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Abstract The conventional randomized response design is
unidimensional in the sense that it measures a single dimen-
sion of a sensitive attribute, like its prevalence, frequency,
magnitude, or duration. This paper introduces a multidi-
mensional design characterized by categorical questions
that each measure a different aspect of the same sensitive
attribute. The benefits of the multidimensional design are
(i) a substantial gain in power and efficiency, and the poten-
tial to (ii) evaluate the goodness-of-fit of the model, and
(iii) test hypotheses about evasive response biases in case
of a misfit. The method is illustrated for a two-dimensional
design measuring both the prevalence and the magnitude of
social security fraud.

Keywords Randomized response - Power - Efficiency -
Response bias

Introduction

In surveys and questionnaires, sensitive questions are the
major source of evasive responses. Respondents tend to
avoid self-stigmatizing answers that reveal their true state
as deviating from the norm. For example, if respondents

B4 Maarten J. L. F. Cruyff
m.cruyff@uu.nl

Department of Methodology & Statistics, Utrecht University,
Padualaan 14, 3584 CH Utrecht, The Netherlands

Kellogg School of Management, Northwestern University,
Evanston, IL, USA

S3RI, University of Southampton, Southampton, Great Britain

@ Springer

believe their behavior is below or above average, they
respectively over- or underreport their actual actions, rang-
ing from exercise (Tourangeau et al., 1997) to income levels
(Moore et al., 1999). Other examples of social desirability
and acquiescence in self-reports on personal and sensitive
issues are abound (Hurd 1999; Tourangeau & Yan, 2007,
Van Soest & Hurd, 2008, Krumpal, 2012). To lower the
incidence of evasive responses, recent work has focused on
response—elicitation methods that protect the privacy of the
respondent. One such method that has received considerable
attention is randomized response. Under the randomized
response design, the answer to a sensitive questions like
“Did you use cocaine this month?” is determined by the
combination of the respondent’s true state and the outcome
of a randomizer. Since the outcome of the randomizer is
known only to the respondent, the privacy of the respon-
dent is protected and the risk of an evasive response is
reduced.

The costs of privacy protection are two-fold. First, there
is a loss of statistical efficiency; randomized response
requires larger samples than direct questioning to obtain
similar standard errors. To keep sample size requirements
in check, there is a strong need to improve the efficiency
of the randomized response design (e.g., Boruch, 1971; Fox
& Tracy, 1986; Mangat, 1994; Gjestvang & Singh, 2006;
Chaudhuri 2011; Moshagen, Musch, & Erdfelder, 2012).
In spite of these efforts, it may still be problematic to sig-
nificantly estimate a sensitive category with a prevalence
close to zero. This is especially true for sensitive attributes
with more than two categories, and this may very well be
the reason that such highly informative polytomous ques-
tions as “How much cocaine did you use last month?”
have been rarely used in randomized response. Second,
although randomized response yields more valid answers
than direct questioning (Lensvelt-Mulders et al., 2005),
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there is no guarantee that the privacy—protection mecha-
nism completely eliminates evasive response behavior. As a
consequence, prevalence estimates may be biased.

Thus, when choosing a randomized response design, one
should not only consider its power but also its potential
for detecting response biases. The unidimensional design is
limited in this respect, because its statistical model is satu-
rated. Consequently, it is expected to fit the data perfectly,
even in the presence of response biases (Van den Hout &
Van der Heijden, 2004). This is not a satisfactory situa-
tion, and several multivariate models for the unidimensional
design have been proposed that allow for the estimation of
response biases. However, in order to identify these mod-
els, it is necessary to make strong distributional assumptions
with respect to the sensitive attributes under investigation,
such as a latent scale and conditional independence in IRT
models (Bockenholt & Van der Heijden 2007; De Jong,
Pieters, & Fox, 2010), the absence of the highest-factor
interaction in a log-linear model (Cruyff et al., 2007), and
the specification of informative priors in a Bayesian model
(Van den Hout & Klugkist, 2009). Notable exceptions are
the unidimensional two-group models (Clark & Desharnais,
1998; Moshagen et al., 2012; Van den Hout et al., 2010),
which create degrees of freedom by dividing the sample
into two groups with different randomization probabilities.
These models, however, either leave the true state of the
instruction non-compliant respondents unspecified (Clark
& Desharnais, 1998), or assume that non-carriers of the
sensitive attribute always comply with the instructions
(Moshagen et al., 2012). A major benefit of the mul-
tidimensional design is that such assumptions are either
unnecessary or testable.

