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Abstract Oral administration is the most commonly used route for drug treatment. Intestinal cytochrome
P450 (CYP)-mediated metabolism can eliminate a large proportion of some orally administered drugs
before they reach systemic circulation, while leaving the passage of other drugs unimpeded. A better
understanding of the ability of intestinal P450 enzymes to metabolize various clinical drugs in both
humans and preclinical animal species, including the identification of the CYP enzymes expressed, their
regulation, and the relative importance of intestinal metabolism compared to hepatic metabolism, is
important for improving bioavailability of current drugs and new drugs in development. Here, we briefly
review the expression of drug-metabolizing P450 enzymes in the small intestine of humans and several
preclinical animal species, and provide an update of the various factors or events that regulate intestinal
P450 expression, including a cross talk between the liver and the intestine. We further compare various
clinical and preclinical approaches for assessing the impact of intestinal drug metabolism on bioavail-
ability, and discuss the utility of the intestinal epithelium–specific NADPH-cytochrome P450 reductase-
null (IECN) mouse as a useful model for studying in vivo roles of intestinal P450 in the disposition of
orally administered drugs.
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1. Introduction

Oral administration is the most commonly used route for drug
treatment because of the advantages of a lower cost and easier
compliance by patients, compared to other routes, particularly for
chronic treatment. However, a low oral bioavailability would make
oral dosing less desirable or practical for many drugs. Evaluation
of oral bioavailability of drug candidates, which is usually
performed during the drug discovery and preclinical drug devel-
opment stages, is crucial for strategic decision-making. Cumula-
tive data have demonstrated that intestinal cytochrome P450
(CYP)-mediated metabolism can eliminate a large proportion of
some orally administered drugs before they reach systemic
circulation, while leaving the passage of other drugs unimpeded.
Drugs that are subject to high intestinal metabolism not only suffer
from low bioavailability, but they are also more likely to be
susceptible to drug–drug interactions (DDI) with other P450
substrate or inducer drugs and show large inter-individual varia-
tions in pharmacokinetic profiles. Therefore, a better understand-
ing of the ability of intestinal P450 enzymes to metabolize various
clinical drugs in both humans and preclinical animal species,
including the identification of the CYP enzymes expressed, their
regulation, and, at a systems level, the relative importance of the
liver and the intestine in the first-pass metabolism and disposition
of oral drugs, is important for improving bioavailability of current
drugs and new drugs in development.

The topics of intestinal P450 expression, regulation, and
function in drug metabolism have been reviewed previously1–4.
This brief update will review more recent advances in the field
while summarizing earlier findings, with a special focus on
approaches available to assess the specific contributions by
intestinal P450-mediated drug metabolism to first-pass drug
disposition and the impact on bioavailability.
2. Expression of drug-metabolizing CYPs in the intestine

The ability of the intestine to metabolize numerous drugs and other
xenobiotics is defined to a large extent by the type and abundance
of the individual CYP enzymes expressed in the tissue. Therefore,
large efforts have been made to detect and quantify the various
CYP isoforms in the intestine of both humans and experimental
animals.

2.1. CYP expression in human intestine

The human small intestine expresses multiple CYP genes, as has
been reviewed previously1,2. For example, in human small
intestinal epithelial cells (enterocytes) prepared using an elution
method with an EDTA-containing buffer, which mostly consists of
villous enterocytes, with little crypt cell contamination, CYP1A1,
CYP1B1, CYP2C, CYP2D6, CYP2E1, CYP3A4, and CYP3A5
mRNAs were detected, although a number of other CYP tran-
scripts, including CYP1A2, CYP2A6, CYP2A7, CYP2B6, CYP2F1,
CYP3A7, and CYP4B1, were not detected5. The expression of
CYP1A1, 2C, and 3A4 proteins was also confirmed via immuno-
blot analysis. An immunoblot study of microsomes prepared from
mucosal scrapings from the duodenal/jejunal portion of human
donor small intestines indicated that CYP3A (CYP3A4 and 3A5)
and CYP2C9 represent the major constituents of the intestinal
“P450 pie”, accounting for 80% and 14%, respectively, of total
immuno-quantified P450s6. CYP3A4, which was the main CYP3A
protein detected, was found in all individuals analyzed; whereas
CYP3A5 was only detected in some individuals, where they
represented 3%–50% of total CYP3A content. The remaining
detected CYP enzymes had the following rank order:
CYP2C1942J242D6.

