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Knee osteoarthritis (OA) is a chronic degenerative disorder which could be distinguished by erosion of articular cartilage, pain,
stiffness, and crepitus. Not only aging-associated alterations but also the metabolic factors such as hyperglycemia, dyslipidemia,
and obesity affect articular tissues and may initiate or exacerbate the OA. The poor self-healing ability of articular cartilage due
to limited regeneration in chondrocytes further adversely affects the osteoarthritic microenvironment. Traditional and current
surgical treatment procedures for OA are limited and incapable to reverse the damage of articular cartilage. To overcome these
limitations, cell-based therapies are currently being employed to repair and regenerate the structure and function of articular
tissues. These therapies not only depend upon source and type of stem cells but also on environmental conditions, growth
factors, and chemical and mechanical stimuli. Recently, the pluripotent and various multipotent mesenchymal stem cells have
been employed for OA therapy, due to their differentiation potential towards chondrogenic lineage. Additionally, the stem cells
have also been supplemented with growth factors to achieve higher healing response in osteoarthritic cartilage. In this review,
we summarized the current status of stem cell therapies in OA pathophysiology and also highlighted the potential areas of
further research needed in regenerative medicine.

1. Introduction

Osteoarthritis (OA) is a prevalent debilitating joint disorder
characterized by erosion of articular cartilage, excessive stiff-
ness pain, and crepitus [1, 2]. According to the United
Nations estimates, till 2050, 130 million people will be
affected by OA throughout the world, out of which 40million
will develop severe OA [3]. As a consequence, a huge

economic pressure will be imposed in treatment and man-
agement of OA leading to stressed and decreased quality of
life [1, 4]. OA is classified as primary and secondary OA;
primary OA is associated with aging, whereas secondary
OA is pertinent to disease or other factors [5]. Further, the
degradation of network of collagen and proteoglycan in OA
cartilage leads to a loss in tensile strength and shear proper-
ties of cartilage [6]. Interestingly, though OA manifests as
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loss of the articular cartilage, it also includes all tissues of the
joint, particularly the subchondral bone [5, 7] Besides aging,
the increase in level of accumulation of advanced glycation
end products (AGEs), oxidative stress, and senescence-
related secretory phenotypes are few reported factors associ-
ated with pathogenesis of OA [8]. The elevated senescent
phenotypes in OA reduces healing properties of cartilage in
an aging individual [9, 10], which might be attributed to oxi-
dative damage and telomere shortening [10]. Aging also
severely affects extracellular matrix (ECM) and proteogly-
cans synthesizing capacity of chondrocytes in OA leading
to thinning of the cartilage and decreased water content
[11–14]. Synthesis of irregular and small aggrecans disrupts
the structural integrity of aging cartilage and reduces the
chondrocytes’ response to cytokines [15].