The key reason for proposing a multidimensional ran-
domized response design is that it addresses the issues
of efficiency and goodness-of-fit in a satisfactory way. A
power study shows that the design is highly efficient, and
therefore ideally suited for small prevalence estimation. In
addition, the statistical model for multidimensional design
has the desirable property of not being saturated. As a
result, a meaningful goodness-of-fit test can be performed,
and hypothesis testing of evasive responses is straightfor-
ward, and without any need to specify strong distribu-
tional assumptions to identify the model. These benefits
are critical in sensitive question applications as well as in
experimental studies that investigate conditions that trigger
evasive responses.

The remainder of the paper is structured as follows. We
first introduce a large-scale application on social security
fraud (Lensvelt-Mulders et al., 2006) that allows illustrating
the benefits of the proposed design. In “The model” section,
we derive the statistical model for the multidimensional
design, and in “Power study” section we present a power
study comparing the uni- and multidimensional designs.

Section “The analysis” returns to the data set and presents
the results obtained with the proposed statistical models. We
conclude the paper by summarizing the main results and by
discussing future research topics in “Discussion” section.

The data

At the turn of century, social security fraud was a much
debated issue in the Netherlands. In 2000, the Dutch
Department of Social Services started a program to moni-
tor the prevalence of social security fraud. Every 2 years,
a computer-assisted self-administered (CASI) survey was
conducted with a unidimensional randomized response
design characterized by a series of dichotomous questions
assessing the prevalence of various types of social security
fraud (see Lensvelt-Mulders et al., 2006). Since the depart-
ment was also interested in the amounts of money involved,
the survey was extended in 2004 with polytomous ques-
tions. We consider the following dichotomous and polyto-
mous survey questions inquiring about the prevalence and
magnitude of unreported income from odd jobs:

A: Have you ever in the past 12 months done small jobs for
friends or acquaintances without reporting the income
to the Department of Social Services?

B: On average, how much money a month (in euros) have
you earned in the past 12 months in addition to your
social security benefit by doing small jobs for friends or
acquaintances without reporting this to the Department
of Social Services?

Question A has response categories “No” and “Yes”, coded
as 0 and 1, and question B has six response categories
“07, “1-507, “51-1007, “101-1507, “151-250” and “more
than 2507, coded O to 5. The responses to these questions
were independently randomized according to the Forced
Choice design (Boruch, 1971): Respondents were instructed
to throw two virtual dice and answer question A with “Yes”
if the sum of the dice was 2, 3 or 4, with “No” if the sum of
the dice was 11 or 12, and give a truthful answer if the sum
of the dice was 5, 6, 7, 8, 9, or 10. To answer question B, the
respondents threw another set of dice and answered truth-
fully if the outcome was 35, 6, 7, 8, 9, or 10. Otherwise, a
single virtual die was thrown, and the number of eyes minus
one was reported.

Under this randomization scheme, the transition prob-
abilities denoting the probability of the observed answer
given the respondent’s true state, are computed as the sum of
a truthful and a forced responses. On question A, the proba-
bility of answering “Yes” given that the respondent enjoyed
unreported income equals 3/4+1/6 = 11/12, and the prob-
ability of answering “No” given that the respondent did not
enjoy unreported income is 3/4 + 1/12 = 5/6, where 3/4
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is the probability of a truthful answer. On question B, the
probability that the answer corresponds to the respondent’s
true state equals 3/4+1/24 = 19/24, where 3/4 is again the
probability of a truthful answer, and 1/24 = 1/4x 1/6is the
probability of a forced response equal to the respondent’s
true state.

During the course of the survey, however, it was dis-
covered that a programmer inadvertently had programmed
biased dice. After this was corrected, a total of 302 social
security beneficiaries completed the survey using the unbi-
ased dice. Table 1 presents the observed response frequen-
cies nji for this group, with jk denoting the response
profiles 00, ..., 15.

The model

This section derives a statistical model for the analy-
sis of categorical multidimensional randomized response
data. Before introducing this approach, we review mod-
els for the analysis of categorical unidimensional data to
clarify the key differences between the uni- and multidimen-
sional approaches. We also discuss model estimation, the
goodness-of-fit test, and the modeling of response biases.

