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Abstract: Humoral immunity to Plasmodium falciparum is acquired after repeated infections, and can
lead to clinical protection. This study aimed to evaluate how human-, parasite-, and environment-
related determinants can modulate the dynamics of IgG responses to Plasmodium falciparum after an
infection. Individuals (n = 68, average age = 8.2 years) with uncomplicated malaria were treated with
ACT and followed up for 42 days. IgG responses to P. falciparum merozoite antigens (Pf MSP1, Pf MSP3,
Pf AMA1, Pf GLURP-R0), to whole schizont extract (Pf Schz), and to Anopheles gSG6-P1 and Aedes
Nterm–34 kDa salivary peptides were measured. Regression analyses were used to identify factors
that influence the dynamics of IgG response to P. falciparum antigen between D0 and D42, including
demographic and biological factors and the level of exposure to mosquito bites. The dynamics of IgG
response to P. falciparum differed according to the antigen. According to multivariate analysis, IgG
responses to Pf Schz and to Pf GLURP-R0 appear to be affected by exposure to Aedes saliva and are
associated with age, parasite density, and anti-Plasmodium pre-existing immune response at study
inclusion. The present work shows that human exposure to Aedes saliva may contribute, in addition
to other factors, to the regulation of anti-Plasmodium immune responses during a natural infection.

Keywords: Plasmodium falciparum; malaria; Anopheles; Aedes; humoral acquired immunity; saliva;
immunomodulation; exposure

1. Introduction

In malaria-endemic settings, human populations acquire humoral immunity to Plas-
modium falciparum (P. falciparum) after repeated infections, which can lead to clinical protec-
tion in reducing blood-stage parasitemia and life-threatening symptoms. Natural protec-
tive acquired immunity was first highlighted in studies where passive transfer of purified
immunoglobulin G (IgG) obtained from malaria-immune adults successfully reduced
Plasmodium parasitemia in children [1,2]. Although the targets and mechanisms of this
protective immunity are not completely understood, several studies suggest that high
antibody (Ab) levels against certain blood-stage merozoite antigens play an important role
in clinical protection, making these Plasmodium antigens potential anti-malaria vaccine
candidates. Clinical protective immunity is dependent on high concentrations of IgG as
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well as of cytophilic IgG1 and IgG3 Abs to blood-stage antigens, including apical mem-
brane antigen 1 (Pf AMA1) [3,4], merozoite surface protein 1 and 3 (Pf MSP1, Pf MSP3) [5–7],
and glutamate-rich protein (Pf GLURP-R0) [8]. However, recent study has found greater
associations with protection when measuring functional antibodies that fix complement
than antibodies that inhibit growth [9]. Longitudinal immunological studies have reported
anti-P. falciparum Ab responses increase and peak within 1–2 weeks after a malaria infection,
and then generally decline rapidly, suggesting a short-lived duration of circulating IgG
to merozoite antigens (2–3 weeks) [10,11]. On the other hand, Ab responses may last for
many years, and this persistence was positively associated with age, as a reflection of
cumulative exposure to Plasmodium infections [12,13]. Immune responses are complex
traits and may be influenced by different determinants in addition to intrinsic Ab half-life.
A deeper understanding of host- and parasite-related factors, as well as of environmental
factors, modulating the antigen-specific Ab response dynamics after a Plasmodium infection
is important in selecting which antigens are valuable for the development of serological
surveillance tools or anti-malaria vaccines.

Age, genetic factors, parasite density, previous exposure to Plasmodium, pathogen co-
infection, and nutritional status are known to influence anti-Plasmodium Ab responses [14–17].
Environmental factors may also influence vertebrate immunity activity; annual seasonality
is found to be an important environmental factor influencing cytokine production [18].
Immunomodulatory components of mosquito saliva are an interesting but often overlooked
environmental factor.

In malaria-endemic areas, human populations are repeatedly exposed to salivary
components of blood-feeding mosquitoes that possess a variety of pharmacologically
active biomolecules with anti-hemostatic, anti-inflammatory, and immunomodulatory
properties [19]. Mosquito immunomodulatory salivary proteins act both on innate and
adaptive immunity [20], and studies suggested that T-cell populations are particularly
susceptible to the effects of mosquito saliva [21,22]. T- and B-cell proliferation seems to
be inhibited in a dose-dependent manner. High concentrations of saliva or repeated
pre-exposure to mosquito saliva create an immunosuppressed environment, whereas
decreasing saliva concentrations, instead, modulate the Th1/Th2 immune response [23–26].
A study examining immune responses to the bites of An. stephensi reported mast cell
degranulation leading to local fluid and neutrophil influx and lymph node hyperplasia as
a result of the recruitment of lymphocytes, dendritic cells, and monocytes [27]. Anopheles
saliva also induced IL-10 in draining lymph nodes and downregulated antigen-specific
T-cell responses [21]. Repeated pre-exposure to Anopheles bites also seems to skew the
response towards that of the Th1 phenotype and to protect against Plasmodium yoelii
infection [28], but these results are controversial [29,30]. Thus, human immune responses
modulated by mosquito saliva are significant and complex in altering the frequencies of
several immune cell populations and of cytokine production in multiple tissues, and can
last for several days in the skin and at the systemic level [26].