There are large interindividual variations in the expression
levels of individual P450s. For example, the levels of CYP2C9
and 2C19 proteins in small intestine were determined to be, on
average, 14% and 2%, respectively, of total P450 in the intestine;
but interindividual differences were 9-fold for CYP2C9 and 6.5-
fold for CYP2C196. An earlier study using metabolic activities to
monitor the expression of different CYP2C isoforms in the human
small intestine (diclofenac 4ʹ-hydroxylase for CYP2C9 and
mephenytoin 4ʹ-hydroxylase for CYP2C19), showed 17–18-fold
differences for these CYPs among the intestines investigated7.

Of the less abundant CYP enzymes in the intestine, CYP2J2 has
been studied intensively8,9. Although CYP2J2 is recognized
mainly for its ability to catalyze arachidonic acid metabolism, it
also metabolizes many structurally diverse drugs, such as terfena-
dine, astemizole, amiodarone and tamoxifen10.

Another P450 with a somewhat preferential expression in the
intestine is CYP2S111. CYP2S1 has been shown to be capable of
activating the anti-cancer prodrug 1,4-bis[[2-(dimethylamino-N-
oxide)ethyl]amino]-5,8-dihydroxyanthracene-9,10-dione (AQ4N)
through reductive metabolism12,13, and to reduce the N-hydroxyla-
mine drug 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole14.

Several studies have examined developmental expression of
CYPs in the human intestine15–18. The orphan P450 CYP2W1 is
expressed in fetal intestine, but its expression is suppressed soon
after birth15. CYP2C and CYP2J2 are expressed in human fetal
intestine at an early stage, and the fetal intestinal level of CYP2J2
is apparently higher than the level in adult intestine18. CYP3A4 is
expressed in both prenatal and postnatal intestine; its expression
level in neonatal duodenal tissue increased with age16,17. The
ability of human fetal intestine to metabolize drugs has not been
examined.
2.2. CYP expression in mouse small intestine

Most studies on CYP expression in experimental animals were
conducted with rodents, particularly mice, as have been reviewed
previously1. Mice are widely used in preclinical studies and in the
development of transgenic, knockout, and humanized mouse
models. Mice have a greater number of Cyp genes (102 genes)
than do humans (57 genes), which contributes to the species
differences between mice and humans in drug metabolism. Many,
but not all, of the CYPs that are expressed in liver are also
expressed in the small intestine. Early studies on the expression of
mouse intestinal CYPs relied on RNA-PCR, immunoblotting, and
activity measurements19–25. Many isoforms, including CYP1A1,
1B1, 2B9, 2B10, 2B19, 2C29, 2C38, 2C40, 2E1, 2J6, 3A11,
3A13, 3A16, 3A25, and 3A44, were identified, whereas several
others, including CYP1A2, 2A, 2C37, 2C39, and 2F2, were not
detected. A screening assay for all CYPs of the Cyp1–4 families in
adult male and female C57BL/6 mice showed that the mRNAs for
�10% of these genes were expressed at the highest levels in the
small intestine, compared to 13 other tissues, including the liver26.
A recent study also profiled mouse intestinal CYP protein
expression using a mass spectrometry-based proteomics approach,
which detected a total of 27 proteins belonging to P450 sub-
families 1A, 2A, 2B, 2C, 2D, 2E, 2F, 2J 2U, 3A, 4A, 4B, 4F, and
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4V in various tissues, of which CYP2C29, 2C37, 2J5, 3A13,
3A25, 4A12, 4A10 and 4B1 were detected in the intestine27.
2.3. CYP expression in the small intestine of non-human
primates