Unidimensional design analysis

The unidimensional design is characterized by one or more
categorical questions—be it dichotomous or polytomous—
that each addresses a different sensitive attribute. These
questions may be analyzed either in a univariate or in a mul-
tivariate manner. A general model for the unidimensional
design is

p(Rzr)ZZP(R=F|S=S)P(SZS). (D

In the univariate version of this model, R is the variable
denoting the m response categories of the sensitive question,
S the variable denoting the m corresponding true states, and
P(R = r|S = s) is the transition probability of observing
response » given the true state s, forr, s € {0,...,m — 1}

Table 1 Observed response profile frequencies

jk Response profile nj;  jk Response profile nj; total

00 “No, 0” 178 10 “Yes, 0” 25 203
01 “No, 1-50” 9 11 “Yes, 1-50” 29 38
02 “No, 51-100 "~ 6 12 “Yes, 51-100” 9 15
03 “No, 101-150” 6 13 “Yes, 101-150” 10 16
04 “No, 151-250" 9 14 “Yes, 151-250” 12 21
05 “No, 250+ 5 15 “Yes, 250+” 4 9
Total 213 89 302
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and m > 2. The transition probabilities can be derived from
the known outcome distribution of the randomizer (Fox &
Tracy, 1986; Chaudhuri & Mukerjee, 1988; Kim & Ward,
2005).

In the multivariate version of the model, the variable
R denotes the response profiles and S the corresponding
true states profiles. For example, the bivariate model for
two questions with m and k response categories has m x k
response profiles and m x k corresponding true state profiles,
as given by s,r € {00, ..., (m — 1)(k — 1)} form, k > 2.
The transition probabilities for a multivariate model with J
questions are obtained as

J
P(R=r|S=5)=[]PR; =rjIS; =s). @)
j=1

where P(R; = rj|S; = s;) denotes the univariate transition
probability for question j (Kuha & Skinner, 1997).

Multidimensional design analysis

The multidimensional design is characterized by multiple
categorical questions addressing different dimensions of the
same sensitive attribute. Since on each dimension the true
states denoting zero intensity overlap, the multidimensional
design with J questions has fewer true state profiles than the
unidimensional designs with J questions. Without loss of
generality, we illustrate this for the two-dimensional design.

Let the variables R4, and R4, denote the respective m
and k response categories of two questions that each mea-
sure a different dimension of the same sensitive attribute.
For example, the question “Did you use cocaine last
month?” measures the dichotomous user/non-user dimen-
sion, while the question “How much cocaine did you last
month?” measures a polytomous quantity dimension. Obvi-
ously, when one has not used cocaine, one cannot have used
a positive amount. Vice versa, when one has used cocaine,
one cannot have used a zero amount. It follows that only the
14+ (m—1)(k—1) true states combinations S4, =0, Sa, =0
and S4, > 0, S4, > 0 can occur. However, due to the ran-
domization of the responses all m x k combinations of the
response categories of R4, and R4, can occur. Hence, the
model for the two-dimensional design is

P(R=r)=Y P(R=r|S"=sP(S =5, ()

s*

where R € {00, ..., (m — 1)(k — 1)} denotes the full set of
response profiles, and $* € {00, 11,..., (m — 1)(k — 1)}
the reduced set of feasible true state profiles. The two-
dimensional transition probabilities P(R = r|S* =s%)
following from expression (2) after substitution of S for
S*. The model has m + k — 2 degrees of freedom, which
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correspond to the number of true state profiles that cannot
occur.

Estimation and goodness-of-fit

The maximum likelihood estimator (MLE) of the true state
probability vector & under the multidimensional design can
be obtained by maximizing the log-likelihood function

In€(rin) =Y np In(prismye), 4)

where n is the vector of the observed frequencies n, of
response profiles r, p,|s+ is shorthand notation for P(R =
r|S* = s%), and m,+ the prevalence of true state profile s*
(for the unidimensional design, the notation is with the sub-
scripts s instead of s*). The R code for model estimation is
given in Appendix B.