Currently, the awareness, prevention, diagnosis, and
nonpharmacological and pharmacological treatments are
used to manage the OA. If these initial nonpharmaceutical
interventions fail, the pharmaceutical interventions such as
NSAIDs, opioids, and surgery are considered as next level
of treatment [16]. However, success of these therapeutic
approaches is limited due to related complication and their
efficiency. Besides, the autologous chondrocyte implantation
(ACI) is one of the most preferred therapeutic approaches for
treatment of damaged OA cartilage. Still, the complication
related to harvesting chondrocytes had compelled to focus
on other cell-based therapies [17]. Recent progresses in tissue
engineering have highlighted the regenerative potential of
stem cells for therapeutic purposes. The multilineage poten-
tial of stem cells, suitable scaffolds, and appropriate chondro-
genic agent (chemical and mechanical stimuli) has been
implicated to regenerate damaged cartilage [18, 19]. Stem
cells could be the unlimited source of chondrocytes and
expected to control iatrogenic effects of ACI treatments
[18]. Mesenchymal stem cell- (MSC-) based therapy is also
emerging as alternative to joint replacement with prostheses,
due to its long-lasting effect [20]. The potential of stem cells
to differentiate into osteoblasts, chondroblasts, and adipo-
cytes [21], if stimulated properly, can regenerate cartilage
both in vivo and in vitro too [17]. Bone marrow-derived
MSC (BMSCs) and the MSCs derived from other cell sources
such as synovium, umbilical cord blood, periosteum, periph-
eral blood, adipose tissue, and muscle have extensively been
induced to differentiate into specialized tissues and organs
[22]. Moreover, the coculture system of chondrocytes and
MSCs have been investigated for cartilage regeneration
[17]. Embryonic stem cells (ESCs) are considered as a better
source of chondrocytes; however, the ethical concerns and
other safety-related complications had impeded the utiliza-
tion of these cells in regenerative therapy [22]. So, the current
researches have more focused towards establishing adult
stem cells as therapeutic progenitor for cartilage regenera-
tion. The stem cell-based therapy offers various opportunities
such as resurfacing whole joint surface, selection of personal-
ized stem cells, mimicking the environmental conditions to
develop the desired phenotype, and increase in level and rate
of matrix synthesis, intra-articular stem cell injections, and
exogenous wangling of stem cells to regenerate articular
cartilage. However, the retention of the chondrogenic

phenotype of differentiated stem cells, their integration with
native tissue, and mimicking the natural physical strength
is posing a challenge to adopt stem cell therapy for OA
[18]. Therefore, in this review article, we summarized the
current status of stem cell therapies in OA pathophysiology
and also discussed the potential areas of further research
needed in regenerative medicine.

2. Cartilage Injury and Stem Cells

The proper balance of aggrecan and collagen contents estab-
lishes the cartilage homeostasis and develops a characteristic
physiochemical structure for distribution of loads and mobil-
ity [23]. The proteolytic enzymes are associated with synthe-
sis, restructuring and repair of connective tissues, and any
cartilage injury or genetic incongruity in association with
irregular loading, which promote imbalance in metabolic
activity through enhancing proteolytic activity, resulting in
degradation of cartilage [24, 25]. Chondrocytes express these
proteins under various stimulations such as mechanical
stress, oxidative stress, growth factor response, and aging
[26]. The cartilage injury leads to disintegration and degrada-
tion of cartilage and finally leads to release of aggrecan
fragments, chondroitin sulfate, keratin sulfate, and type II
collagen along with other catabolic and anabolic products
such as disintegrin, the collagenase matrix metalloproteinase
13 (MMP-13), tumor necrosis factor-inducible gene 6 pro-
tein (TSG-6), tissue inhibitor of metalloproteinases-1
(TIMP-1), and activin A [27]. Monoclonal antibodies have
also been produced to detect the presence of these com-
pounds in body samples such as sera, urine, and synovial
fluids of arthritis patients [28–31]. Cartilage is a nonvascular
tissue and eludes vascularization by secreting antiangiogenic
compounds (thrombospondin-1, chondromodulin-1, and
SPARC (secreted protein acidic and rich in cysteine)), colla-
gen type II derived N-terminal propeptide (PIIBNP), and the
type XVIII derived endostatin [32]. Along with these factors,
presence of tidemarks and calcific nature of the cartilage also
resists vascularization of cartilage [33]. It has been estab-
lished that injured cartilage activates kinases, resulting in
activation of growth factors such as fibroblast growth factor
2 (FGF-2) [34, 35] and expression of chemokines and cyto-
kines [27]. FGF-2 plays a critical role in degradation and pro-
tection of cartilage depending on its interaction with FGF
receptor (FGFR)-1 or FGFR-3, respectively [36]. Molecular
signaling pathways such as WNT and BMP have been
reported for their role in promoting cartilage repair [37].
It has been reported that cartilage regeneration in OA is
promoted by an increase in matrix synthesis and cellular
growth, where chondrocytes clumps are generated in mid-
dle and deep zones of the cartilage [38, 39]. However,
these processes are not capable enough to fully regenerate
damaged cartilage [40].