In the cynomolgus monkey, which is evolutionarily closer than
rodents are to humans, mRNA expression levels of multiple CYPs
in the CYP1–3 families showed regional differences along the
length of the small intestine28; regional differences in microsomal
activity toward model CYP substrates were also observed, with
CYP3A activities (midazolam 1ʹ-hydroxylation and testosterone
6β-hydroxylation) showing a decrease from jejunum to ileum29.
Species differences between monkeys and humans in intestinal
drug metabolism have been noted, with cynomolgus monkeys
having greater intestinal activity toward human CYP3A, CYP2C,
and CYP2J substrates, and with the activity toward human
CYP2C/CYP2J substrates apparently attributed to monkey CYP2C
and CYP4F30,31. Further studies showed additional differences in
not only intestinal microsomal activities, but also inhibitor
selectivity between monkeys and humans32. The contents of
specific P450 proteins of CYP1–4 families in monkey small
intestine were estimated using selective anti-CYP antibodies; the
results from pooled microsomes suggested that CYP3A and
CYP4F were the most abundant, followed in decreasing order
by CYP2J, CYP2C, CYP1A and CYP2D. CYP protein levels
varied by 2–10 folds among microsomal samples from individual
monkeys33,34. Several studies also characterized intestinal CYP
expression in the common marmosets, another species of non-
human primate35–37.
2.4. CYP expression in the small intestine of other animal
species

Intestinal CYP expression has also been studied in other animal
species commonly used in preclinical drug development, such as
rats1,38–40 and dogs38,41,42. There is an overall conservation in the
major CYP subfamilies that are expressed in the intestine, such as
CYP3A and CYP2C. However, among species, the quantitative
aspects regarding relative levels of a given isoform among all
intestinal P450s, or compared to human intestinal expression
levels, can be different; the numbers of CYP (Cyp) genes within
each CYP subfamily are often different; and it is not always
possible to identify orthologs, particularly for members of the
CYP2–4 families, as the substrate specificity of some seemingly
orthologous isoforms from different species can be different. For
example, it has been posited that the rat is not an ideal animal
model for predicting intestinal loss of drugs during presystemic
metabolism40, for several reasons: a higher bioavailability was
achieved in humans than in rats for �75% orally administered
compounds; for CYP3A, the concentration in human intestinal
microsomes was much higher than in rat intestinal microsomes6,43;
and the intestinal CYP3A activities towards representative CYP3A
substrates were different by 2–5 folds between humans and rats31.
Details of such species difference are important for drug develop-
ment efforts, as the selection of animal species for preclinical study
is often dictated by efficacy and/or safety profiles of drug
candidates; therefore, it is important to understand the intestinal
drug metabolism properties of the chosen species.
3. Regulation of intestinal CYP expression and function

Given the well-recognized capability of intestinal P450 enzymes to
metabolize orally administered drugs and other xenobiotics, it is
conceivable that factors or events that alter the expression or
activity of intestinal P450 enzymes could significantly impact the
first-pass drug clearance in this portal-of-entry organ. A wide
variety of drugs, other xenobiotics, and food components, includ-
ing dietary phytochemicals, may influence intestinal drug disposi-
tion via induction or inhibition of intestinal CYP expression and/or
activity. For examples, in mouse intestine, CYP1A1 was greatly
induced by β-naphthoflavone; all five CYP3A isoforms were
induced by dexamethasone; CYP2B9, and CYP2B10 were
induced, whereas CYP2B19 mRNA level was much reduced, by
phenobarbital treatment; CYP2C29 and CYP2C40 were also
induced by phenobarbital while CYP2C38 showed no induction24;
and CYP2J6 was induced by pyrazole23. Recent developments in
this area are highlighted below, with a focus on dietary and
physiological regulations.