However, there is presently only a limited understanding of the immune microen-
vironment initiated by arthropod salivary components in the vertebrate host and their
role in the modulation of specific immunity against pathogens. A limited number of
experimental studies showed that mice exposed to arthropod bites had a down-regulated
antigen-specific immune response compared with naïve mice [21,31]. Studies in human
populations living in malaria-endemic areas showed that acquired anti-Plasmodium Ab
responses differed in children with varying exposure to Anopheles bites. A difference in the
cytophilic Ab response to Plasmodium according to the intensity of exposure to Anopheles
bites was reported, with a down-regulated IgG1 level seen in children with higher exposure,
while IgG3 levels were similar in children with low or high exposure to Anopheles bites [32].
More recently, a study suggested that, in addition to other factors, Anopheles saliva may
also down-modulate the anti-Pf MSP1 IgG, IgG1, and IgG3 immunity [33].

The major aims of the present study were to explore the key human-, parasite-, and
environment-related factors that modulate anti-Plasmodium falciparum Ab dynamics after
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an infection. To address these aims, individuals with an uncomplicated clinical malaria
attack visiting a health center in Bouaké (Côte d’Ivoire) were enrolled in the study, treated
with artemisinin-based combination therapy (ACT), and followed up for 42 days. The
variation in the anti-Plasmodium IgG response during follow-up and the identification of
factors that may influence its dynamics were assessed through univariate and multivari-
ate regression analysis. Plasmodium merozoite-stage specific antigens (Pf MSP1, Pf MSP3,
Pf AMA1, and Pf GLURP-R0) and schizont extract (Pf Schz) were selected for their differ-
ences in immunogenicity and persistence [34,35] and for their potential in an advanced
malaria vaccine [36].

The intensity of Anopheles and Aedes exposure was assessed at the individual level by
evaluating the IgG response to the Anopheles gSG6-P1 and Aedes Nterm–34-kDa salivary
peptides. During the last decade, these serological biomarkers were developed and aimed
at evaluating the level of exposure to mosquito bites [37,38]. Specific human IgG against
salivary peptides from Anopheles (gSG6-P1) and Aedes (Nterm–34 kDa) represents a proxy
of human exposure to Anopheles and Aedes bites and is a reliable tool for assessing the
spatial and temporal heterogeneity of exposure at the individual level [39,40].

2. Materials and Methods
2.1. Ethics Statement

The present study followed the ethical principles recommended by the Edinburgh
revision of the Declaration of Helsinki and was approved by the Ethics Committee of
the Côte d’Ivoire Ministry of Health (June 2014; No. 41/MSLS/CNER-dkn). Site leaders
provided prior permission to survey on each site and written informed consent of all parents
or guardians of children who participated in the study was obtained before inclusion.

2.2. Study Area

The study was conducted in Dar-es-Salam, a neighborhood of Bouaké city located in
the center of Côte d’Ivoire, from April to June 2016. The local climate and malaria epidemi-
ology have been previously described [33,41]. The area has intense malaria transmission
and P. falciparum accounts for more than 95% of all human malaria infections [42], with An.
gambiae s.l. being the major vector [43,44]. The climate is tropical humid with two seasons:
The dry season runs from November through March, and the rainy season from April to
October. Malaria transmission is perennial with seasonal upsurges during the rainy season.

2.3. Study Design, Procedure, and Sample Collection

The study was carried out during a clinical trial that aimed to assess the in vivo
efficacy of artemisinin-based anti-malarial combination therapies. Details of the study,
clinical procedures, and drug administration are described elsewhere [45]. Briefly, patients
(n = 120, age > 6 months) with uncomplicated malaria and monospecific P. falciparum
infestation confirmed by microscopy (parasite density between 2000 and 200,000 asexual
parasites/µL of blood), axillary temperature of ≥37.5 ◦C, or a history of fever over the past
24 h, with body weight ≥5 kg, and who were able to take oral medications and follow study
procedures were included in the study. All participants were treated with artemisinin-based
combination therapies—artesunate + amodiaquine (AS + AQ) or artemether + lumefantrine
(AL) —for 3 days (day 0 (D0), D1, D2), and then visited every week (between D7 and D42).
Blood samples were collected repeatedly on D0, D3, and weekly from D7 to the end point of
the follow-up (D42), for thick and thin blood smears. Dried blood spots (DBS) on Whatman
3 MM filter paper were collected on D0 and D42, air-dried and stored in plastic bags at
+4 ◦C until immunological analysis. Thick blood smears were fixed and stained with 10%
Giemsa and read double-blind by two certified microscopists; discordant readings were
re-examined by a third qualified independent microscopist. Asexual parasite densities
were counted against 200 microscope fields assuming 8000 white blood cells per microliter.
A blood smear was considered negative if no parasites were observed.
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The present study was carried out with the blood samples collected on D0 and D42
from 68 individuals out of the initial 120, including only individuals not lost to follow-up,
without therapeutic failure, not becoming re-infected during the follow-up, and whose
blood samples on D0 and D42 were available.