Multilineage potential of stem cells is progressively
exploited to regenerate cartilage and to provide cellular ther-
apy for other related arthritis disorders. The current develop-
ments in tissue engineering have been made feasible to mimic
the process of cartilage synthesis both in vivo and in vitro.
Embryonic stem cells (ESCs), induced pluripotent stem cells
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(iPSCs), mesenchymal stem cells (MSCs), bone marrow-
derived stem cells (BMSCs), adipose-derived stem cells
(ADSCs), and synovium-derived stem cells (SMSCs) have
been widely explored for regenerating cartilage (Figure 1).
In the further section of this article, we will discuss the various
stem cells for cartilage regeneration for the treatment of OA.

3. MSCs and Cartilage Regeneration

Owing to multipotency and less problematic with regard to
ethical issues, the adult MSCs are the natural choice for
cartilage regeneration (Figure 2). The bone marrow, adipose
tissues, peripheral blood, umbilical cord blood (UCB), syno-
vium, and skeletal and cardiac muscles are well-known
sources of MSCs [41]. Notably, the low concentration of
MSCs in bone marrow (BM) aspirate made it compulsory
to isolate MSCs which is primarily done by Ficoll gradient
centrifugation and further expanded to acquire the sufficient
number for quicker recovery of injury after transplantation
[42, 43]. The isolated stem cells reduce the chance of cross-
contamination and increase the efficacy of stem cell-based
therapy. However, the isolation and expansion of MSCs need
expertise and also make regenerative therapy expensive.
Hence, if the isolation and expansion steps are skipped, it will
save significant amount of cost and time in providing cell-
based regenerative therapy at less equipped hospitals [44].
To accomplish this goal, volume of BM may be reduced by
closed centrifuge to achieve higher concentration of MSCs
as compared to Ficoll gradient, which seems a prospective
method to provide instant stem cell therapy. Further, the
adipose tissue, synovial fluid, and Wharton’s jelly of the

umbilical cord are considered as potential source of MSCs
for cartilage regeneration; however, the source of MSCs
depends upon the factors such as feasibility in harvesting,
expansion potential, hypoimmunogenicity, and establish
procedures [45]. These MSCs are positive for CD73, CD 90,
and CD 105 cell markers, whereas they do not express hema-
topoietic markers such as CD11b, CD14, CD19, CD34,
CD45, and HLA-DR [21, 41]. Further, various studies have
been carried out to evaluate the potential of human and ani-
mal MSCs to regenerate cartilage tissue in vitro [46] with
reduced immunogenic response [47, 48], thus making feasi-
bility of allogenic MSC transplantation without HLA match-
ing [49]. The other approach for chondrocyte differentiation
and cartilage regeneration includes coculturing of MSCs with
chondron or other chondrogenesis-promoting cells. Cocul-
turing provides more natural environment and biomechani-
cal stress to promote cartilage regeneration [50, 51]. Various
studies have also established an improved chondrogenesis
and ECM synthesis when MSCs were cocultured with
chondrocytes [52–54].

Cellular contact, secretion of signals (growth factors,
cytokines, etc.), and mechanical stress are factors demon-
strated to promote cartilage formation and increase in ECM
content [55, 56]. Chondrocytes and MSCs in ratio of 1 : 1
and 1 : 4 have been used to explore the advantage of coculture
for development of functional cartilage [53, 55, 57]. However,
in a study, the coculture of human infrapatellar fat pad-
derived stem cells (IPF-ASCs) and chondrons was unable to
promote chondrogenic differentiation [58]. BMSCs and
articular chondrocytes were cocultured in 1 : 1 ratio in
different models and injected in OA-induced rats; as a
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Figure 1: Schematic of stem cell-based therapy in osteoarthritis (OA).
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consequence, the reduced vascularization and hypertrophy
along with increased expression of chondrogenic gene was
found [59]. Further, in an interesting study, the suspension
coculture of hMSCs and hACs was used, which yielded 4.74-
fold increase in 3-dimensional aggregates of chondrocytes till
16 days [60]. On the other hand, the hypoxia and transactiva-
tion of stable hypoxia-inducible factors (HIF) also promote
chondrogenesis [61]. It has also been reported that the proper
concentration of hyaluronic acid (HA) also boosts chondro-
genesis [62]. Furthermore, the factors including TGF-β and
insulin growth factor- (IGF-) 1 have been reported to regulate
MSC proliferation and chondrocyte differentiation, whereas
BMP controls the development of skeletal muscle [63, 64].
Taken together, the MSC-based OA treatment procedures
seem promising which has also been shown in various clinical
studies (Figure 3). However, some obstacle like control of
differentiation, characterization of MSC, and lack of estab-
lished procedures for chondrogenesis hinders the progress
in the therapeutic exploitation of MSCs [65].

