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Abstract

Ferroptosis plays an important role in intrahepatic cholangiocarcinoma (ICC). We aim to develop a new ferroptosis-
related gene signature predicting the prognosis of ICC. We download RNA expression profiles and clinical data of
ICC from TCGA and GEO databases. Ferroptosis-related differentially expressed genes (DEGs) are screened by the
Wilcoxon signed-rank test. GO and KEGG enrichment analyses are performed to understand the function of DEGs
and co-expressed genes. Univariate Cox and LASSO regression are used to develop a ferroptosis-related gene
signature. Receiver operating characteristic (ROC) curves and Kaplan-Meier (KM) analysis were used to evaluate the
prognostic value. RNA sequencing is performed in 30 patients with ICC in our medical center to validate the
prognostic value of the gene signature. We identify 44 ferroptosis-related DEGs, among which four (ACSL4, IREB2,
NFE2L2, and TP53) are associated with overall survival (OS). Functional enrichment analysis shows that ferroptosis-
associated DEGs have an important impact on ICC carcinogenesis. A new ferroptosis-related gene signature based
on DEGs is built, and the prognostic ability is confirmed by KM and ROC curves (AUC=0.777, 0.75, 0.799 for 12, 24,
and 36 months, respectively). Patients with high risk scores have worse OS (P=0.0081). In the validation cohort, the
expression of DEGs is in accordance with that in the exploration cohort. The four-gene signature is also demon-
strated to have a favorable prognostic value (AUC =0.69). A new predictive model based on four ferroptosis-related
genes (ACSL4, IREB2, NFE2L2, and TP53) is established and shows favorable prognostic value.

Key words ferroptosis, intrahepatic cholangiocarcinoma, prognosis, gene signature

Introduction proximately 26 months, with a high rate of tumor recurrence [4].

Intrahepatic cholangiocarcinoma (ICC) is a rare malignancy origi-
nated from the bile duct [1]. As the most common primary biliary
cancer, the incidence and mortality of ICC have gradually risen
worldwide in recent years [2]. Owing to the difficulty in early di-
agnosis and highly aggressive nature, ICC has a poor prognosis [3].
Although radical surgery is the most effective treatment for ICC, it is
only applicable in a small proportion of patients at first diagnosis.
Even after liver resection, the median postoperative survival is ap-

Therefore, an early reliable prognostic model for ICC is urgently
needed to optimize the treatment scheme and to predict the prog-
nosis of ICC.

A number of gene mutations, such as inhibitors targeting iso-
citrate dehydrogenase (IDH)-1 or -2 and fibroblast growth factor
receptor (FGFR) fusions, have been identified in ICC, but these
mutations only account for 10%-20% of ICC [5]. As a new form of
programmed cell death, ferroptosis was first proposed in 2012 by
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Dixon et al. [6]. It is marked by the excessive accumulation of iron,
which can lead to lethal levels of lipid peroxidation. Many studies
have shown that cancer cells need more iron to support growth than
normal cells. In addition, the dependence on iron also makes cancer
cells more susceptible to ferroptosis [7]. Ferroptosis has been found
to play an important role in the development and progression of
many malignant tumors, especially in tumors with a high pro-
pensity for metastasis and resistance to conventional therapies [8].
Ferroptosis may be a potential therapeutic target in the field of
oncology. In addition to morphological features and biochemical
features [9], many genes have been reported to regulate ferroptosis,
such as acyl-CoA synthetase long-chain family member 4 (ACSL4)
and nuclear factor erythroid 2-related factor 2 (NRF2) [10,11]. Al-
though studies have shown the potential role of ferroptosis in a
large variety of tumors (such as lung cancer, colorectal cancer and
ovarian cancer), research on the role of ferroptosis in ICC remains
lacking. Therefore, it is interesting to identify effective ferroptosis-
related biomarkers to diagnose ICC patients at an early stage,
evaluate the prognosis of ICC patients, and provide possible tar-
geted therapy.

In this study, we aimed to explore the prognostic value of
ferroptosis-related genes and develop a new prognostic risk
model based on ferroptosis-related genes for ICC. We first ana-
lysed the RNA profiles and clinical information of ICC patients
from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) datasets. Then, we utilized the differentially
expressed ferroptosis-related genes associated with overall sur-
vival (OS) to establish a new prognostic model. Finally, the re-
sults obtained from the exploratory cohorts were further verified
in the Wenzhou Medical University (WMU) cohort. Through
RNA sequencing of ICC in our medical center, the prognostic role
and clinical value of the ferroptosis-related gene model were
validated. This may provide new insight into the prediction and
treatment of ICC.