2.4. Parasite and Salivary Antigens

The Plasmodium merozoite-stage specific antigens (Pf MSP1, Pf MSP3, Pf AMA1, and
Pf GLURP-R0) were produced in recombinant form and kindly provided by collaborators.
Pf MSP-1p19 (Uganda-Palo-Alto strain) was expressed in a Baculovirus/insect cell sys-
tem [46]; the recombinant Pf AMA1 (amino-acids 25–545, FVO strain) was expressed in
Pichia pastoris [47]; and Pf MSP3 (amino acids 212–380, F32 strain) and Pf GLURP-R0 (amino
acids 25–514, F32 strain) were expressed in Escherichia coli [48,49]. The schizont extracts
(Pf Schz) were produced from P. falciparum cultures (strain 07/03, [50]). The gSG6-P1 and
Nterm–34 kDa salivary peptides [51,52] were synthesized and purified (purity: >95%) by
Genepep (St-Jean de Vedas, France). Peptides were shipped in lyophilized form and then
resuspended separately in milliQ water and stored in aliquots at −20 ◦C until use.

2.5. Enzyme-Linked Immunosorbent Assay: Human Antibody Response to P. falciparum Antigens,
gSG6-P1 and Nterm–34 kDa Salivary Peptides

Standardized dried blood spots (diameter: 1 cm) of each participant at two time
points (D0 and D42) were eluted each in 350 µL phosphate buffered saline containing 0.1%
Tween 20 (0.1% PBST) at +4 ◦C for 48 h. Human IgG levels against the gSG6-P1, Nterm–
34 kDa, Pf Schz, Pf AMA1, Pf MSP1, Pf MSP3, and Pf GLURP-R0 antigens were measured by
enzyme-linked immunosorbent assay (ELISA).

Subsequently, 96-well Maxisorp micro-assay plates (Nunc, Roskilde, Denmark) were
coated overnight at 4 ◦C at a dilution of 1/1200 for Pf Schz, 1 µg/mL for Pf AMA1 and
Pf MSP1, and 2 µg/mL for Pf MSP3 and Pf GLURP-R0. Plates were blocked with 5%
skimmed milk powder (w/v) in 0.1% PBST for 1 h at room temperature. Individual eluates
diluted in buffer (1% milk powder in 0.1% PBST) were added for incubation (2 h at room
temperature) at a final dilution of 1/10 for Pf Schz, 1/50 for Pf MSP3 and Pf GLURP-R0,
and 1/200 for Pf AMA1 and Pf MSP1. Plates were washed three times between each step
with washing buffer (0.1% PBST). HRP-conjugated goat anti-human IgG (Frederick, USA),
diluted at 1/1000 for Pf MSP3, 1/2500 for Pf GLURP-R0, and 1/5000 for all the other
P. falciparum antigens, was added, and samples were incubated for 1 h at room temperature.
After four further washes, TMB (Kementec, Taastrup, Denmark) was used as a substrate
and the reaction was stopped by adding 0.2 M H2SO4 (100 µL/well). The optical density
(OD) was read after 30 min at 450 nm. All samples were tested in duplicate, and if there was
a discrepancy of greater than 25% between duplicates, the sample was retested. Individual
results (∆OD) are expressed as: ∆OD = ODx − ODn, where ODx represents the mean of the
individual OD value in both wells with P. falciparum antigen and ODn the individual OD
value for each eluate without antigen. A pool of positive hyperimmune serum collected
from adult residents in a malaria-endemic area [32] was included on each plate to allow
for standardization of day-to-day and plate-to-plate variation. Standard curves were
established using human purified IgG protein (The Binding Site, Saint-Egreve, France) to
convert ∆OD values for each sample into IgG concentrations (CPf in ng/mL). Each plate
included a calibration (standard) curve with eight doubling dilutions of human purified
IgG (3.12–400 ng/mL for schizont extract; 0.78–100 ng/mL for Pf AMA1 and Pf MSP1;
0.58–75 ng/mL for Pf GLURP-R0 and Pf MSP3). To construct the standard curve, we plotted
the OD values at the corresponding known concentrations of purified human IgG, and
then defined the standard curve using linear regression analysis. The IgG concentration
of blood samples from participants were predicted from this equation based on the OD
value. European nonimmune individual sera (n = 16, France) served as negative controls
to determine the cut-off value for seropositivity for each Plasmodium antigen, defined as
mean OD plus three standard deviations (mean[∆ODneg] +3 SDneg).
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Serology testing of human exposure to mosquito salivary antigens (Nterm–34 kDa
and gSG6-P1) was carried out by ELISA as described in [33] but with some modifications.
Sera were incubated in duplicate wells at 4 ◦C overnight at a dilution of 1/40 in 0.1%
PBST, mouse biotinylated Ab to human IgG (BD Pharmingen, San Diego CA, USA) was
incubated at a dilution of 1/2000 in 1% PBST, and streptavidin biotin peroxidase was
then added (1/1000; 1 h at 37 ◦C). Individual results are expressed as the ∆OD value:
∆OD = ODx-ODn, as mentioned above. Specific anti-gSG6-P1 and Nterm–34 kDa IgG
levels were also assessed in European individuals (n = 16, France) to calculate the cut-off
value for seropositivity for mosquito exposure (mean[∆ODneg] + 3 SDneg).

2.6. Immunological Data Analysis

The dynamics of specific IgG responses to P. falciparum antigens were investigated
for each individual during the follow-up. Results are expressed as a ∆CPf D42-D0 value,
calculated according to the formula ∆CPf D42-D0 = CPf D42 − CPf D0.