3.1. Regulation by drugs, herbs, pathogens and disease
conditions

These studies are mainly conducted in rodent models and/or
human intestinal cells. Mouse intestinal CYP1A1 expression, both
basal and benzo[a]pyrene-induced, was found to be dependent on
the presence of a functional Toll-like receptor 2, which is
important in pathogen recognition and innate immunity in the
gut44. Mouse intestinal CYP1A1 and CYP2B10 were both induced
by repeated oral administration of the antiparasitic drug ivermec-
tin45. Mouse intestinal CYP3A expression was suppressed by
insulin treatment46, although the effects of experimental models of
type I and type II diabetes on intestinal CYP3A expression or
activity seemed contradicting in two different studies46,47. Further-
more, treatment of monosodium glutamate–induced obese mice
with green tea extract decreased insulin level, and increased the
expression of CYP3A in both liver and small intestine48. Human
CYP3A4 was induced by 3,3ʹ-diindolylmethane, a herbal nutri-
tional supplement, and piperine, a black pepper constituent, in
human intestinal cells via PXR49,50. On the other hand, induction
of CYP3A4 by 1α,25-dihydroxyvitamin D3 in Caco-2 cells was
inhibited by andrographolide, another herbal ingredient51. In rats,
intestinal CYP3A1 expression was increased by the plasticizer
acetyl tributyl citrate; the latter also increased CYP3A4 expression
in human intestinal cells52. Intestinal expression of several rat
CYPs, including CYP1A1, CYP2E1, and CYP3A9, was sup-
pressed by treatment of rats with probiotic Lactobacillus casei53,
and intestinal expression of CYP3A was decreased in rats treated
with the probiotic Escherichia coli Nissle 191754. The effects of
intestinal inflammation on CYP expression have also been
examined. In a mouse model of dextran sodium sulfate–induced
colitis, CYP3A as well as P-gp expression was down-regulated in
the upper part of small intestine55. In a rat model of indomethacin-
induced intestinal ulcers, a small decrease in CYP2D2 expression
was found in the upper part of the small intestine56.

3.2. Dietary regulation of CYP expression or activity in mouse
intestine

A well-known example of dietary inhibitors of CYP activity is
grapefruit juice (GFJ). GFJ, when administered together with



Figure 2 Regulation of intestinal P450 expression by hepatic P450
activity. The loss of hepatic P450 activity in the LCN mouse leads to
increased amounts of the un-metabolized drugs entering systemic
circulation, as well as upregulation of intestinal P450 expression and
increased contribution of intestinal P450 enzymes to first-pass
metabolism of orally ingested drugs.
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either nifedipine or felodipine, increases the plasma concentration
of the drug57. The metabolism of numerous drugs, including
coumarin, cyclosporine, ethinylestradiol, midazolam, terfenadine,
and verapamil58,59, saquinavir60,61, and erythromycin62, was also
shown to be decreased by GFJ. The GFJ-mediated decrease in
substrate metabolism occurs through a mechanism-based inactiva-
tion of enterocyte CYP3A4, possibly by furanocoumarin consti-
tuents of GFJ63. Notably, orally ingested GFJ did not seem to
affect hepatic CYP3A4 expression or activity, while decreasing
small-intestinal CYP3A4 protein levels by 460%64. In contrast,
the consumption of cranberry extract, which caused moderate
increases in hepatic CYP3A and CYP1A1 activities, did not
influence intestinal CYP1A1, CYP1A2, CYP2B and CYP3A
expression in rats65. GFJ has been employed as a tool to modulate
intestinal drug metabolism in numerous studies. For example, in a
recent study of intestinal P450 contribution to intestinal toxicity
induced by oral diclofenac (DCF), a nonsteroidal anti-
inflammatory drug, GFJ extract inhibited the in vitro bioactivation
of DCF by mouse and human intestinal microsomes, and
decreased the extent of DCF-induced intestinal injury in mice, a
finding suggested potential utility of GFJ in the protection against
DCF-induced SI toxicity in patients66.

Potential dietary regulation of intestinal drug metabolism is also
illustrated by the effects of a synthetic diet on intestinal P450
expression and function67. When mice maintained on a regular
laboratory chow diet were fed a synthetic (albeit nutritionally
balanced) diet devoid of phytochemicals, they exhibited dimin-
ished intestinal expression of CYP1A, 2B, 2C, and 3A and hepatic
expression of CYP2B, 2C, and 3A. These reductions in P450
expression were accompanied by decreases in microsomal meta-
bolism of midazolam, a CYP3A substrate, and first-pass clearance
of midazolam in vivo in wild-type (WT) mice.
3.3. Regulation of intestinal CYP expression by hepatic P450
activity

Xenobiotics that are absorbed by intestinal enterocytes and escape
the metabolic disposition by intestinal P450 will likely reach liver
via the portal vein (Fig. 1), and may then be metabolized by hepatic
P450 enzymes. Thus, P450 expression in the liver and intestine may
be coordinately regulated, in a way that helps to maintain the overall
metabolic capacity of the digestive organs for first-pass clearance of
ingested compounds. This hypothesis was derived from a study of
CYP expression in the liver-specific Cpr-null (LCN) mouse model,
Figure 1 Sequential action of intestinal and hepatic P450 enzymes
on orally ingested drugs. Absorbed drugs that escape metabolism by
intestinal P450 and disposition by efflux transporters (e.g., P-glyco-
protein; P-gp) may be metabolized by hepatic P450 on their way to
systemic circulation.
in which the activities of all microsomal P450s are suppressed in the
hepatocytes due to deletion of the Cpr gene68. The loss of
hepatocyte Cpr caused compensatory increases (2–3 folds) in
intestinal expression of CYP2B, 2C and 3A proteins in the LCN
mice, compared with WT mice, accompanied by significant
augmentations of intestinal microsomal lovastatin-hydroxylase
activity and in vivo disposition of oral lovastatin (at 5 mg/kg).

