Corona Virus Disease-

TABLE 5 | PatchDock docking evaluation of docking scores using AutoDock Vina.

STEAP2 complex
with

Results’ number Score Area Atomic desolvation
energy

Binding energy
measured using
AutoDock Vina

(kcal/mol)

Rank

Drugbank1543 1 11,346 1452.70 −272.92 −12.1 1
2 11,170 1468.30 −254.68
3 1,114 1512.50 −262.71

Drugbamk2 1 11,274 1460.40 −454.04 −11.2 2
2 11,088 1490.30 −502.35
3 11,086 1469.60 −501

Drigbank2328 1 11,224 1375.80 -421.80 −8.3 3
2 10,568 1383.10 −501.26
3 10,506 1321.70 −462.1

Drugbank2154 1 9,240 1222.30 −769.57 −8.2 4
2 9,096 1,187.60 −734730
3 9,094 1132.30 −453.96

Drurgbank138 1 7,074 814.80 −421.80 −8.1 5
2 7,016 797.00 −382.80
3 6,970 841.00 −373.47

Drugbank1423 1 3,300 358.90 −133.28 −7.1 6
2 3,294 357.70 −125.81
3 3,294 363.30 −122.28
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19 (COVID-19) (Kouznetsova et al., 2020). Drugbank 138,
accession number, DB00256, lymecycline is a broad spectrum
second generation tetracycline antibacterial used for the
treatment of susceptible bacterial infections such as acnes
(Zouboulis and Piquero-Martin, 2003). Drugbank 1423,
accession number DB06262, generic name, droxidopa, a
precursor for noradrenaline and is used in the treatment of
Parkinsonism (Longardner et al., 2020). Drugbank 2154,
accession number DB12865, generic name etelcalcetide is a
calcimimetic drug used for the treatment of secondary
hyperparathyroidism in patients having hemodialysis. From
the findings of this study, these drugs could treat prostate
cancer by binding to and inhibiting the catalytic role of
STEAP2 that is responsible for disease progression as seen by
the result in this study. Further investigation on their role in the
treatment of prostate cancer is still warranted.

We presume the exact docking poses could not be reproduced
by AutoDock4 because the engine requires the use of a single
chain of the homo-3-mer for the protein ligand docking vis-à-vis
the 3 identical chains used in the docking by AutoDock Vina. The
coherence in ranking order of the protein–ligand complex
stability between AutoDock Vina and PatchDock, however,
suggests the complexes are rightfully ordered.

The metalloreductase activity of STEAP2 occurs across its
transmembrane domains but these are neither binding sites nor
druggable regions of the protein from binding site analysis using
ProBiS, PrankWeb, and CAVIAR (Konc and Janežič, 2010b;
Jendele et al., 2019; Marchand et al., 2021; Rocha et al., 2021).
These results demonstrate that the cytoplasmic NADP-binding
domain is a potential binding site but it being intracellular
reduces its druggability. The residues Ser-3712 and Gly-369 do
not fall in any of the mentioned binding pockets but are in close
proximity with the FAD-binding pocket. A bound ligand in this
position as is leuprolide and triptorelin could give steric
hindrance to the FAD and consequently the overall function
of the metalloreductase.

The production of the STEAP2 should, therefore, be both
suppressed in the prostate and where possible, a potent ligand
should bind to it to block its role in prostate cancer
progression.

Its role in metal Fe3+ and Cu2+ reduction for transmembrane
transfer into cells can be carried on by STEAP3 metalloreductase
associated with prostate cancer tumor suppression through
induced apoptosis (Steiner et al., 2000; Zhang et al., 2001;
Rocha et al., 2021). Other STEAP metalloreductases such as
STEAP4 and STEAP1 linked with prostate cancer progression
as shown in studies by Gomes et al. (2014) and Jin et al. (2015)
can be targets for suppression and or inhibition for their role in
prostate cancer progression using inhibitory ligands.

The findings from this study give conjecture on the
mechanistic role of triptorelin and leuprolide among others if

STEAP2 was a target in the treatment of prostate cancer right
from the early-stage disease. Targeting STEAP2 may, therefore,
lead to the development of new anti-prostate cancer therapies in
the future with further studies.

Due to time and cost limitations we were unable to successfully
validate the docking poses but the binding energy rankings of the
top ligands using different and independent docking engines.

We recommend that future work should include reproducing
the docking poses using other commercial and/or free docking
engines in addition to molecular dynamics simulations. The
docking engine used (AutoDock Vina) is, however,
documented to be one of the best at the time as shown in the
study by Sousa et al. (2013). Additionally, we also recommend
further analysis in terms of in vitro assays to validate the results
from this in silico study on growth and viability changes in the
presence of these drugs and whether there are genes, gene
products, and or enzymes that could potentially upregulate
STEAP2 in its signaling pathway leading to its role in the
development and progression of prostate cancer.
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