In the present study, we were interested in the effect of mosquito exposure on the
evolution of humoral immunity to Plasmodium following an infection. Assuming that anti-
salivary peptide IgG responses are transient and wane within a few weeks [53], evaluating
the exposure on D42 may reflect exposure since current infection. Thus, individuals
were separated into groups of exposure according to their IgG responses to the gSG6-
P1 and Nterm–34 kDa peptides on D42. The mean values of the IgG responses to the
salivary peptides were determined as the thresholds to define two groups of participants
with different exposures (single-genus exposure) to Anopheles (lower exposure [LEAno] <
∆ODgSG6-P1 = 1.41 < higher exposure [HEAno]) and two groups with different exposures
to Aedes (lower exposure [LEAe] < ∆ODNterm-34 kDa = 1.10 < higher exposure [HEAe]).
Then, from these four groups of single-genus exposure, three exposure groups (combined
Anopheles and Aedes exposure) were defined as follows: individuals with lower exposure
to both Anopheles and Aedes were included in group E2 (Low); individuals with higher
exposure to both Anopheles and Aedes were included in group E4 (High); and individuals
from the lower-exposure group to one mosquito genus and from the higher-exposure group
to the other mosquito genus were included in group E3 (Intermediate).

2.7. Covariates

Individual characteristics were analyzed as categorical (gender, ACT treatment) or
continuous (age, weight, hemoglobin) variables to estimate their influence on the dynamics
of Ab responses. Parasite density and immunologic responses (anti-Plasmodium IgG con-
centration on D0 and anti-salivary peptide IgG levels on D42) were analyzed as continuous
variables in the linear analyses.

2.8. Statistical Analysis

Data generated from assays in the form of ∆OD values were entered into Microsoft
Excel worksheets, and raw ∆OD representing IgG responses to P. falciparum were converted
into concentration (CPf ng/mL). All statistical analyses were conducted in R (Version
3.3.3; R Core Team, Vienna, Austria) with “tidyverse lattice” and “moment” packages.
Figures were generated in R using the “ggplot2” package. A cut-off for seropositivity was
determined for each antigen, and individuals were categorized as seropositive if their Ab
response was above the cut-off value.

As immunologic data were not normally distributed, nonparametric tests were used
for statistical analyses. The Wilcoxon signed-rank test was used to examine individual
differences in Ab during the follow-up, the Mann–Whitney U (Wilcoxon rank-sum) test
was run for comparison of Ab levels between two independent groups, and the Kruskal–
Wallis test was used for differences among more than two groups. The association between
two continuous variables was determined through Spearman’s correlation coefficient
(Spearman’s rho, and p values are reported).
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Multivariate linear regression models were then used for all covariates with a p-value
of < 0.20 in univariate analysis. Final models were adjusted by backward selection and by
removing non-significant variables of p > 0.05. Maximum likelihood method tests were
used to identify the best-fitting models according to the Akaike information criterion (AIC)
value. All differences were considered significant at p < 0.05.

3. Results
3.1. Population Baseline Characteristics

A total of 68 individuals were included in this study: 41 (60.3%) females and 27 (39.7%)
males with an average age of 8.2 years (95% confidence interval (CI), (6.9–9.5)). The age
structure of the population was 22 children ≤5 years, 24 children between 6 and 9 years
of age, and 22 participants ≥10 years. The overall mean P. falciparum density at study
inclusion was 54,965 parasites/µL (95% CI, (42,673–70,798)), and there was no difference in
parasite density between age groups (p = 0.369). The mean hemoglobin (Hb) concentration
was 12.38 g/dL and 11.82 g/dL, respectively, on D0 and D42 (p = 0.665).

3.2. Human IgG Response to P. falciparum and Mosquito Salivary Antigens during Follow-Up

The concentration levels of IgG to P. falciparum antigens (ng/mL) and to mosquito
salivary peptides (in OD value), as well as seroprevalence both at the time of inclusion (D0)
and at the end of the follow-up (D42), are presented in Table 1.

Table 1. IgG seroprevalence and level of IgG response to Plasmodium falciparum antigens and to gSG6-P1 and Nterm–34 kDa
salivary peptides on D0 and D42.

D0 D42
p Value b

IgG Prevalence a (%) Median (IQR) IgG Prevalence (%) Median (IQR)

Pf AMA1 70.58 5.78 (0.43–1.28) 73.52% 2.64 (0.70–9.53) 0.110
Pf GLURP-R0 70.58 0.20 (0.02–0.64) 17.65% 0.04 (0–0.12) <0.001

Pf MSP1 61.76 1.95 (0.30–25.0) 51.47% 2.27 (0.40–9.65) 0.541
Pf MSP3 82.35 0.13 (0–0.37) 61.76% 0.12 (0–0.50) 0.987
Pf Schz 100 1.15 (0.78–1.76) 100% 2.09 (1.31–2.85) <0.0001

gSG6-P1 100 1.32 (1.12–1.60) 100% 1.41 (1.07–1.61) 0.760
Nterm–34 kDa 100 1.06 (0.91–1.25) 100% 1.1 (0.86–1.31) 0.638

IQR: Interquartile range. Median values of IgG concentration to P. falciparum antigens expressed at 10–3 ng/µL. a European nonimmune
individual sera (n = 16, France) served as negative controls to determine the cut-off value for seropositivity for each Plasmodium antigen,
defined as mean OD plus three standard deviations (mean[∆ODneg] + 3 SDneg). b p value for the comparison of the antibody levels
between D0 and D42 for each antigen, determined by Wilcoxon rank-sum test.