A commonly used goodness-of-fit test for models with
categorical data is the likelihood-ratio test statistic

G*=2 Z ny In(n,/A,), (5)

where n, and 71, denote the respective observed and fitted
response frequencies (using the convention 0 - In(0) = 0
in case n, = 0). For sufficiently large n, the G>-statistic
is approximately Chi-squared distributed with the degrees
of freedom equal to the number of response profiles minus
the number of true state profiles. Under the unidimensional
design, where the number of responses profiles equals the
number of true state profiles, the G>-statistic is expected to
be zero, but this need not be the case. This awkward result
occurs when an observed frequency is below the minimum
expected frequency, i.e., the frequency expected when the
prevalence of the corresponding true state is zero. Reasons
for this to happen are sampling error (in the outcomes of the
randomizer) and/or instruction noncompliance, such as the
presence of evasive responses in the data (Van den Hout &
Van der Heijden, 2004). These effects are confounded, but
since there is no theory for a positive G>-statistic on zero
degrees of freedom, the G?2-test cannot be used to test for
the presence of evasive response biases. Under the multi-
dimensional design, however, the model has the necessary
degrees of freedom to perform a meaningful goodness-of-fit
test. If the test is non-significant, the misfit can be attributed
to sampling error, but a significant test provides evidence
for the presence of response biases. In the latter case, the
degrees of freedom can also be utilized to test hypotheses
about the nature of the response biases, which may help us
to better understand the psychological mechanisms that lead
to evasive response behavior. Below we present two such
response bias models for the two-dimensional design.

Tests for response biases

The response bias models we consider assume two rather
different psychological mechanisms that may lead to
response biases. The first mechanism assumes that a
response bias is a question effect in the sense that the sen-
sitivity of a question may elicit response biases. The second
mechanism assumes that a response bias is caused by per-
son effects in the sense that some respondents may answer
questions evasively.

Consider two questions A and B that trigger evasive
responses with respective probabilities 64 and 8, indepen-
dently of a person’s true state. In this case, the transition
probabilities of observing a non-zero response to question
A are decreased by a factor 1 — 64, and those for question
B by a factor 1 — 6p. The modified transition probabilities
for both questions A and B thus become

f’(Rj = ri,~|S.,' = Sj) = (1 —GJ')P(RJ' = VJ'|SA]' = SJ')
+I(R; = 0)0;, 6)

where j € {A, B} is an index for the question and
I(R; = 0) an indicator variable taking value 1 if the
observed response is “0”. These probabilities are plugged
into expression (3) to obtain the transition probabilities for
the question—effect model.

Under the person—effect model, we assume that a subset
of respondents answers both questions evasively, irrespec-
tively of their true state or the outcome of the dice. For this
model, the transition probabilities are obtained as

P(R=r|S*"=5% = (1—-60)P(R=r|S" =%
+I1(R =00)0, (7

where P(R = r|S* = s*) are the transition probabilities
of the basic two-dimensional model, 6 is the prevalence of
the class of evasive respondents, and / (R = 00) an indica-
tor taking value 1 if the observed response profile is “00”.
Estimation of these models follows the same principles as
described in the previous section (for the R code we refer to
Appendix B).

Both models are applied in “The analysis” section to
demonstrate the capabilities of the multidimensional design
in testing for response biases. We do note, however, that the
two hypotheses on person and item effects are by no means
exhaustive. For example, more complex hypotheses might
consider the true state of the respondent, or the possibility
of non-zero evasive responses to the polytomous question.
Given the uncertainty about the validity of the assumptions,
we stress caution in interpreting the results obtained by
these models. We suggest to apply these models as part of a
sensitivity analysis that evaluates the robustness of the origi-
nal model against the presence of evasive responses. If these
tests point to the presence of evasive responses, additional

@ Springer



394

Behav Res (2016) 48:390-399

studies are needed to examine and validate the underlying
response bias mechanism.

Power study

This section presents the main results of this paper by com-
paring the power and efficiency of four unidimensional
designs and one multidimensional design. Three of the
unidimensional designs are dichotomous. The least effi-
cient of these is the one by Warner (1965), which involves
the randomization of the sensitive question and its com-
plement. A more efficient design is Forced Choice (FC2)
by Boruch (1971), which involves the randomization of
truthful and forced responses. The study also includes a
trichotomous version (FC3). One of the most efficient uni-
dimensional designs at present is the one by Mangat (1994),
and is comparable to the FC2 design with the difference
that respondents with the sensitive attribute are expected
to answer the question truthfully. As the representative for

Relative efficiency
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the multidimensional design, we have selected the two-
dimensional Forced Choice design with a dichotomous
and trichotomous question, which is labeled as FC2x3
(Table 2).