Materials and Methods

Data collection

Level 3 RNA sequencing data and relevant clinical information were
obtained from the TCGA database (https://portal.gdc.cancer.gov/
repository) and GEO database (https://www.ncbi.nlm.nih.gov/
geo/). The “Limma” R package was used to standardize the gene
expression profiles. These data retrieved from the public database
were used to build the exploration cohort. Our study adheres to the
access policies and publication guidelines of the TCGA and GEO
databases. We obtained 60 ferroptosis-associated genes from the
previous literature [12-15], and 59 genes expressed in the ICC RNA-
sequence were ultimately included.

Construction of the WMU cohort

To build the validation cohort, tumor tissues and tumor adjacent
tissue were collected from 30 ICC patients who underwent surgery
at the First Affiliated Hospital of Wenzhou Medical University be-
tween October 2017 and November 2019. All patients were patho-
logically diagnosed with primary ICC. The clinical information and
follow-up information were obtained, and informed consent was
also obtained from each patient before surgery. Then, the RNA
expression data of the ICC were obtained by using transcriptional
RNA sequencing. This trial was approved by the Ethics Committee
of Wenzhou Medical University (2020-07) and adhered to the De-

claration of Helsinki.

Identification of ferroptosis-related differentially
expressed genes (DEGs)

We used the “Limma” R package to identify ferroptosis-related
DEGs between tumor tissue and tumor adjacent tissue from TCGA
and GEO databases. The Wilcoxon signed-rank test was used for the
analysis of DEGs, and we set a threshold of false discovery rate
(FDR) value < 0.05.

Functional annotation of DEGs

A protein-protein interaction (PPI) network for the overlapping
ferroptosis-related DEGs was generated by the STRING database
(https://string-db.org/). Furthermore, we also performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses using the “clusterProfiler” R package to
further evaluate the potential value of ferroptosis-related genes for
ICC. P<0.05 was considered statistically significant.

Establishment and validation of a ferroptosis-related
gene signature predicting the prognosis of ICC
Univariate Cox regression analysis was used to screen ferroptosis-
related genes which were associated with the OS of ICC patients in
the TCGA and GEO cohorts. Then, least absolute shrinkage and
selection operator (LASSO) regression analysis was performed to
prevent overfitting and construct a gene signature. Based on the
gene signature, the risk score for each patient was calculated using
the following formula: risk score = esum(expression level of each gene x corre-

sponding coefficient) The patients were divided into high-risk and low-risk
groups according to the median risk score. To evaluate the pre-
dictive value of the model, we used the “Survival ROC” R package to
perform Kaplan-Meier (KM) survival curve analysis and time-de-
pendent receiver operating characteristic (ROC) curve analysis.
Furthermore, ICC patients with complete clinical predictors were
enrolled to explore the independence of the ferroptosis-related sig-
nature, and univariate and multivariate Cox regression analyses
were implemented.

Validation of the ferroptosis-related gene signature in
the WMU cohort

Transcriptome sequencing analysis was used to acquire the RNA
expression data from the collected samples. Total RNA was ex-
tracted from frozen tissue using TRIzol reagent (Life Technologies,
Carlsbad, USA). Paired-end sequencing (2 x 100 bp) was performed
using a BGI-500 instrument (BGI, Shenzhen, China) with a mini-
mum of 20 million reads per sample. Sequencing data were pro-
cessed and mapped to the human reference genome (hgl9) using
Bowtie2. Gene expression from sequencing was mapped by Per-
Kilobase per Million mapped (RSEM) using fragments per kilobase
per million (RPKM). The expression levels of four genes (ACSL4,
IREB2, NFE2L2, and TP53) were validated in the WMU cohort.
According to the formula of the gene signature above, the risk score
of each patient was calculated, and KM curve and ROC curve ana-
lysis were also used to evaluate the predictive value of the gene
signature in the WMU cohort.

Statistical analysis
R software (version 3.5.3) was used to perform the statistical ana-

lysis. The gene expression differences were analyzed through the
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Wilcoxon signed-rank test. The chi-square test was used to compare
categorical variables. Univariate Cox regression, multivariate Cox
regression and LASSO regression were used to identify OS-related
DEGs and clinical predictors. KM analysis and ROC curve analysis
were used to evaluate the predictive value. Statistical significance
was established at P<0.05.