On D0, most of the individuals had a specific IgG response to P. falciparum antigens,
ranging from 61.8% for Pf MSP1 to 100% for Pf Schz. For all merozoite antigens, the
seroprevalence decreased during the follow-up, except for Pf AMA1, for which a similar
rate was noted between D0 and D42. All individuals had a specific IgG response to Pf Schz
at the two time points.

A wide range of anti-Pf AMA1, anti-Pf MSP1, and anti-Pf Schz IgG concentration levels
on D0 and D42 were observed in individuals, whereas other anti-Plasmodium IgG responses
were much more limited. Anti-Pf Schz IgG median levels increased significantly during the
follow-up (p < 0.0001), whereas participants had significantly lower anti-Pf GLURP-R0 IgG
median levels at the end of the follow-up (p < 0.001). No significant differences were noted
in the median levels of IgG responses to Pf AMA1, Pf MSP1, and Pf MSP3 between D0 and
D42.

We also evaluated the individual level of exposure to Anopheles and Aedes bites at
the two time points by assessing the IgG response to the Anopheles gSG6-P1 and Aedes
Nterm–34 kDa salivary peptides. The seroprevalence of anti-salivary peptide IgG was
100% and the wide range of ∆OD gSG6-P1 and ∆OD Nterm-34 kDa values indicated that all
participants were exposed to mosquito bites, albeit at different levels of exposure. However,
no differences in the IgG median levels were noted between D0 and D42 (Wilcoxon test,
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p > 0.05) for the two salivary antigens, indicating a similar exposure to Anopheles and
Aedes bites before (exposure estimated on D0) and during the cohort follow-up (exposure
estimated on D42).

3.3. Dynamics of IgG Responses to P. falciparum According to Anopheles and Aedes Exposure

We assessed the evolution of the concentration of IgG against P. falciparum antigens
(∆CPf D42-D0) in participants according to their individual levels of exposure to Anopheles
and Aedes bites. Exposure was considered first at a single-genus level (Anopheles [LEAno and
HEAno] or Aedes [LEAe and HEAe] separately) and, secondly, at a combined level (Anopheles
and Aedes taken together: E2 = low-, E3 = intermediate-, E4 = high-exposure groups).

First, we compared the dynamics of IgG responses to Plasmodium antigens (∆CPf D42-D0)
between the groups with lower and higher exposure to Anopheles or Aedes bites (Figure 1).
The dynamics of immune responses were calculated as the concentration at D42 minus
the concentration at D0, which meant that the median values close to zero showed similar
response levels between the 2 time points, not zero antibodies.

Individuals who had a higher exposure to Anopheles (HEAno) or to Aedes (HEAe) bites
exhibited a greater increase in anti-Pf Schz IgG levels than those with a lower exposure
(p = 0.0029 for Anopheles and p = 0.005 for Aedes). No significant differences in the variation
of IgG responses to merozoite antigens were noted between the two groups exposed to
Anopheles or Aedes bites.

Second, we compared the dynamics of anti-Plasmodium immune responses according
to the level of combined exposure to both Anopheles and Aedes bites (E2 = low, E3 =
intermediate, E4 = high; Figure 2). We observed a positive association between the increase
in the IgG response to Pf Schz and the level of mosquito exposure during the follow-
up. Indeed, individuals with higher exposure to Anopheles and Aedes (E4 group) had
a significantly greater increase in anti-Pf Schz IgG response compared with individuals
from the group with intermediate exposure (E3 group, p = 0.027) and from the group
with lower exposure (E2 group, p = 0.0024). No significant differences in the dynamics of
anti-merozoite antigen IgG responses were noted between the exposure groups, with all
median values close to null for any exposure group (combined exposure).

3.4. Human-, Parasite-, and Environment-Related Factors Associated with the Evolution of
Immune Responses to Plasmodium

Univariate analyses were first performed to investigate the relationship between the
individual variation in specific anti-Plasmodium IgG responses and different demographic,
biological, parasitological, and environmental variables (Table 2).

Gender, hemoglobin concentration, and parasite density on D0 were not associated
with any variation in IgG response to Plasmodium antigens (p > 0.05). The type of ACT
treatment was also not associated with any variation in immune responses to Plasmodium
antigens except for Pf MSP3 (p = 0.021), while age and weight were associated with varia-
tions in IgG against Pf Schz (p = 0.049 and p = 0.037, respectively) and Pf AMA1 (p = 0.051
and p = 0.006, respectively). In addition, variations in IgG against all antigens were neg-
atively associated with the initial concentration on D0 (p < 0.002). We also assessed the
effect of exposure to Anopheles or Aedes bites (continuous variable) on the variation in the
specific anti-Plasmodium IgG responses. Only the anti-Pf Schz IgG level was positively
associated with the level of exposure to Anopheles (R = 0.405, p < 0.001) and Aedes (R = 0.389,
p = 0.001) bites. Other specific IgG response variations were not associated with the inten-
sity of exposure to mosquito bites, although there was a borderline correlation between
anti-Pf GLURP-R0 IgG and Aedes exposure (R = −0.228, p = 0.06).
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Figure 1. Variation in concentration of IgG response to P. falciparum antigens according to group of
exposure to Anopheles and to Aedes (single-genus exposure). Participants were grouped according to
their level of IgG response to Anopheles (lower exposure (LEAno) < ∆ODgSG6-P1 = 1.41 < higher
-exposure (HEAno)) and to Aedes (lower exposure (LEAe) < ∆ODNterm-34 kDa = 1.10 < higher
exposure (HEAe)) salivary peptide. Each dot represents an individual, and box plots indicate the
median values, 25th and 75th percentile antibody concentration for each P. falciparum blood-stage
antigen. Statistically significant difference in median value between the two groups is indicated
(Mann–Whitney U test).
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Figure 2. Variation in concentration of IgG response to P. falciparum antigens according to group of exposure to Anopheles and
to Aedes (combined exposure). Each dot represents an individual, and box plots indicate the median value, 25th and 75th
percentile antibody concentration for each blood-stage antigen. Individuals were divided into three groups (E2, E3, E4) where
E2 includes individuals with lower exposure to both Anopheles and Aedes, E4 includes individuals with higher exposure to
both Anopheles and Aedes, and E3 includes individuals with weak exposure to one mosquito genus and high exposure to the
other. Statistically significant difference in median value between two groups is indicated (Mann–Whitney U test).