The efficiency of the unidimensional designs in this study
can be compared on the basis of their transition proba-
bilities. For comparability, the transition probabilities pojo
are set to 5/6 for all four designs. For the (dichotomous)
Warner, FC2 and Mangat designs, py; is respectively set
to 5/6, 11/12, and 1. For the FC3 design, p,|s is set to 5/6
for all » = s. The transition probabilities of FC2x3 design
are derived according to Eq. 2 using the univariate transition
probabilities of FC2 and FC3.

The top-left panel of Fig. 1 shows the efficiency of the
various randomized response designs relative to that of the
direct question design for 74 = 1 — w9 € {0, .25}. The
relative efficiency (RE) of the estimator for 7 is computed
as

R var,,, (7
RE(r) = “aeit) ®)
var, ()
power at m, = .025
1.0
0.8 /
~ 0.6
[
ES
o
= 0.4 A
0.2 74
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Table 2 Transition probabilities of the uni- and two-dimensional Table 3 Prevalence estimates and goodness-of-fit tests
design(s)
FC2 FC6 FC2x6
Warner FC2 Mangat FC3 FC2x3
Est. SE Est. SE (SEp) Est. SE (SEp)
Dojo 5/6 5/6 5/6 5/6 25/36
i 5/6 11/12 1 5/6 55/72 70 82.9 35 83.0 3.6(34) 79.7 2727
pap _ _ _ 5/6 55/72 T 17.1 35 11.0 2.5(2.6) 11.7 23(23)
b5 1.0 1.7 (1.3) 22 1.4 (1.3)
3 1.4 1.7 (1.4) 2.7 1.4 (1.4)
4 3.6 1.9 (1.9) 3.7 1.6 (1.6)
with var(7;) = var(l — 79) = var(sp) denoting the 5 0.0 1.5(0.0) 0.0 0.9 (0.0)
analytical sampling variance (for the derivations of the ana- G =0 Gl =18 Gl =93

lytical sampling variances, we refer to Appendix A). The
RE-curves show that the two-dimensional FC2x3 design
is substantially more efficient than all four unidimensional
designs. For example, for 7, = .05, the former design
needs to increase the sample size by a factor to obtain
the same precision as the direct question design, while the
unidimensional designs require factors ranging between 5
and 8.

The remaining three panels of Fig. 1 display the power
curves of the various designs. The power is defined as the

probability of rejecting the null hypothesis Hy : m4+ = o

given that the alternative Hy : my = 4 is true, and is

computed as

yzq)(MA Mo + Za o)’ ©)
oA

where o and o4 are the respective standard deviations of
w4 under Hy : my = 0 and Hy : my € {.025,.05,.10},
and z, the z-score at significance level o (Ulrich et al.,
2012). The top-right panel shows that, for the alternative
that my = .025, the FC2x3) attains a power of 80 % with
n = 630, while for that sample size the unidimensional
designs have a power of 15 % or less. For the alternative
that w4 = .05, the FC2x3 requires n =~ 180 to attain 80 %
power, while the unidimensional designs need between 600
and 850 respondents. For the alternative 7y = .10 %, the
FC2x3 attains 80 % power at n &~ 50, while the unidimen-
sional designs require sample sizes between 200 and 250
respondents.

The analysis

We analyzed the social security survey data in “The data”
section with unidimensional FC2 and FC6 models, and the
two-dimensional FC2x6 design. Table 3 reports the preva-
lence estimates and (analytical) standard errors of the three
models. Since the models FC6 and FC2x6 yield bound-
ary estimates, the analytical standard errors may be biased.

Consequently, a parametric bootstrap was conducted to
obtain empirical standard errors, reported in the table as sep.

The models FC2 and FC6 for the unidimensional designs
yield prevalence estimates of unreported income fraud
of 17.1 % and 17.0 %, with 95 % confidence intervals
(10.2, 23.9) and (9.9, 24.1) (based on the analytical stan-
dard errors). The FC2x6 model for the two-dimensional
design yields a slightly higher estimate of 20.3 %, with the
95 % confidence interval (14.9, 25.6). Comparing the stan-
dard errors of the models, we find that the FC2x6 model
yields the most precise estimates. Furthermore, the FC6
model obtains only one significant estimate for the posi-
tive amounts of unreported income, while the FC2x6 model
yields three (with the additional estimate 73 being on the
verge of significance). Obviously, the FC2x6 model allows
for more confident conclusions about the distribution of
unreported income than the FC6 model. Aside from the
boundary estimate 75, the analytical standard errors are
close to the bootstrap standard errors (especially for the
FC2x6), so that the quality of the former appear satisfactory.