4. Rejuvenating Cartilage through ADSCs

Stromal vascular fraction (SVF) of adipose tissue contains
stem cells, known as adipose-derived stem cells (ADSCs),
has the potential to differentiate into chondrocytes, adipo-
cyte, osteoblasts, and myocytes [66, 67]. Currently, the

ADSCs are considered as a promising source of chondrocytes
due to ease of harvest, their abundance in adipose tissue, and
low morbidity rate and side effect, as well as a noninvasive
procedure. Various studies have already implicated the sig-
nificance of ADSC in cartilage regeneration for the treatment
of OA [68–71]. Specifically, the intra-articular and surgical
implantations of ADSCs combined with biomaterials have
been carried out to assess the magnitude of cartilage regener-
ation in OA-induced animal models [72]. Additionally, the
autologous platelet-rich plasma induces cartilage regenera-
tion by secreting growth factors such as TGF-β, epidermal
growth factor (EGF), and fibroblast growth factor (FGF) to
promote the growth and differentiation of stem cells and
their adherence to cartilage lesions [73]. In an important
study by Tang et al., the intra-articularly injected subcutane-
ous ADSCs were found to be more effective than visceral
ADSC in a rat model of OA [69]. The paracrine effect of
ADSCs is considered as one of the paramount factors for car-
tilage regeneration in OA [74]. Further, the scaffolds seeded
with ADSCs in presence of growth factors, stimuli, and com-
pressive stress promote regeneration of cartilage ex vivo. A 3-
dimensional scaffold of collagen type I was developed to
study the effect of PRP and human recombinant insulin on
differentiation of ADSCs into chondrocytes and osteocytes
[68]. The study showed that through this approach, it pro-
moted ADSC-mediated chondro- and osteogenesis, and the
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Figure 2: An overview of isolation procedure of various stem cells and their administration in the OA knee joint. OA: osteoarthritis; MSC:
mesenchymal stem cells; SVF: stromal vascular fraction; ADSCs: adipose-derived stem cells; BMSCs: bone marrow-derived stem cells.
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PRP/insulin-induced differentiation was independent of
IGF-1R signaling. In another study, it was reported that
xanthan gum significantly improved the chondrogenic
potential of intra-articularly implanted ADSC in a rat OA
model [70]. Based on the above evidence, ADSC seems highly
promising for therapeutic treatment of OA; however, limited
knowledge of differentiation mechanism and lack of estab-
lished procedures are hindering the progress of this therapy
to exploit clinically. Issues related to the safety of ADSC-
based therapy have been addressed in various clinical trials
[75–79]. A report including 70 systematic studies docu-
mented that approximately 20% patients developed antibod-
ies during allogeneic cellular therapy, and one case of breast
cancer out of 121 patients was also found [75]. Therefore,
though the clinical trials indicate the potential of ADSCs in
cell-based therapy of OA, further extensive clinical studies
are needed to identify potential risks.