Table 2. Influence of covariates on the dynamics of IgG antibody levels to various Plasmodium and mosquito salivary
antigens.

Covariate Factors Antigens ∆CPf D42−D0 (ng/mL) p Value

Gender (female/male) a

Pf Schz 968.6 (178.2;1544)/561.3 (92.68;1213) 0.250
Pf AMA1 −1151 (−6045;525.5)/413.2 (−9406;3340) 0.322
Pf MSP1 −480.2 (−14,723;1322)/−267 (−3129;442.8) 0.744
Pf MSP3 0 (−165.8;154.5)/0 (−181.5;300.1) 0.970

Pf GLURP-R0 −109.6(−349.6;17.33)/−118.8(−750.8;0) 0.408

Age (years) b

Pf Schz 0.240 0.049
Pf AMA1 −0.013 0.051
Pf MSP1 −0.208 0.088
Pf MSP3 0.055 0.653

Pf GLURP-R0 −0.162 0.186

Weight (kg) b

Pf Schz 0.252 0.037
Pf AMA1 0.405 0.006
Pf MSP1 −0.128 0.298
Pf MSP3 0.084 0.495

Pf GLURP-R0 −0.173 0.158

Hemoglobin (D42) b

Pf Schz −0.123 0.330
Pf AMA1 −0.125 0.317
Pf MSP1 −0.112 0.273
Pf MSP3 −0.141 0.261

Pf GLURP-R0 −0.344 0.061
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Table 2. Cont.

Covariate Factors Antigens ∆CPf D42−D0 (ng/mL) p Value

Treatment (ASAQ/AL) a

Pf Schz 725.2 (178.2;1544)/704.3 (92.68;1213) 0.840
Pf AMA1 −224.0 (−6045;525.5)/−793.9 (−9406;3340) 0.888
Pf MSP1 −414.6 (−14,723;1322)/−237.0 (−3129;442.8) 0.577
Pf MSP3 −100.2 (−165.8;154.5)/20.53 (−181.5;300.1) 0.021

Pf GLURP-R0 −152.7 (−349.6;17.33)/−92.63 (−750.8;0) 0.535

Parasite density on D0 b

Pf Schz 0.176 0.149
Pf AMA1 0.096 0.433
Pf MSP1 0.050 0.692
Pf MSP3 0.053 0.670

Pf GLURP-R0 0.036 0.768

IgG concentration on D0
(ng/mL) b

Pf Schz −0.361 0.002
Pf AMA1 −0.360 0.002
Pf MSP1 −0.625 <0.001
Pf MSP3 −0.540 <0.001

Pf GLURP-R0 −0.851 <0.001

anti-gSG6-P1 IgG
b(Anopheles exposure)

Pf Schz 0.405 <0.001
Pf AMA1 −0.069 0.574
Pf MSP1 −0.043 0.727
Pf MSP3 −0.060 0.623

Pf GLURP-R0 −0.129 0.294

anti Nterm-34 kDaIgG
b(Aedes exposure)

Pf Schz 0.389 0.001
Pf AMA1 0.055 0.652
Pf MSP1 −0.164 0.180
Pf MSP3 −0.140 0.251

Pf GLURP-R0 −0.228 0.060
a: Median (25th; 75th percentile) of variation of IgG to P. falciparum antigens during the follow-up. b: Spearman’s rho.

3.5. Multivariate Analysis: Final Models

To further understand the contribution of each factor (confounding variables) to the
evolution of anti-Pf Schz and anti-Pf GLURP-R0 IgG responses, multivariate analyses were
carried out, and the final models are shown in Table 3. Multivariate analyses showed a
positive and significant relationship between age and variation in IgG response to Pf Schz
and Pf GLURP-R0, while no relationships were noted for weight. The level of P. falciparum
parasite density on D0 was only associated with an increase in anti-Pf Schz IgG level.
The models also showed that the variation in IgG responses to Pf Schz and Pf GLURP-R0
was strongly and negatively correlated with the pre-existing IgG level at D0 (p < 0.01).
Individuals with higher specific IgG levels at the time of inclusion had lower levels on
D42. Interestingly, a strong association was detected between the level of exposure to
Aedes bites and the variation in anti-Pf Schz (p < 0.001) and anti-Pf GLURP-R0 (p < 0.05) IgG
response, while Anopheles exposure was not found to be associated with the evolution of
IgG response to P. falciparum antigens.
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Table 3. Results of multivariate analysis indicating factors associated with variation in IgG responses to P. falciparum
antigens during the follow-up.