When evaluating the fit of the models, we see that the
FC2 model fits as expected, but that model FC6 has a non-
zero G?-statistic. This result is due to the observed response
frequency ns = 9, which is smaller than the expected min-
imum n - P(R = forced “5”) = 302/24 = 12.6. Since
the model does not have any degrees of freedom, we can-
not perform a goodness-of-fit test or fit a response—bias
model. Consequently, we cannot determine the likelihood
of evasive responses in the data, or examine the nature and
prevalence of potential response biases. However, for the
FC2x6 model, such tests can be performed. The goodness-
of-fit test G = 9.3, df = 6, p = .16) indicates that the
fit of the model is satisfactory. We note that the presence of
response biases cannot be ruled out; the goodness-of-fit test
may not have enough power to detect response biases and
the G2 value leaves room for improvement. To learn more
about the potential presence of response biases in the data,
we fit the two response bias models described in the model
section.
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The question—effect model does not affect the fit at all,
but the person—effect model significantly reduces the G2
value with 8.3 points on one degree of freedom G> =
1.0, df =5, p = 0.96). Its estimate 6 = 0.217 and the
corrected prevalence estimates (with 0.001 rounding error)
z =(0.719, 0.157, 0.032, 0.038, 0.053, 0.000) imply that
6 (n —noo)/n =~ 9 % of the observed response profiles is
actually misreported as “00”. Although this model is sig-
nificant, there is a risk of overfitting and uncertainty about
the validity the model assumptions. Therefore we interpret
the results as a worst-case scenario, and the corrected preva-
lence estimate of 28.3 % as the upper bound for unreported
income. Thus, ignoring evasive response biases in our origi-
nal model (with the prevalence estimate of 20.3 %) may bias
the prevalence estimate of unreported income by as much as
8 %.

The boundary solution, in combination with a relatively
small sample and the flexibility of the person—effect model
(5 degrees of freedom for fitting 12 response frequencies)
may have compromised the consistency of the estimates
and may have resulted in low power to detect the per-
son effect. To investigate this, we performed a parametric
bootstrap by generating 2 x 10,000 random samples of
respective sizes n = 302 and n = 1,000 from a popu-
lation with parameters 6 and m as estimated for the social
security data. We applied the randomized response proce-
dure and the person effect to these samples, and fitted the
person—effect model. Table 4 reports the averaged bootstrap
estimates, the 95 % confidence intervals, and the power
estimates (the proportion of samples with a significant
estimate é).

The results in Table 4 show that the parameter estimates
are minimally biased for n = 302, and that this bias dis-
appears almost completely as the sample size increases.
Importantly, the power to detect the person effect is more
than adequate for sample size of 302, and approaches 1 as
the sample size increases to 1,000.

Table 4 Bootstrap estimates for the person—effect model

n =302 n = 1000
Value Est. (95 % CI) Est. (95 % CI)

70 0.719 0.716 (0.617; 0.798) 0.718 (0.666; 0.766)
b8 0.157 0.158 (0.095; 0.229) 0.157 (0.122; 0.195)
b2} 0.032 0.033 (0.002; 0.071) 0.032 (0.014; 0.052)
3 0.038 0.039 (0.005; 0.080) 0.038 (0.019; 0.059)
Ty 0.053 0.053 (0.015; 0.099) 0.053 (0.032; 0.077)
s 0.000 0.002 (0.000; 0.025) 0.001 (0.000; 0.013)
[% 0.217 0.219 (0.076; 0.354) 0.217 (0.142; 0.292)
Power 84.5 % 99.9 %
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Discussion

This paper introduced a multidimensional design for ran-
domized response studies. We showed that this design has
three major advantages over current unidimensional ran-
domized response design. It enables prevalence estimation
of the various levels of a sensitive attribute with significantly
higher precision. Furthermore, it allows for model evalua-
tion, and in case of misfit, for testing hypotheses about the
presence of evasive response biases. These are important
benefits that should facilitate the application of randomized
response designs. We illustrated these benefits for Boruch’s
(1971) FC approach, but modifications to accommodate
other randomized response designs are straightforward and
require few changes.