5. Revitalization of Cartilage by BMSCs

MSCs derived from bone marrow (BMSCs) are capable
enough to differentiate into tissues such as bone and cartilage

[80, 81] and mobilize at an injured cartilage site in knee joints
thereby assisting in cartilage regeneration in OA [82]. In a
study, the intra-articularly transplanted BMSC successfully
regenerated injured cartilage in a rabbit model of OA and
also improved osteoarthritic symptoms in humans without
any major side effect even in the long-term [83]. This study
demonstrated the possibility of intra-articular injection of
MSCs for the treatment of injured articular tissue including
anterior cruciate ligament, meniscus, or cartilage. Therefore,
if this treatment option is well-established, it may be
minimally invasive procedure compared to conventional
surgeries. In a very interesting study, out of the alginate,
fibrin-alginate (FA), agarose hydrogel 3D culture, and cell
pellet systems, the FA hydrogels and cell pellet promoted
chondrogenic differentiation of equine BMSCs, whereas no
effect was found in agarose group [84]. However, FA seems
a better option than pellet culture system, as the pellets
require large amount of chondrocytes. Another study estab-
lished an agarose hydrogel-based model for cartilage regener-
ation from human BMSCs in presence of TGF-β3, where the
level of chondrogenesis in agarose gel was dependent on the
initial density of cells [85]. Furthermore, a scaffold-free

Pretreatment 3 months
posttreatment

(a) (b)

Cartilage defect One year after transplantation Small incisions

(c)

Figure 3: Clinical efficacy of various stem cells-treated OA knee joint: (a) ADSC, (b) BMSC, and (c) SMSC. ADSC: adipose-derived stem cells;
BMSC: bone marrow-derived stem cells; SMSC: synovium-derived stem cells; OA: osteoarthritis. Figure 3 is reproduced from Pak [159],
Mehrabani et al. [160], and Sekiya et al. [161] [under the Creative Commons Attribution License/public domain].
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human BMSCs-derived cartilage-like sheet matrix has also
been developed in presence of FGF-2 and its efficacy was
assessed by transplanting it into an OA rat model. This
approach though improved OA condition, the cellular
density was decreased significantly within 12 months [86].
Further, in a report by Peng et al., limited proliferation ability
of the primary BMSCs was overcomed by immortalizing
them by using human papillomavirus- (HPV-) 16 E6/E7
genes, which showed enhanced chondrogenic potential and
long-term survival both in in vitro and in vivo OA mice
model [87]. A recent study identified both the promoting as
well as the inhibitory role of miR-29b factor in BMSC-
based regulation of collagen expression and cartilage regen-
eration in OA model [88]. Further, the chondrogenically
primed BMSCs have also demonstrated to promote cartilage
regeneration under hypoxia in a sheep model of OA [89].
However, the effect of oxygen tension was not consistent
during ex vivo cartilage regeneration. On the other hand,
BMSC also showed enhanced chondrogenesis when seeded
on chondrogenic fibrin/hyaluronic hydrogel with improved
mechanical strength by adding methacrylic anhydride.
Hence, it can also be considered as a promising delivery
method for cartilage regeneration in OA therapy [90].
Besides, the intra-articular injection of MSCs may also be
applied via microfracture through the cartilage and sub-
chondral bone [91]. In a clinical trial (phase I/II), the
intra-articularly injected BMSCs among OA patients showed
a significant improvement; however, to assess all the clinical
parameters, clinical phase III study was required [92]. In
another clinical study, human BMSCs demonstrated that
the optimum level of cell dose (25 million) improved the
OA without any major adverse effects [93]. However, at
higher doses, the knee pain and swelling were among
observed as adverse effects, which suggested that more
clinical studies are required to establish the therapeutic role
of human BMSCs in OA treatment.