As illustrated in Fig. 2, the loss of hepatic P450 activity in the
LCN mouse leads to increased amounts of the un-metabolized
drugs entering systemic circulation. At the same time, through
mechanisms that may involve altered bile acid homeostasis and
intestinal fibroblast growth factor 15 expression68, intestinal P450
expression is upregulated, leading to increased intestinal metabo-
lism of orally ingested drugs.

3.4. Genetic and epigenetic modifications of intestinal CYP
expression or function

Genetic polymorphisms in various drug-metabolizing CYPs are
well known69 [http://www.cypalleles.ki.se/] and may lead to
changes in drug-metabolizing activity in all organs that express a
given P450 enzyme, including the intestine. The expression of
CYP enzymes can also be regulated by epigenetic factors, such as
microRNA (miRNA), which may have tissue-specific effects on
the expression of a given gene70–72. The general topic of the
genetic polymorphisms and epigenetic regulations of various CYP
genes have been reviewed recently73. However, few studies have
examined the impact of these factors on intestinal CYP expression.

3.5. The intestinal epithelium-specific Cpr-null (IECN) mouse as
a model for studying consequences of suppressing intestinal P450
function

In IECN mouse, Cpr was deleted in intestinal enterocytes, leading
to essential abolishment of all microsomal P450 activities in
intestinal microsomes74. CPR expression was normal in other
tissues examined in IECN mice. These mice are fertile and develop
normally, although they show hypersensitivity to intestinal injury
induced by ricin, a plant-derived toxin75, and dextran sulfate
sodium, an agent used to induce colon inflammation in a
commonly used animal model of experimental colitis76. The IECN
mouse also showed large changes in intestinal gene expression in
cholesterol biosynthesis and antigen presentation/processing

http://www.cypalleles.ki.se/


Figgure 3 Impact of Cpr gene deletion in intestinal epithelial cells
on first-pass metabolism of orally ingested drugs. Absorbed drugs
cannot be metabolized by intestinal microsomal P450 enzymes in the
IECN mouse, leading to increased amounts of the un-metabolized
drugs arriving in the liver and systemic circulation.
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pathways77. The expression of most of the intestinal microsomal
P450 enzymes was upregulated, but this did not lead to increased
P450 activity given the absence of CPR. Hepatic P450 expression
was not induced in the IECN mouse except for a slight induction
of CYP1A1 and CYP1A2, the former was present at very low
levels. The IECN mouse has been used to demonstrate the critical
role of intestinal P450 enzymes in the in vivo metabolism and
disposition of a number of xenobiotic compounds, including
nifedipine, lovastatin, and midazolam66,67,74,78,79. As depicted in
Fig. 3, for these aforementioned compounds, the loss of intestinal
P450 activity led to greater amounts of the un-metabolized parent
compounds reaching systemic circulation. Notably, the finding that
first-pass clearance of pravastatin, which is not noticeably meta-
bolized by P450, was unchanged in the IECN mouse79 confirmed
that other events important for intestinal drug disposition, such as
efflux transport, was unaffected by the loss of Cpr gene in the
IECN model.
4. Assessment of the impact of intestinal drug metabolism on
bioavailability