A frequently used strategy for demonstrating the use-
fulness of randomized response methods is to compare the
estimated prevalence rates to the ones obtained by asking
respondents directly. Our analyses show that this compar-
ison can lead to incorrect conclusions. When respondents
do not follow the design, the resulting prevalence estimates
may be severely biased. A more informative and behav-
iorally descriptive approach is to test for the presence of
different forms of misreporting. This provides both insight
in the robustness of our prevalence estimates against misre-
porting and in the likelihood of different evasive response
mechanisms. Validation of these mechanisms in subse-
quent studies will improve our knowledge about evasive
response behavior in randomized response settings. The
proposed statistical model for the multidimensional ran-
domized response design provides an easy-to-implement
approach for this purpose.

In addition to efficiency and goodness-of-fit consider-
ations in comparing randomized response designs, it may
also be valuable to investigate the degree to which they
make respondents feel protected under various randomized
response designs. Randomized-response designs with the
same statistical properties (i.e., identical transition probabil-
ities) may not have the same psychological properties. The
degree to which different randomized response designs, as
those by Warner (1965), Greenberg et al. (1969), Boruch
(1971) and Kuk (1990), trigger misreporting would thus
be a fruitful area of research. To illustrate this, consider a
Warner and FC design with identical transition probabilities
pojo = p1;1 = 0.8. Under the FC design, respondents with-
out the sensitive attribute have a 20 % chance to be forced to
(incorrectly) answer “Yes” to the sensitive question, while
under the Warner design they have a 20 % chance to (cor-
rectly) answer “Yes” to the complementary question. The
latter randomization mechanism may be perceived as less
intrusive, and therefore provoke fewer evasive responses.
Clearly, experimental investigations of these designs are
needed that improve our understanding of the psychological
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conditions that lead to evasive responses so that they can be
controlled for effectively. Given its capacities for modeling
response biases, the multidimensional design would be well
suited for this purpose.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix A: Sampling variance of 7 4

Section A of the appendix presents the analytical sampling
variances for unidimensional and two-dimensional designs
of Section 3.

For the dichotomous unidimensional designs, the sam-
pling variance of the prevalence estimate 7] = 74 is most
easily derived by the method of moments. To simplify nota-
tion, let 7y, = P(S = s), n; = P(R = r), and p,; =
P(R = r|S = s). The sampling variance of the response
probability 7} is
7l —m))

n

var(# ) = (10)

where 7 is the probability of a “1” response in the sample.
Since model (1) follows that 7'[;I< = (p1;1 — P110)71 + P1j0s
the moment estimator of 771 can be derived as

. T = P1jo
T = ————»

P11 — P1jo
where 7} is estimated as the observed proportion of “Yes”
responses in the sample. Since n7] has a binomial dis-
tribution B(n, 7r{), the sampling variance of 7| is given
by

an

mf(l—mf
n(pii — p1o)*’
Kuk (1990) and Su et al. (2014). Notice that in Eq. 11 the
estimate 771 can take a negative value if n/n < pyjo. Since
the moment estimator of 7y is not bounded by 0, its sam-
pling distribution is asymptotically normal (Ulrich et al.,
2012).

For polytomous unidimensional designs, the computa-
tion of the sampling variance of 7] involves covariances,
and therefore the maximum likelihood method is better
suited. The sampling variance of 7] can be obtained from
the inverse of the Fisher information

var(7)) = (12)

3%In¢
I1=—-E M , (13)
07T, 07Ty
with entries (u+ 1, v+1), foru, v € {0, ..., m — 1}, where

m is the number of response categories. A difference with
the method of moments is that prevalence estimates can-
not be negative, so that the normal approximation may be

compromised if there are estimates on the boundary of the
parameter space.