6. SMSCs and Cartilage Regeneration

SMSCs have been considered more efficient for chondrocyte
differentiation than ADSCs or BMSCs [94]. Notwithstand-
ing, in the recent years, only few human-based studies using
SMSCs have been conducted compared to ADSCs and
BMSC for the treatments for OA. SMSCs are also isolated
from hip joints; however, those isolated from knee joints
have shown a better chondrogenic potential [95]. These
MSCs can also be preserved in complete human serum at 4
or 13°C without significantly affecting their viability and
chondrogenic potential [96]. In an interesting research, the
exosomes derived from SMSC-140s promoted chondrogene-
sis without affecting the quality of ECM [97]. SMSCs iso-
lated from OA patients have also shown to be an effective
alternative cell source for tissue engineering construct-
based therapy for chondral defects [98]. Besides, the
pretreatment of SMSCs with IL-1β also enhances the
chondrogenic potential of SMSCs [99].

In a rat knee OA model, the periodically injected SMSCs
migrated into the synovium and retained their undifferenti-
ated SMSC properties with an increased genetic expression

of chondroprotective proteins such as BMP-2 and an anti-
inflammatory gene, TSG-6 [100]. This suggests that SMSCs
not only retain their MSC characteristics but might also
inhibit the advancement of OA through genetic machinery.
Further, SMSCs have demonstrated the ability to enhance
the repair of longitudinally torn menisci in avascular areas
in a miniature pig model [59]. In 2014, Hatsushika et al.
further demonstrated that intra-articularly injected MSCs
in pig knee joint regenerated cartilage in resected medial
meniscus [101]. Based on these abovementioned evidence,
it could be concluded that the regenerative chondrogenic
capabilities of SMSCs catapulted them to the forefront of
cell-based OA therapy.

7. Infrapatellar Fat Pad- (IFP-) Derived Stem
Cells in Cartilage Regeneration

Knee joints are surrounded by extrasynovial adipose tissue
known as IFP, which not only provides energy but also
releases cytokines/adipokines [102]. IFP is considered as an
alternative source of autologous stem cells. MSCs isolated
from these tissues of knee joints have superior chondrogenic
properties than BMSCs or ADSCs [103]. The characteriza-
tion of IFP-MSCs is based on the presence of cell markers
such as CD9, CD10, CD13, CD29, CD44, CD49e, CD59,
CD105, CD106, and CD166 [104]. These cells are also capa-
ble to differentiate in trilineages (adipo-, chondro-, and oste-
ogenic) [104–107]. In a recent study, ADSCs were isolated
from both the human suprapatellar and IFP and differenti-
ated into trilineage cells. However, the suprapatellar-
derived ASCs were found to be more effective in reducing
OA symptoms, including knee inflammation and cartilage
degeneration in a mouse model [108]. Besides, the IFP-
MSCs have been demonstrated with higher rate of expansion
compared to synovial fluid- (SF-) MSCs [109]. However,
both cells can be exploited to treat the cartilage injury in
OA. Further, it was reported that platelet-rich plasma and
hyaluronic acid-treated IFP adipocytes promote chondro-
genesis and inhibit adipocyte-mediated inflammation [110].
IFP is also a rich source of perivascular stem cells (PSCs)
and homeostasis regulating the progenitor MSCs. IFP-PSCs
maintain their characteristic and adherent growth properties
even after multiple expansion due to their ability to retain the
structural integrity of telomere [111]. Interestingly, the PSCs
isolated from IFP have shown superior chondrogenic activity
as compared to those derived from subcutaneous adipose tis-
sues. In another study, the improved chondrogenic efficiency
of coculture of chondrocytes and IFP-MSCs in the presence
of chitosan/hyaluronic acid nanoparticles was revealed,
which implied that coculture approach in presence of proper
stimuli could assist in cartilage regeneration in an osteoar-
thritic knee [112]. The IFP-PSCs can also be engineered
by manipulating the oxygen gradients and mechanical
environment of hydrogels to obtain cartilage structurally
and functionally similar to a natural one [113]. Though
the IFP-derived stem cells appear to be a prospective alter-
native, further extensive studies are needed to prove their
clinical efficacy towards cartilage regeneration for the
treatment of OA.
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8. Regeneration of Cartilage Using ESCs

