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Abstract: Background: The etiology of small for gestational age (SGA) is multifactorial and includes
maternal/uterine-placental factors, fetal epigenetics, and genetic abnormalities. We evaluated the
genetic causes and diagnostic effectiveness of targeted-panel sequencing (TES) or whole-exome
sequencing (WES) in SGA infants without a known cause. Methods: A prospective study was
conducted on newborn infants born with a birth weight of less than the 10th percentile for gestational
age between January 2019 and December 2020 at the Pusan National University Hospital. We
excluded infants with known causes of SGA, including maternal causes or major congenital anomalies
or infections. SGA infants without a known etiology underwent genetic evaluation, including
karyotyping, chromosomal microarray (CMA), and TES/WES. Results: During the study period,
82 SGA infants were born at our hospital. Among them, 61 patients were excluded. A total of
21 patients underwent karyotyping and chromosomal CMA, and aberrations were detected in
two patients, including one chromosomal anomaly and one copy number variation. Nineteen patients
with normal karyotype and CMA findings underwent TES or WES, which identified three pathogenic
or likely pathogenic single-gene mutations, namely LHX3, TLK2, and MED13L. Conclusions: In SGA
infants without known risk factors, the prevalence of genetic causes was 22% (5/21). The diagnostic
yield of TES or WES in SGA infants with normal karyotype and CMA was 15.7% (3/19). TES or WES
was quite helpful in identifying the etiology in SGA infants without a known cause.

Keywords: small for gestational age; targeted exome sequencing; whole exome sequencing

1. Introduction

Small for gestational age (SGA) has been defined either as being below the 10th centile
for weight for gestational age or as having a birth weight standard deviation score less than
−2 [1,2]. The etiology of SGA is multifactorial and includes maternal/uterine-placental
factors, fetal epigenetics, and genetic abnormalities [3,4]. Maternal and uterine placental
factors include socioeconomic status, maternal nutrition, smoking, alcohol consumption,
and diseases such as preeclampsia, placental infarction, and infection [5]. Twenty to fifty
percent of the variations in birth weight can be explained by genetic and epigenetic causes,
including chromosomal abnormalities, sequence variants, and epigenetic disturbances [6,7].
The association of SGA fetuses with chromosomal abnormalities is well established [2].
Borrel et al. reported fetuses with isolated SGA below the third centile and with a normal
karyotyping, pathological genomic imbalances were up to 10% in additional defects [8].
Previous studies on epigenetic influences, especially DNA methylation disturbance, have
also been performed [9]. Numerous genes have been associated with the regulation of
human height and implicated in growth disorders [10,11]. Bruna et al. examined 55 patients
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born SGA with persistent short stature and without and identified the cause of short stature
and reported that IHH, NPR2, SHOX, and ACAN were associated with growth plate
development [12].

To the best of our knowledge, there are no studies on the genetic analysis of Korean
SGA infants in the neonatal period. The aim of this study was to identify candidate genetic
abnormality that might cause prenatal growth restriction and determine whether a genetic
test is a helpful diagnostic approach for SGA infants. Therefore, we used karyotyping, chro-
mosomal microarray analysis (CMA) and targeted-panel sequencing (TES)/whole-exome
sequencing (WES), especially in the neonatal period of SGA infants with unknown etiology.

2. Patients and Methods
Patients

A prospective study was conducted on newborn infants born with a birth weight of
less than the 10th percentile for gestational age between January 2019 and December 2020
at the Pusan National University Hospital.

Using data from the maternal medical chart, we excluded infants with maternal
or placental etiology, including multiple pregnancy, placental insufficiency, preeclamp-
sia/HELLP syndrome, renal insufficiency, autoimmune diseases, and smoking history. We
also excluded infants with congenital infection and major congenital anomalies, including
ventriculomegaly, omphalocele, and major complex heart anomalies. However, infants
with hypotonia /hypertonia and facial dysmorphism with no history of prenatal genetic
testing and unknown etiology were included.

Karyotyping and chromosomal microarray analysis (CMA) using cord blood were
performed in all patients. When no abnormalities were detected by karyotyping and CMA,
the infants born in 2019 and 2020 underwent targeted and WES in the neonatal period as
per our policy.

3. Targeted Panel and Whole-Exome Sequencing
3.1. Targeted Exome Sequencing

Genomic DNA was extracted from peripheral blood leukocytes using the chemagic
DNA Blood 200 Kit (PerkinElmer, Waltham, MA, USA). A custom Target Enrichment
Kit (Celemics, Inc., Seoul, Korea) was designed to target 30 genes. The selected genes
were those associated with short stature (growth-related genes derived from the Online
Mendelian Inheritance in Man (OMIM) and MedGen databases) and genes involved in
the GH-IGF1 pathway regulation in silico. The following genes were included: CDC6,
CDT1, CUL7K FGFR1, GH1, GHR, GHRHR, GLI2, GLI3, HESX1, IGF1, IGF1R, KDM6A,
KMT2D, LHX3, NIPBL, OBSL1, ORC1, ORC4, ORC6, PCNT, POU1F1, PROP1, PTPN11,
RPS6KA3, SMARCAL1, SMC1A, SMC3, SOS1, and SOX3. Sequencing was performed
on the MiSeq platform (Illumina, Inc., San Diego, CA, USA). Obtained sequence reads
were aligned to the hg19 human reference sequencing using the Burrows–Wheeler Aligner
software (BWA version 0.7.12, San Diego, CA, USA). For in silico analysis of missense
variants, the Sorting Intolerant from Tolerant (SIFT), PolyPhen-2, and Mutation Taster
algorithms were used to predict variants that alter protein function. Mean coverage
of reading depth was 450 depth and 99.8% of bases on-target. Sequence variants were
classified into five categories: pathogenic, likely pathogenic, variants of uncertain clinical
significance (VUS), likely benign, and benign, according to the American College of Medical
Genetics and Genomics Standards and Guidelines.