For orally administered drugs, the first-pass metabolism is
contributed by both liver and small intestine80 (Fig. 1). First-
pass metabolism directly determines the bioavailability of oral
drugs, which is expressed by the formula F¼FA�FG�FH (F:
bioavailability; FA: fraction absorbed from intestinal lumen into
enterocytes; FG: fraction escaping intestinal metabolism and
transferred to liver; FH: fraction escaping hepatic metabolism
and transferred to the systemic circulation)81. FA, which is related
to membrane permeability, has been extensively studied82; it can
be estimated by in vitro methods, such as a dissolution/permeation
system83,84. FH can be derived from intrinsic hepatic clearance,
blood flow rate, and protein binding85. In contrast, FG cannot be
reliably assessed due to difficulties in separating intestinal and
hepatic metabolism, which occurs in tandem in vivo (as illus-
trated in Fig. 1). Here, we will briefly review available methods
and models for deriving FG values from both clinical and
preclinical data, compare FG values calculated from different
methods/models, and discuss possible utility of the IECN mouse
model as a more accurate way to obtain FG values. Notably, the
ability to reliably assess FG for oral drugs is critical for evaluating
the impact of intestinal P450-mediated metabolism on oral
bioavailability and to predict drug-drug interactions (DDI).
4.1. Estimation of FG from clinical data

One practical way to estimate FG is to conduct GFJ-drug interaction
studies in patients86. This approach is based on the following
assumptions: (1) GFJ has no effect on FA or FH; (2) GFJ can
completely inhibit intestinal CYP3A4; and (3) the contribution of the
intestine to systemic elimination of the drug under study is negligible.
In this approach, the FG values of 32 drugs, estimated from reported
GFJ interaction studies, were found to range from 0.07 (for
lovastatin) to 0.92 (for quinidine), indicating that, depending on the
drug, the fraction of orally administered drugs eliminated by
intestinal CYP3A4-mediated metabolism before reaching systemic
circulation can range from 8% to as high as 93%86.

Another way to assess FG is based on comparisons between
intravenous (i.v.) and oral dosing data87. The oral bioavailability F
can be obtained by comparing area under the concentration-time
curve (AUC) of oral dosing to that of i.v. dosing. Thus, by
calculating FH as FH¼1�CLH/QH (CLH: hepatic clearance; QH:
average hepatic blood flow) and assuming FA¼1 (complete
absorption), one can obtain FG by dividing F by FH. With this
method, FG values of 21 drugs were estimated from reported
clinical data87.

Comparisons of the FG estimates obtained for a collection of
drugs using the two different methods showed good agreement for
metabolized drugs that are not subject to transport, but not for
drugs that are also substrates for P-gp and/or organic anion-
transporting polypeptide transporters86. The accuracy of these
estimates could be affected by incomplete inhibition of intestinal
CYP3A4 by GFJ, the choice of the QH value, which has a wide
physiological range, and contribution of intestinal metabolism to
systemic elimination, which is significant for some drugs86.

A third method for assessing FG, named the DDI method, was
recently developed, which analyzes changes in pharmacokinetic
properties caused by DDI81. The DDI method is based on the
tissue-specific effect of a “perpetrator” drug on the t1/2 of the
victim drug, in that while inhibition of either liver or intestinal
metabolism by the perpetrator results in an increase in the AUC,
only inhibition of hepatic metabolism results in an increase in the
t1/2 of the victim drug. FG values calculated using the DDI method
showed good correlation (r2¼0.81) with those estimated using the
GFJ method for CYP3A substrate drugs, but poor correlation
(r2¼0.41) with those estimated using the i.v./oral method for a
number of other drugs81.

The major features of these three methods are compared in
Table 1. It is important to note that, despite the limitations and the
sometimes differing FG values obtained with each method, the
results from the three methods all support the importance of
intestinal P450-mediated metabolism for determining oral bioa-
vailability for many drugs, even though the abundance of P450
enzymes in human intestine is much lower than that in the
liver24,88. The estimated role of intestinal P450 in reducing the
bioavailability of a number of oral drugs is shown in
Table 281,86,89, where the fraction eliminated by intestinal CYP3A
during first-pass metabolism ranged from 8% (for quinidine) to
78% (for buspirone).
4.2. Estimation of FG from preclinical data

A number of animal studies investigated the impact of first-pass
metabolism on bioavailability of various oral drugs, by determining
the effects of a CYP3A inhibitor (which often also inhibited P-gp)



Table 1 Comparison of FG assessment methods based on
clinical data.