Results

Basic information

The flowchart of the study is shown in Figure 1. A total of 30 ICC
patients (including 30 tumor samples and 9 tumor adjacent tissues)
from TCGA database and 30 patients (including 30 tumor samples
and 27 tumor adjacent tissues) from GEO database were enrolled in
the exploratory cohort. Another 30 patients (including 30 tumor
samples and 30 tumor adjacent tissues) who underwent radical
surgery in our hospital were included in the WMU cohort as the
validation cohort. Exact clinical data are shown in Table 1. The 1-,
2-, and 3-year OS rates of patients in the exploratory cohort were
82.5%, 63.4%, and 46.8%, respectively, and the 1-, 2- and 3-year
disease-free survival (DFS) rates were 55.1%, 35.6%, and 35.6%,
respectively. For the validation cohort, the 1-, 2-, and 3-year OS
rates were 78.7%, 78.7%, and 45.6%, respectively.

Identification of ferroptosis-related DEGs in TCGA and
GEO cohorts

By analyzing the 59 ferroptosis-related genes obtained from the
previous literature, we identified 46 ferroptosis-related DEGs (35
upregulated genes and 11 downregulated genes) in the TCGA co-
hort and 53 DEGs (39 upregulated genes and 14 downregulated
genes) in the GEO cohort (Figure 2A,C). Thus, 34 common un-
regulated and 10 common downregulated ferroptosis-related DEGs
were screened (Figure 2B,D). The expression levels of 44 common

DEGs in the TCGA and GEO integrated databases are shown in
Figure 2E.

Functional annotation of ferroptosis-related DEGs

The PPI network of ferroptosis-related DEGs is shown in Figure 3A.
The correlation networks of ferroptosis-related DEGs in the TCGA
and GEO cohorts are presented in Figure 3B,C. Based on the results
of GO function enrichment analyses, we found that ferroptosis-re-
lated DEGs are mainly associated with response to oxidative stress,
cellular response to oxidative stress, cellular response to chemical
stress, glutathione biosynthetic process, nonribosomal peptide
biosynthetic process, sulfur compound biosynthetic process and
iron ion homeostasis (Figure 3D,E). The KEGG enrichment analyses
revealed that DEGs are significantly enriched in ferroptosis, ubi-
quitin-mediated proteolysis, central carbon metabolism in cancer,
fatty acid biosynthesis and 2-oxocarboxylic acid metabolism ac-
cording to the five top terms (Figure 3F,G). All these results in-
dicated that ferroptosis-related DEGs play an important role in ICC
initiation and development.

Construction of four ferroptosis-related gene signature
predicting prognosis

In the TCGA and GEO cohorts, four ferroptosis-related DEGs
(ACSL4, IREB2, NFE2L2, and TP53) were found to be associated
with OS based on the results of univariate Cox regression (Figure
4A). Then, LASSO regression analysis was performed to develop the
four-gene signature (Figure 4B,C). The patients were divided into a
high-risk group (n=30) and a low-risk group (n=30) according to
the median cut-off value (Figure 5D). The survival time of patients
in the high-risk group was visibly shorter than that in the low-risk
group (median OS: 64.6 months in the low-risk group and
24.3 months in the high-risk group) (Figure 5C). The 1-, 2-, and 3-
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Table 1. Clinical information of ICC patients from TCGA, GEO and WMU cohort

TCGA cohort GEO cohort WMU cohort

Number of patients 30 30 30
Age (Median, Range) 64 (29,82) 65 (49,79) 65 (41,78)
Gender (%)

Female 15 (50.0%) 6 (20.0%) 19 (63.3%)
Male 15 (50.0%) 24 (80.0%) 11 (36.7%)
Vascular invasion (%)

No 25 (83.3%) NA 22 (73.3%)
Yes 5 (16.7%) NA 8 (26.7%)
Recurrence (%)

Yes 15 (50.0%) 21 (70.0%) 19 (63.3%)
No 12 (40.0%) 9 (30.0%) 11 (36.7%)
unknown 3 (10.0%) 0 (0.00%) 0 (0.00%)
Stage (%)

1 18 (60.0%) NA 20 (66.7%)
I 8 (26.7%) NA 6 (20.0%)
111 0 (0.00%) NA 4 (13.3%)
v 4 (13.3%) NA 0 (0.00%)
Child-Pugh (%)