The method is illustrated for the trichotomous FC3
design. To further simplify notation, let d denote the prob-
ability of a truthful response, and e = (1 — d)/3 the
probability of a forced response. After some algebra, model
(1) can be written as 7 = dmg + e, for s € {0, 1,2}. By
defining & = (o, 71, 1 —mo— 1), and plugging this vector
in the log-likelihood (4), we obtain

> neInGrf) = noln(dmo + ) + ny In(dm + e)
-
+nyIn(d(1 — g — 71) + €) (14)

Taking the partial derivatives with respect to o and 71, we
obtain

—no(d/n§)? —na(d/n3)? for u=v=0

32y, ny In(r) o
om0t na(d/m5) oru#v (15)
—m(d/7f)? — na(d/n3)? for u=v =1
which, after taking the expectation E(n,) = nx} and

changing the sign, yields the Fisher information

l/ng+ 1/ 1/m}
I =nd* (16)
1/} 1/mf + 1/

as defined in Eq. 13. Inversion of this matrix yields the
variance-covariance matrix

1 ( 1 1 1 >1<l/n]*+1/rr2* —1/n} )
— ot ,a7)
nd? \mgni ~ wgmy - wing S V27 Vo2

with the sampling variances of mp and 7r; on the diagonal,
and the sampling variance of 7> given by the sum of the
elements in Eq. 17. To obtain the sampling variance of m,
we note that var(74.) = var(l — 779) = var(7g). The Fisher
information for the two-dimensional FC designs is derived
analogously, but with substantially more tedious algebra.
The analytical expressions for its inverse are intractable, so
that the inversion is best performed numerically with the
help of a computer program.

Appendix B: R-code for model estimation
Section B of the appendix presents R code for the estima-

tion of the two-dimensional model for the social security
data. For efficient programming the summations in Egs. 2,

@ Springer
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3, and 4 are computed using matrix algebra, and to ensure
that the prevalence estimates stay within the boundaries of
the parameter space, we use a logistic transformation.

nobs <- ¢(178,9,6,6,9,5,25,29,9,10,12,4)
# observed data

d <- 3/4 # probability of truthful
response

b <- 1/6 # probability of forced
‘‘Yes' '’

c <- 1/12 # probability of forced
\No” !

e <- 1/24 # probability of forced
‘rofr, M1, , VY50

# transition matrix for the univariate
model for A

A <- matrix(c(d+c,b,c,d+b),2,2)

# transition matrix for the univariate
model for B

B <- matrix(e,6,6)

for(j in 1:6) BI[j,j] <- d+e

# transition matrix for the
two-dimensional model

P <- cbind(A[,1] %x %BI[,11,
A[,2] %x %B[,2:6])

# logistic function
lg <- function(v)matrix(exp(c(0,v))/
(l+sum(exp (v))) ,ncol=1)

# log-likelihood function

two-dimensional model

logl.FC2x6 <- function(b,data) {
p.obs <- P %% %$1lg(b)
return (-t (data) %* %$log(p.obs))

# log-likelihood function
question-effect model
logl.QE <- function(b,data){

p.obs <- Pt %x %1lg(b[1:5])

theta.A <- 1/ (l+exp(-b[6])); theta.B
<- 1/ (1+exp(-b[71))

At <- (1l-theta.Ah) xA; At [1,]
<- At[1,]+theta.A

Bt <- (1-theta.B)xB; Bt[1,]
<- Bt[1l,]+theta.B

Pt <- cbind(At[,1] %x %Bt[,1],
At[,2] %$x %Bt[,2:6])

@ Springer

return (-t (data)

}

$* %$log(p.obs))

# log-likelihood function person-effect
model
logl.PE <- function(b,data){
p.obs <- Pt %*x %1g(b[l:5])
theta <- 1/ (l+exp(-bl[6]1))
Pt <- (1l-theta) xP; Pt[1,] <-
Pt [1,]+theta

return (-t (data) %* %log(p.obs))

# model estimation

FC2x6 <- optim(rep(-3,5),data=nobs,
logl.FC2x6,method="BFGS")

hat .ptrue <- lg(FC2x6Spar)

QE <- optim(c(hat.ptrue,-2,-2),
data=nobs, logl.QE, method="BFGS")
hat.ptrue.QE <- 1g(QES$par[1:5])
hat.theta.A <- 1/(l+exp(-QESpar[6]))
hat.theta.B <- 1/(l+exp(-QESpar[7]))

PE <- optim(c(hat.ptrue,-2,-2),
data=nobs, logl.PE, method="BFGS")
hat.ptrue.PE <- 1lg(PESpar[1l:5])
hat.theta.PE <- 1/ (l+exp(-PESpar[6]))
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