Feature GFJ i.v./oral DDI

Pros
Provide estimation of FG × FA�FG ×
Incorporation of both intestinal
and hepatic contribution

× ×

Only need pharmacokinetic data
from oral dosing

× ×

Applicable to various P450
substrates

× ×

Cons
Only for CYP3A substrates ×
Require complete inhibition of
intestinal metabolism

× ×

Inhibitors cannot affect hepatic
metabolism

×

Inhibitors cannot affect
absorption/P-gp

× ×

Exact mechanism of inhibition
is unknown

×

Require pharmacokinetic data
from i.v. dosing

×

Fluctuate with choice of QH

value
×

Table 2 Estimated fractional elimination by intestinal meta-
bolism and bioavailability of 15 orally administered CYP3A
substrate drugs.

Drug Bioavailability
(F)89

Fraction eliminated by
intestinal metabolism (%)a

Saquinavir 0.04 46.0
Buspirone 0.05 78.0
Nisoldipine 0.05-0.08 56.0
Atorvastatin 0.14 44.0
Felodipine 0.14 47.0
Verapamil 0.22 29.0
Cyclosporine 0.22–0.36 35.0–50.0
Midazolam 0.24–0.41 44.0–48.0
Sildenafil 0.38 18.0
Nifedipine 0.41 38.0
Alfentanil 0.42 39.0
Triazolam 0.55 36.0–45.50
Zolpidem 0.72 19.0
Quinidine 0.78 8.0
Alprazolam 0.84 11.0

aFraction eliminated by intestinal metabolism was calculated by
(1�FG)×100, where FG was estimated from GFJ or DDI
method81,86.
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on the pharmacokinetic parameters of a test drug90–97. While these
studies showed that first-pass metabolism played a role in limiting
drug bioavailability, they did not identify the relative contributions
of hepatic and intestinal metabolism, or of metabolism and efflux
transport. For example, a study in rats demonstrated that the AUC
and Cmax values of orally dosed nifedipine were significantly
increased, by 450%, in the presence of pioglitazone, a CYP3A4
inhibitor that also inhibits P–gp97. The results from this study are
insufficient for FG calculation, but they do implicate P-gp–mediated
transport in small intestine and CYP3A4-mediated metabolism in
the small intestine and/or liver as potential contributors that affect
the bioavailability of nifedipine.

Portal vein-cannulated rat represents a very useful surgical
model for assessing intestinal disposition of drugs98. This animal
model allows simultaneous sampling of systemic and portal blood,
which enables the estimation of FA�FG from the difference
between portal and systemic blood concentrations after oral dosing
in individual animals, without the need for i.v. drug administra-
tion. The FA�FG values determined for various drugs using this
model were found to be relatively unaffected by changes in portal
blood flow, in contrast to the fluctuation induced by changes in
hepatic blood flow in the i.v./oral method98. However, FG cannot
be separately assessed with this model. Moreover, variations in the
surgical cannulation procedure may affect data consistency.

Considering the abundance of CYP3A in both liver and intestine
and the involvement of CYP3A enzymes in the metabolism of
450% of the drugs in the clinic, the Cyp3a-knockout (Cyp3a� /�)
mice, and the hybrid Cyp3a� /� mice that express human CYP3A4
in either liver hepatocytes (Cyp3a� /�Tg-3A4hep) or intestinal
enterocytes (Cyp3a� /�Tg-3A4int) are highly useful for investigat-
ing the relative importance of intestinal versus hepatic CYP3A in
first-pass metabolism99. By comparing the pharmacokinetic para-
meters for the drug docetaxel among WT, Cyp3a� /� ,
Cyp3a� /�Tg-3A4int, and Cyp3a� /�Tg-3A4hep models, it was
clearly demonstrated that intestinal expression of CYP3A4 has a
dominant effect on docetaxel oral bioavailability, whereas liver
expression of CYP3A4 is the main contributor for systemic
clearance99. Similar findings were made with triazolam,
another CYP3A substrate drug100. Notably, a significant up-
regulation of hepatic CYP2C expression in the Cyp3a-knockout
mouse may complicate data interpretation for some drugs that are
metabolized by both CYP3A and CYP2C, as in the case of
midazolam101.