A 16 (53.3%) 12 (40.0%) 29 (96.7%)
B 1(3.33%) 18 (60.0%) 1 (3.33%)
C 0 (0.00%) 0 (0.00%) 0 (0.00%)
unknown 13 (43.3%) 0 (0.0%) 0 (0.0%)
Grade (%)

Gl 0 (0.00%) NA 4 (13.3%)
G2 14 (46.7%) NA 15 (50.0%)
G3 14 (46.7%) NA 11 (36.7%)

year OS rates were 93.1%, 77.3%, and 67.0% in the low-risk group
and 72.4%, 50.80%, and 28.20% in the high-risk group, respec-
tively. K-M curve analysis showed that patients in the high-risk
group had a worse OS (P=0.0081, Figure 5A). Time-dependent
ROC curves were used to evaluate the predictive value of the gene
signature, and the areas under the curve (AUCs) were 0.777, 0.75,
and 0.799 at 12 months,24 months, and 36 months, respectively
(Figure 5B). To further understand the prognostic value of the four-
gene signature in ICC, we compared DFS time in the high-risk
(median DFS: 57.5 months) and low-risk groups (median DFS:
9.6 months), and the K-M curve of DFS indicated that the patients
in the low-risk group had favorable DFS (P=0.02, Supplementary
Figure S1). The 1-, 2-, and 3-year DFS rates were 65.3%, 53.9%,
and 53.9% in the low-risk group and 46.2%, 17.6%, and 17.6% in
the high-risk group, respectively. The expression levels of ACSL4,
IREB2, NFE2L2, and TP53 in both the low- and high-risk groups in
the exploration cohort are shown in Figure SE.

Validation of the independent prognostic value of the
gene signature

Age, sex, grade, and stage were included in the survival analysis.
The results of univariate Cox regression (HR=2.625, 95%
CI=1.236-5.577, p=0.0312) and multivariate Cox regression
(HR=3.147, 95% CI=1.419-6.980, P=0.005) showed that the
four-gene signature is an independent prognostic factor affecting OS

(Figure 6A,B).

Validation of four ferroptosis-related gene signature in
the WMU cohort

The RNA expression data were extracted from the WMU cohort by
transcriptome sequencing analysis. All four ferroptosis-related
DEGs were upregulated in tumor tissue compared with tumor ad-
jacent tissue in the WMU cohort (Figure 7I-L). The results were in
accordance with the results from the TCGA cohort (Figure 7A-D)
and the GEO cohort (Figure 7E-H). The patients were divided into a
high-risk group (n=15) and a low-risk group (n=15) according to
the median risk score calculated by the four-gene signature (Figure
6E). The survival time of patients in the high-risk group was ob-
viously shorter t han that in the low-risk group (Figure 6F), and the
1-, 2-, and 3-year DFS rates were 93.3%, 93.3%, and 59.3% in the
low-risk group and 61.5%, 61.5%, and 30.8% in the high-risk
group, respectively. Kaplan-Meier curve analysis showed that pa-
tients in the high-risk group had a worse OS (P=0.059, Figure 6C).
Time-dependent ROC curves were generated, and the AUC of the
ROC curve was 0.69 (Figure 6D). The expression levels of ACSL4,
IREB2, NFE2L2, and TP53 in both the low- and high-risk groups in
the WMU cohort are shown in Figure 6G.

Discussion
In recent years, ferroptosis has attracted much interest in the field of
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Figure 2. Identification of ferroptosis-related DEGs in TCGA and GEO cohorts (A,C) The heat-maps show the expression of 59 ferroptosis-
associated genes in TCGA and GEO cohort. (B,D) Venn diagram shows the intersection of ferroptosis-related DEGs between TCGA and GEO cohort.
(E) The expression levels of 44 common DEGs in the TCGA and GEO integrated database. *P<0.05, **P<0.01, ***P<0.001.

oncology [16-19]. Liu et al. [20] established a novel prognostic
classifier based on ferroptosis and immune status in HCC. Li et al.
[21] demonstrated the predictive application of ferroptosis-related
genes for cholangiocarcinoma. However, few studies have reported
the prognostic value of ferroptosis-related genes for ICC. To the best
of our knowledge, this is the first study attempting to establish a
new ferroptosis-related gene prognostic model for ICC and to further
validate the predictive value in a clinical cohort.

