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ABSTRACT Serratia marcescens is an opportunistic human pathogen with multiple
resistance mechanisms that infects hospitalized patients. Here, we report the full ge-
nome sequence of S. marcescens podophage Parlo. Parlo is most similar to Erwinia
phage PEp14 and encodes a 3,764-residue protein assumed to be a homolog of
DarB, an antirestriction protein.

Serratia marcescens is a Gram-negative opportunistic human pathogen (1). It is found
within many environments and is well known for infecting hospitalized patients. S.

marcescens has resistance to certain penicillins, cephalosporins, tetracyclines, and other
antibiotics (2). Thus, we investigated bacteriophages of S. marcescens as potential
treatment alternatives and report here the genome sequence of podophage Parlo.

Parlo grows on Serratia marcescens D1 (Ward’s Science, catalog no. 8887172) and
was isolated from pooled swine, fecal, and soil samples collected at private farms
primarily around Bryan and College Station, Texas. These solid samples were mixed
with LB medium, and then supernatants were sterilized by filter (0.22 �m) or chloro-
form. Hosts and phages were cultured at 30°C in LB broth and agar (BD) as previously
described (3). Phage morphology was determined using a JEOL 1200EX transmission
electron microscope in the Texas A&M Microscopy and Imaging Center to observe
samples negatively stained with 2% (wt/vol) uranyl acetate (4). Phage genomic DNA
was purified with the Promega Wizard DNA cleanup kit according to the modification
by Summer (5), and an Illumina TruSeq Nano low-throughput (LT) kit was used to
generate the library for sequencing using v2 500-cycle chemistry on an Illumina MiSeq
instrument with 250-bp paired-end reads. Quality checks and trimming were per-
formed on the 373,956 total reads using FastQC (http://www.bioinformatics.babraham
.ac.uk/projects/fastqc/) and the FastX Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx
_toolkit/). A single circularized contig with 395-fold coverage was assembled with
SPAdes 3.5.0 using default parameters (6). Sanger sequencing of PCR products from the
ends of the genome (forward, 5=-CATAAACCAGCAGCTGCAAAC-3=; reverse, 5=-TCCAGT
TGCATGATCGGTTAG-3=) verified that the assembly was complete. Gene locations were
determined using GLIMMER 3.0 and MetaGeneAnnotator 1.0 or ARAGORN 2.36 for tRNA
genes (7–9). Gene functional prediction was performed using InterProScan 5.22, LipoP,
TMHMM, and BLASTp 2.2.31 results against those of the UniProtKB Swiss-Prot/TrEMBL,
and NCBI nonredundant (nr) databases (10–14). TransTerm was used to detect rho-
independent termination sites (http://transterm.cbcb.umd.edu/). All tools were hosted
on a Galaxy server (https://cpt.tamu.edu/galaxy-pub/) by the Center for Phage Tech-
nology at Texas A&M University, and annotation was performed using Web Apollo (15).

Podophage Parlo has a 61,626-bp genome with 87 predicted protein-encoding
genes at an average length of 717 bp, 30 of which have a predicted function. Phage
Parlo has a GC content of 58.0% and a 95.8% coding density. No tRNAs were identified.
Parlo is predicted by PhageTerm (16) to use a pac-type headful packaging mechanism.

Parlo encodes a 3,764-residue-long hypothetical protein (GenBank accession no.
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QBQ72230). The corresponding gene matches several InterProScan domains, including
helicase domains (e.g., InterProScan domain IPR027417), methyltransferase domains
(IPR029063), an N-terminal transglycosylase domain (IPR008258), and acyltransferase
domains (e.g., IPR000182). These domains were previously observed in DarB homologs
of Bcep22-like phages, which suggests that this protein is a homolog of phage P1 DarB
(GenBank accession no. YP_006479), an antirestriction protein that protects phage DNA
upon infection (17). Using progressiveMauve 2.4.0 (18), we compared Parlo to other
phages and found it to be most similar to Erwinia phage PEp14 (GenBank accession
no. JN585957), with only 33 similar proteins and 20.2% nucleotide similarity. Parlo
also shares similarities (19 to 21 proteins and 7.2 to 7.4% nucleotide identities) with
three Burkholderia sp. phages, BcepIL02 (FJ937737), Bcepmigl (JX104231), and DC1
(JN662425). Like Parlo, BcepIL02 possesses a DarB homolog. Parlo has a class III holin
and embedded spanin genes for lysis.

Data availability. The genome sequence and associated data for phage Parlo
were deposited in GenBank under the accession no. MK618715, BioProject no.
PRJNA222858, SRA no. SRR8869229, and BioSample no. SAMN11360383.
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