Variation in Anti-PfSchz IgG Variation in Anti-PfGLURP−R0 IgG

Variables β1 Sd
Error

p
Value R2 Variables β1 Sd

Error
p

Value R2

0.60 0.81

Age 49.30 16.32 <0.01 Age 29.723 7.566 <0.01
Weight - - - Weight - - -

Parasite density on D0 0.004 0.001 <0.001 Hemoglobin - - -
Anti-Pf SchzIgG on D0

(ng/mL) −0.753 0.100 <0.001 Anti-Pf GLURP-R0 IgG
on D0 (ng/mL) −0.806 0.049 <0.01

Anti−Nterm-34 kDa IgG 1185 277.3 <0.001 Anti-Nterm-34 kDa IgG −276.11 132.261 <0.05
Anti-gSG6-P1 IgG - - -

4. Discussion

In the present study, we described the variation in anti-Plasmodium IgG responses from
study inclusion (D0) to the end of follow-up (D42) in relation to factors that might influence
the kinetics of specific Ab responses. To exclude the antigenic boost of a P. falciparum
infection on the immune responses examined, only individuals who were not re-infected
were included in the final analysis. Multivariate analysis showed that age, parasite density
(only for schizont extracts), anti-Plasmodium IgG response on the day of malaria diagnosis,
and exposure to Aedes saliva were significantly associated with the variation in anti-
Plasmodium IgG responses.

At the time of inclusion, a high inter-individual variability in IgG responses was
observed for Pf AMA1, Pf MSP1, and Pf Schz antigens, while a lower level and range of IgG
responses were seen for the other antigens, highlighting the difference in immunogenicity
against Plasmodium antigens [35]. During the 6-week follow-up period, the evolution of the
prevalence and median values of IgG specific to P. falciparum differed depending on the
merozoite antigens. We observed a significant increase in IgG responses to the schizont
extract and a significant decrease in anti-Pf GLURP-R0 IgG responses, while similar levels
of IgG responses were noted for the other merozoite antigens. Longitudinal immunological
studies have reported that following a clinical malaria infection, the specific IgG responses
peak approximately 1–2 weeks after infection and then generally decline rapidly because
of the short-lived duration of natural IgG responses to merozoite antigens [10–13,54,55].
It has also been shown that IgG Ab responses have a different half-life depending on the
antigens [56], and this could contribute to the differences in the dynamics of immune
responses to the various Plasmodium antigens observed during the follow-up. Parasite- and
host-related or environmental factors may also play a role, in addition to intrinsic antibody
half-life, in the modulation of the IgG response to P. falciparum over time.

We used an innovative serological assessment method to define a proxy of human
exposure to Anopheles and Aedes bites at the individual level for each participant. This
approach takes into account the individual heterogeneity of exposure to mosquitoes. In-
deed, environmental factors generating hot spots of exposure (e.g., proximity to breeding
sites), the attraction an individual exerts on mosquitoes, and the use of personal protection
against mosquito bites (nets, coils, etc.) suggest that exposure to mosquito bites is highly
variable from house to house and also between people living in the same house. The
relevance of the gSG6-P1 and Nterm–34 kDa biomarker for epidemiological studies has
been validated in various settings [37,40,41,57,58]. At the two time points of the follow-
up, all of the participants had specific IgG to salivary peptides, indicating that they had
all been exposed to Anopheles and Aedes bites before and during the follow-up, with an
inter-individual heterogeneity in intensity of responses. According to their individual
anti-gSG6-P1 and anti-Nterm–34 kDa IgG levels, individuals were separated into differ-
ent groups of exposure according to a single-genus exposure and to combined exposure.
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Assuming that anti-salivary peptide IgG responses are transient and wane within a few
weeks without new exposure [53,59], evaluating the exposure on D42 may reflect exposure
since study initiation.

We first compared the dynamics of IgG titers against P. falciparum antigens between
the different exposure groups both at the single-genus and at the combined-exposure level.
We noted a positive association between the evolution of IgG responses to whole schizont
extract and the intensity of exposure to Culicidae bites. Individuals with a higher exposure
to Anopheles or Aedes (considered at the single-exposure level), as well as taken together
(combined exposure), had a significantly increased IgG response to Pf Schz during the
6-week follow-up. The evolution of IgG responses to merozoite antigens did not seem to
be modulated by the intensity of mosquito exposure.

The contribution of immunomodulatory components of mosquito saliva in the varia-
tion of anti-Pf Schz and anti-Pf GLURP-R0 IgG responses was then assessed using univariate
analysis complete with multivariate models taking into account other co-factors. Among
the different factors selected, gender, weight, hemoglobin concentration, and ACT treat-
ment were not significantly associated with variations in IgG response to Pf Schz and to
Pf GLURP-R0 during the follow-up.