The IECN mouse model can provide direct quantitative data for
the role of intestinal P450 in limiting oral drug bioavailability74.
The IECN model, which can be considered as an “optimized GFJ”
model, has the following advantages over the GFJ model: (1) with
abolishment of all microsomal P450 activities in the intestine, the
IECN model is applicable to all P450 substrates; (2) there is no
inhibition of hepatic metabolism according to the model char-
acterization; (3) no change was observed in major intestinal drug
transporters77; and (4) the inhibition mechanism is well-defined
and extent of inhibition is complete (gene knockout), which avoids
variations related to GFJ brand, batch, and administration time
seen in GFJ method.

Pharmacokinetic data derived from the WT and IECN mice can
be used to calculate FG. For examples, as shown in Table 3, based
on the original data67,74,79, the FG values for nifedipine, lovastatin,
and midazolam are found to be 0.31–0.69. The FG of nifedipine
estimated from the IECN model (FG¼0.63) is highly consistent
with the value (FG¼0.62) calculated from clinical GFJ data86. For
midazolam and lovastatin, the FG values estimated from IECN
mice (0.69 and 0.31, respectively) are higher than the clinical GFJ
data (0.56 and 0.07 for midazolam and lovastatin, respectively)86

or the data from the DDI method (0.48 and 0.09 for midazolam
and lovastatin, respectively)81. These discrepancies may be at least
partly due to species differences. Notably, the FG value of
midazolam based on the IECN model (0.69) is comparable to the
FA�FG value (0.71) estimated from the cannulated rat model98.



Table 3 Pharmacokinetic parameters and FG values estimated
from IECN mouse modela.

Drug Strain t1/2 (h) AUC0–1
b Estimation of

FG
c

Nifedipine WT 1.3870.74 8.070.5 0.63
IECN 0.9170.26 12.872.3

Lovastatin WT 0.8370.15 23.575.1 0.31
IECN 1.1370.15* 76.475.1

Midazolam WT 4.670.5 5.870.5 0.69
IECN 2.970.2** 8.470.7

aThe pharmacokinetic parameters were taken from original
publications for nifedipine74, lovastatine79, and midazolam67 and
they were determined after oral administration of the drugs at 10,
25, and 30 mg/kg, respectively.

bThe units of AUC0�1 for nifedipine, lovastatin, and midazolam
were nmol � h/mL, μg �min/mL, and nmol � h/mL, respectively.

cFG was calculated by FG¼ AUC WTð Þ
AUC IECNð Þ:

*Po0.05 compared to WT.
**Po0.01 compared to WT.
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For lovastatin, the oral bioavailability in mice is comparable to
that in human (�5%)79,89. Therefore, the higher FG in mice
suggests that the FA�FH in human is lower than in mice,
indicating a better absorption and/or a less extensive hepatic
first-pass metabolism of lovastatin in humans compared to mice.
Similar scenario applies to midazolam, as the oral bioavailability
in human (24%–41%)89 is not lower than that in mice
(21.5714.0%)102. In other words, human intestinal P450-
mediated first-pass metabolism may play a greater role in
determining oral bioavailability for some drugs than does the
mouse counterpart.
5. Conclusions/perspectives

A large body of knowledge exists on the expression and regulation
of intestinal P450 enzymes and their ability to metabolize various
drugs and other xenobiotics, which can be incorporated into
physiologically-based pharmacokinetic (PBPK) models to predict
intestinal first-pass metabolism103–105. A number of in vivo
approaches have also been developed to more accurately deter-
mine the extent of intestinal P450-mediated metabolism of orally
administered drugs. A combined utility of these models with other
experimental models that target intestinal efflux transporters, such
as P-gp, as illustrated for amprenavir and loperamide, which are
substrates for both CYP3A4 and P-gp106, would further identify
potential interplay between intestinal P450-mediated metabolism
and efflux transport, and distinguish relative contributions by the
two related pathways.

Given the large number of drugs that are already known or
predicted to subject to significant first-pass metabolism in the
intestine by P450 enzymes, more studies are needed to identify
patient-relevant pathophysiological factors that alter intestinal
P450 expression and activity. Such knowledge would allow better
prediction of disease-related changes or individualized variations
in the bioavailability, and thus efficacy or safety, of many oral
drugs. In addition, a better understanding of the mechanisms that
underlie the recently discovered dietary regulation of intestinal
P45067 and the cross-talk between liver and intestine in the
regulation of intestinal P450 expression68 may lead to novel
strategies to modulate intestinal P450 expression in a clinical
setting, in order to improve oral bioavailability for certain drugs.
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