ESCs are derived from inner cell mass of the blastocyst and
could be indefinitely expanded and differentiated into any
of the three embryonic germ cell lines including ectoderm,
endoderm, and mesoderm [114]. The perpetual self-renewal
potential of ESCs makes it unlimited source of stem cells
and chondrocytes for cartilage regeneration. However, the
major bottleneck to utilize ESCs for cartilage matrix is ethical
complexity and poor survival rate of human ESCs after the
disintegration of cell mass [115]. Additionally, the differenti-
ation of ESCs into chondrocytes and regeneration of cartilage
is complex as it requires complicated microenvironment
along with 3-dimensional structure and specific mechano-
transduction signal [116]. In a seminal study, McKee et al.
showed that under compressive stress, ESCs combined with
polydimethylsiloxane (PDMS) scaffolds promoted the initial
expression of chondrogenic markers Sox9 and Acan, which
further enhanced the expression of collagen type 2 (carti-
lage-specific marker) and reduced Oct4 (pluripotent
marker). However, it did not promote differentiation of
hypertrophic cells [116]. This study showed that a proper
model is still needed to established ESC-mediated chondro-
genesis. An in vitro study used embryoid bodies to assess
the chondrogenic potential of ESCs and demonstrated that
ESCs could develop into hypertrophic and calcifying cells
[117]. In another study, ESC also revealed chondrogenic
activity when stimulated with bone morphogenetic protein
4 (BMP-4). Further, the accumulation of cartilaginous matrix
and type II collagenwas recorded in thepresenceof transform-
ing growth factor- (TGF-) β3. [118], and this chondrogenic
activity was further promoted by the platelet-derived growth
factor- (PDGF-) BB. The higher concentration of BMP-2 with
other cofactors, the TGF-β-1, insulin, and ascorbic acid, also
promotes the chondrogenic ability of ESC under con-
trolled environmental conditions [119]. Transforming growth
factor-β1, BMP-2, and BMP-4 have been reported to induce
differentiation of mice ESCs into chondrocytes [115–120].

Besides, the exosomes have been reported to mediate cel-
lular communication between stem cells and chondrocytes,
and understanding this interaction is crucial in developing
an effective protocol to regenerate the cartilage [121]. Exo-
somes are extracellular vesicle primarily secreted by MSCs
and assist in maintaining homeostasis, repair and regenera-
tion, and tissue function [122]. In a seminal study, Wang
et al. isolated exosomes from culture media of ESC-MSCs
and evaluated their effect in OA mice model. This study
showed that exosomes exerted protective and regenerative
effecst in the injured cartilage [121]. Likewise, various studies
have established the chondroregenerative potential of ESCs;
however, the major bottlenecks to utilize ESCs for cartilage
matrix regeneration are ethical concerns involving the
destruction of embryo and poor survival rate of human ESCs
after disintegration of cell mass [115, 123].

9. iPSCs and Cartilage Regeneration

iPSCs are the reprogrammed somatic cells similar to ESCs,
which seems to be a promising alternative to the ESCs