In our study, we focused on identifying ferroptosis-related genes
in ICC from public databases and our own database. By searching
the previous literature, we obtained 59 ferroptosis-related genes. By
screening the TCGA and GEO databases, we found 44 genes dif-

Yao et al. Acta Biochim Biophys Sin 2022

ferentially expressed between the tumor tissue and tumor adjacent
tissue. In addition, functional analyses showed that ferroptosis-as-
sociated genes have an important influence on the development and
progression of ICC. Then, we tried to identify ferroptosis-related
genes associated with prognosis by univariate Cox regression and
LASSO regression analysis. Finally, we developed four ferroptosis-
related DEGs (ACSL4, IREB2, NFE2L2, and TP53) to construct a
gene signature model to predict the prognosis of ICC patients, and
the performance of the signature was validated in the WMU cohort.
All four ferroptosis-related DEGs were significantly upregulated in
tumor tissue compared with tumor adjacent tissue in the TCGA,
GEO, and WMU cohorts.
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Regarding the role of the four ferroptosis-related DEGs found in
our study, ACSL4 was demonstrated to be an important component
promoting ferroptosis in a previous study [10]. As a promising
prognostic biomarker, tumor ACSL4 is correlated with immune in-
filtration in cancers, and targeting ACSL4 may be a potential an-
ticancer treatment [22,23]. In our study, high expression of ACSL4
in tumor tissue was found to be associated with a worse prognosis
of ICC. IREB2 is a common ferroptosis-related gene, and inhibiting
IREB2 notably weakens ferroptosis in non-small cell lung cancer,
which leads to reduced antitumor efficiency [24]. The results ob-
tained from our study also proved that IREB2 is a protective factor
for ICC. Higher expression of IREB2 in tumor tissue is associated

with better OS. NFE2L2 plays an important role in regulating fer-
roptosis and is a promising target for treatment of neurodegenera-
tive diseases [25]. In a previous study performed by Yi et al. [26],
NFE2L2 was identified as a low-risk gene in bladder cancer. This is
in accordance with the results in our study of ICC. We found that
high expression of NFE2L2 is associated with a better prognosis in
ICC. TP53 plays a dual role in ferroptosis in various tumors through
different mechanisms [27] and has also been identified as a prog-
nostic factor and a potential therapeutic target. In our study, TP53
was demonstrated to be a protective factor with higher expression
in tumor tissue. In summary, these four genes play an important
role in ferroptosis and are closely associated with the prognosis of

Yao et al. Acta Biochim Biophys Sin 2022



1382

Ferroptosis-related gene model for ICC

Figure 4. Results of univariate cox regression and LASSO regression analysis in
regression analysis between gene expression and OS. (B) LASSO deviance profiles

TCGA and GEO cohort (A) Forest
. (C) LASSO coefficient profiles.
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ICC.

Furthermore, we verified the predictive value of the ferroptosis-
related gene signature in our own cohort. We built the WMU cohort
by collecting the tissue and clinical information of ICC patients who
underwent radical surgery in our hospital. Then, we performed
transcriptome sequencing analysis to identify the expression of
ferroptosis-related DEGs. We found that the expression of ferrop-
tosis-related genes was in accordance with that of the TCGA and
GEO cohorts. The patients in the WMU cohort can be divided into a
high-risk group and a low-risk group according to the risk score, and
the survival time of patients in the high-risk group seemed shorter
than that in the low-risk group. Interestingly, although the patients
in the high-risk group had a distinctly worse OS than those in the
low-risk group according to the KM curve (Figure 6C), the P value
was 0.059. We speculated that this may be due to the small number
of patients enrolled in the study. Subsequent ROC curve analysis
further demonstrated the predictive value of the ferroptosis-related
gene signature (AUC=0.69). All these findings may provide new
insight into the prediction and prognosis of ICC.

There are also some limitations in our study. First, the samples
obtained from the three cohorts (TCGA cohort, GEO cohort, WMU
cohort) were small because of the low incidence of ICC. Second,
although the ferroptosis-related gene signature was constructed and
validated in the three cohorts, the mechanism by which ferroptosis-
related genes affect prognosis needs further investigation. Finally,
all the information used in the study was acquired from retro-
spective data, and more prospective real-world data are required to
confirm the predictive value of the gene signature.

In conclusion, we established a new predictive model based on
four ferroptosis-related genes (ACSL4, IREB2, NFE2L2, and TP53)
that showed favorable prognostic value in the three cohorts. This
study may provide new insight into the prediction and treatment of
ICC.
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Supplementary data is available at Acta Biochimica et Biphysica
Sinica online.
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