The evolution of IgG responses to Pf Schz and to Pf GLURP-R0 had a strong positive
association with the age of the individual. Indeed, in general, antibody levels increase with
both age and higher transmission intensity [60,61]. History of infection and cumulative
malaria exposure may contribute to the inter-individual differences in the dynamics of
immune responses [15]. Older individuals may have experienced more malaria infections
and thus may have developed more memory B cells that will rapidly proliferate upon
reinfection and differentiate into long-lived antibody-secreting cells that may last longer
and induce a greater magnitude and longevity of IgG response to antigens [10,13]. Nev-
ertheless, in the present study, most participants were under 10 years old, thus limiting
the comparison with older people, and therefore, further investigations are needed. The
parasite density at the time of diagnosis was significantly positively associated with the
evolution of IgG response to schizont extracts. It can be expected that a higher parasite
load will induce a greater immune response to Plasmodium parasites [12]. Interestingly, the
initial level of IgG response to Plasmodium merozoite antigens (PfSchz, Pf GLURP-R0) at
the time of diagnosis was negatively associated with the variation in immune responses
during the follow-up. This result indicates that participants with higher levels of Abs at
the time of diagnosis might produce lower levels of IgG specific to Plasmodium. In malaria
infection, natural regulatory T cells and positive/negative regulators have been shown to
play a role in balancing immune responses to maintain vertebrate defense and immune
balance. Plasmodium exploits regulatory mechanisms to prevent the development of adap-
tive immunity by enhancing negative regulators and/or inhibiting positive regulators
including reduced T-cell proliferative responses to Plasmodium antigens and production
of immunosuppressive IL-10 [62]. Negative regulators such as BTLA have been reported
to dampen innate and T-/B-cell-mediated immune response to malaria infection [63,64].
However, antibodies measured at inclusion (D0) might have been acquired during pre-
vious infections but also by the current one. Indeed, there is obviously a delay between
the infection and onset of symptoms, and then the visit to a health center, during which
immune responses to Plasmodium are mounted.

The exposure to Aedes bites was associated with the evolution of IgG response to
Pf Schz and Pf GLURP-R0, while Anopheles exposure was not found to modulate anti-
Plasmodium immunity in the 6-week follow-up period. It is increasingly recognized that
the immune modulatory properties of mosquito saliva act both on the innate and adaptive
immune responses of the vertebrate host, but only a few studies have assessed the con-
sequences of Plasmodium immune responses in a natural population [14,32,33,65]. These
studies investigated the immune relationship within a homologous malaria context (Anophe-
les–Plasmodium), while in the present study, we observed different anti-Plasmodium immu-
nity modulation according to the mosquito genus with a significant effect of Aedes exposure.
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Immunomodulatory properties of mosquito saliva on the specific immune responses to
heterologous antigens have also been observed in murine studies [21,31]. Previous work
indicated that Culicidae saliva has different immunomodulatory effects on the vertebrate
immune system depending on the mosquito genus. Wanasen et al. suggested that the
production of both Th1 and Th2 cytokines was reduced in the presence of salivary gland
extract from Aedes aegypti, but not from Culex quinquefasciatus [22]. Mosquito saliva is
known to contain close to 100 secretory proteins, and comparative analyses indicated that
some salivary proteins are ubiquitous in various genera and/or species, while others are
species or genus specific [66,67]. This suggests that mosquito saliva from various mosquito
species should have common effects as well as genus- or species-specific immunomodula-
tory effects. Here, compared with Anopheles saliva, the immunomodulatory activities of
Aedes saliva on anti-Plasmodium immunity seemed to be more pronounced. Aedes saliva
has been investigated extensively and studies reported a profound effect on lymphocyte
and macrophage activity [68,69]. In the present study, we showed that Aedes exposure
was negatively associated with the anti-Pf GLURP-R0 immune response, whereas it was
positively associated with the anti-Pf Schz IgG response. The epidemiological observation
for the down-regulated IgG response to Pf GLURP-R0 in individuals with higher exposure
is consistent with previous studies that reported a down-regulated immune response to
a specific antigen in hosts exposed to arthropod saliva compared with naive vertebrate
hosts [21,32,33]. Schizonts comprise a set of antigens with varying immunogenicity, while
Pf GLURP-R0 is a unique antigen at the surface of infected erythrocytes. A schizont may
thus activate a higher number of immune cells (memory B cells or long-lived plasma cells),
which may obviously result in a stronger IgG response that may last longer.

There are several important limitations of this study. First, the number and average
age of the participants were low, limiting the statistical power of our analyses and limiting
the comparison with immune response evolution in older individuals. The 42-day follow-
up was too short to study the decrease in the IgG response after Plasmodium infection. We
observed that most individuals exhibited very little variation in their IgG responses to
certain merozoite antigens between D0 and D42. The peak of the immune response occurs
approximately 2 weeks after infection and then gradually wanes. The 42-day follow-up
may be the time when the level of immune response returns to its level at the time of
inclusion. A more intensive and long-term sampling would be needed to track the decrease
in Abs more accurately over a longer period; furthermore, the study should ideally assess
the asymptomatic re-infection by Plasmodium during follow-up, which might cause a boost
in immune responses.

The present work is the first to report that exposure to Aedes saliva may contribute,
in addition to other factors, to the regulation of anti-Plasmodium immune responses. Ad-
ditional studies are needed to characterize separately the effects of saliva of different
blood-feeding arthropods on the human immune system, by analyzing ex vivo cytokine
production after stimulation of peripheral blood mononuclear cells. The immunomodula-
tory properties of mosquito saliva and their consequences for malaria transmission need
further investigation and may contribute to a better understanding of the human–vector–
parasite immune relationships.
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