[124]. Oct 4, c-Myc, Klf4, Nanog, Esrrb, Lin28, and Sox2
are some of the transcription factors which have been used
to reprogram these somatic cells [125–128].Other approaches
like viral transfection and genetic engineering are used to
develop iPSCs. Vector characteristics and related promoters
are critical factors in gene delivery to differentiate iPSCs into
specific cells. Adenoviral, adeno-associated viral, retroviral,
and lentiviral vectors have been considered suitable for deliv-
ery of target genes in iPSCs [129]. Moreover, the differentia-
tion of patient-specific somatic cell to iPSCs reduces the risk
cross-reactivity and immunogenicity [130, 131]. Chondro-
genesis has been induced in iPSC-derived embryonic body
ofmice by using growth factors such as TGF-β3, transretinoic
acid, and BMP-2 [132, 133]. Another study demonstrated that
human iPSCs (hiPSCs) differentiated into chondrocytes and
expressed type II collagen and aggrecan similar to cartilage
[134]. Zhu et al. induced embryonic body formation from
hiPSCs, which were further differentiated to chondrocytes
and transplanted in an OA rat to regenerate cartilage [135].
They have also shown that MSCs derived from induced plu-
ripotent cells (iMSCs) were able to secrete exosomes which
were superior to exosomes of synovial membrane MSCs
(SMMSC) in regenerating cartilage in OA rat [136]. Besides,
both with and without scaffold-based cartilage regeneration
approaches have been explored for differentiating hiPSCs
into chondrocyte for the treatment of cartilage injury
[122, 137–142]. The utilization of iPSCs cannot be limited
up to regeneration of cartilage but also in the discovery of
agents promoting chondrogenesis or inhibiting cartilage
degeneration [143]. These studies showed the immense
potential of iPSCs to regenerate cartilage in OA. However,
the low efficiency and variations in requirement of tran-
scription factors in somatic cells are the major limitation
for iPSC generation. Moreover, the undifferentiated iPSC
contaminates differentiated MSCs causing tumorigenicity,
which limits the use of heterogeneous-differentiated MSCs
in cell-based regenerative therapy [144]. Furthermore, over
and unregulated expression of Oct4, Sox2, Klf4, and c–Myc
develops cell dysplasia, serrated polyps and mucinous
colon carcinomas, breast tumors, and cancers, respectively
[145–150]. Moreover, the clinical application is limited
due to lack of a proper model for large-scale and eco-
nomic differentiation of iPSCs.

10. Conclusion and Future Prospects

The self-renewing and multidifferentiation abilities have ren-
dered stem cells, an attractive alternative for the treatment of
osteoarthritic pathology. Considering the complexity and
efficiency of currently available therapies in long-term, the
cell-based regenerative therapy has widely been explored to
treat the OA and proven to hold a promising future. The
MSCs obtained from adults offer a considerable therapeutic
approach in translational medicine. The therapeutic efficacy
of stem cells can also be magnified through supplementing
growth factors. One of the major limitations of therapies
for cartilage repair is that they employ autologous cells
and therefore, the development of a universal donor cell
is still lacking.
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Current reprogrammable approaches to induce stem
cell differentiation into cartilage tissues seem inefficient.
Further, it seems that genetic modification and gene edit-
ing techniques will assist to overcome the current limita-
tions of stem cell-based therapy. The localized delivery of
gene therapeutic agents provides more effective and safe
recovery in OA. Recombinant adeno-associated viral vec-
tor (rAAV) is also used as a genetic vector to deliver
genetic sequence in situ to promote the cartilage regenera-
tion [151]. Various animal model studies and clinical trials
were carried to out to develop a comprehensive approach
for effective gene therapy and encourage to extended clin-
ical trial to develop gene transfer technique to regenerate
injured cartilage in situ [152]. microRNAs (miRNAs) such
as miR-29a, miR-140-3p, miR-140-5p, miR-145, miR-146a,
miR146b, miR-193b, miR-194, miR-221, miR-495 are
known to be involved in the differentiation of stem cells
into chondrocytes; and their regulated expression enhance
chondrogenesis and thus repair cartilage injury [153, 154].
Besides, the development of gene editing technique, the
CRISPR/Cas 9 seems promising to regulate chondrogenesis
[155]. This technique was exploited in the development of
stem cells that controlled interleukin-1 (IL-1) and tumor
necrosis factor-α- (TNF-α-)mediated inflammatory response
[156]. Further, the 3-dimensional scaffold promotes the
development of cartilage tissue structurally similar to native
cartilage by providing conducive microenvironment and
essential mechanical stimuli [152, 157]. The recent advances
in 3D printing will also improve the scaffold design, which
might support chondrocytic growth to overcome osteoar-
thritic symptoms [158]. It is of note that thoughmultiple stud-
ies have sorted out the most effective stem cells, scaffold
materials, genetic approach, and other procedures for carti-
lage regeneration in OA knee and the rigorous randomized
and blinded trials, with large sample sizes and long-term
follow-up, is needed to reach a consensus.
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