3.2. Whole-Exome Sequencing

This assay was performed using the PerkinElmer Sciclone® (Waltham, MA, USA)
G3 Workstation combined with the Agilent SureSelect Clinical Research Exome capture
kit (#G9496A 5190–7344), followed by sequencing of the coding regions and splice sites
on the Illumina NextSeq 550 (High-Output v2 kit). Exomes were sequenced to achieve a
completeness > 95% of bases covered with at least 15 reads across the entire exome. Reads
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were aligned to the GRCh37 reference sequence using the Burrows–Wheeler Aligner (BWA
0.7.17, version 0.7.17, San Diego, CA, USA), and variant calls were made using the Genomic
Analysis Tool Kit (GATK v4.0.3.0). Variants are subsequently filtered to identify: (1) variants
classified as disease-causing mutations in public databases with minor allele frequencies
<5.0% in the Genome Aggregation Database (gnomAD, http://gnomad.broadinstitute.org/
accessed on 27 May 2022); (2) nonsense, frameshift, and canonical splice-site variants in
disease-associated genes with a minor allele frequency ≤1.0% in gnomAD; and (3) variants
with minor allele frequency ≤5.0% in the gnomAD in a patient-specific phenotype-driven
gene list. The evidence for phenotype-causality was then evaluated for each variant
resulting from the filtering strategies mentioned above, and variants were classified based
on the ACMG/AMP criteria (Richards et al., 2015) with ClinGen rule specifications (https:
//www.clinicalgenome.org/working-groups/sequence-variant-interpretation/, accessed
on 27 May 2022). Variants were reported according to HGVS nomenclature (https://
varnomen.hgvs.org/, accessed on 27 May 2022). Only variants with evidence for causing
or contributing to disease or variants of uncertain significance in genes highly related to the
reported patient phenotype were included in the final report. All variants included in this
report were confirmed via Sanger sequencing or other orthogonal sequencing techniques.

4. Standard Protocol Approval, Registration, and Patient Consent

Ethical approval for this study was granted by the Institutional Review Board of Pusan
National University Hospital, and fully informed written consent was obtained from each
participant’s parents (2101-002-098).

5. Results

During the study period, 82 singleton SGA infants were born at our hospital. Among
them, 61 patients were excluded on account of the known causative factors, including
maternal preeclampsia (n = 21), placental insufficiency (n = 15), diabetes mellitus (n = 7),
autoimmune diseases (n = 6), maternal smoking (n = 3), congenital structural anomaly
(n = 4), congenital infection (n = 3), and refusal to test (n = 2). Finally, 21 patients underwent
karyotyping and CMA. Among them, 19 infants with normal karyotype and CMA results
were subjected to TES or WES (Figure 1).
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for GA was 3.3. In twelve patients, the BW was below the third percentile of BW for GA.
Symmetric and asymmetric type SGAs were observed in 12 and 9 patients, respectively.

Table 1. Clinical characteristics of patients.

Sex Delivery GA BW Percentile
of BW Length Percentile of

Length HC Percentile
of HC

Ponderal
Index

Type of
SGA

SGA 1 F C/S 34 + 4 1093 3 36.5 10 28 10 2.25 Asymmetric
SGA 2 F C/S 35 + 6 1455 0 42 5 27.5 0 1.96 Symmetric
SGA 3 F C/S 35 + 5 1795 3 41.5 4 30.5 15 2.5 Asymmetric
SGA 4 F C/S 39 + 0 2600 5 47 8 32 4 2.5 Symmetric
SGA 5 F C/S 37 + 1 2280 8 46 25 31.5 14 2.34 Asymmetric
SGA 6 M C/S 34 + 1 890 0 34.5 0 27.5 1 2.17 Symmetric
SGA 7 M C/S 33 + 4 1314 1 38 1 28 1 2.36 Symmetric
SGA 8 F NSVD 37 + 0 1960 2 44 8 31.5 16 2.3 Asymmetric
SGA 9 M C/S 34 + 5 1764 6 41 3 30.5 21 2.56 Asymmetric

SGA 10 M C/S 35 + 0 1643 2 41.5 4 30.3 14 2.3 Asymmetric
SGA 11 F C/S 37 + 0 2110 4 41 0 31.5 16 3.06 Asymmetric
SGA 12 F C/S 35 + 4 1160 0 35 0 26.5 0 2.7 Symmetric
SGA 13 F C/S 35 + 5 1950 8 45 33 30 8 2.14 Symmetric
SGA 14 M C/S 32 + 2 1093 3 36 1 27 4 2.34 Symmetric
SGA 15 F C/S 32 + 4 1249 0 35.5 0 26.5 0 2.79 Symmetric
SGA 16 F C/S 30 + 4 790 3 34 2 23.5 0 2.0 Symmetric
SGA 17 M NVSD 37 + 1 2360 8 44 3 32.5 29 2.77 Asymmetric
SGA 18 M NSVD 41 + 2 2700 1 48 3 33 3 2.44 Symmetric
SGA 19 F C/S 34 + 1 1510 5 40 6 27.5 1 2.36 Symmetric
SGA 20 F C/S 37 + 6 2290 4 44 3 31 4 2.7 Symmetric
SGA 21 F C/S 37 + 0 2110 4 41 0 31.5 16 3.06 Asymmetric

Abbreviations: SGA, small for gestational age; M, male; F, female; NSVD, normal spontaneous vaginal delivery;
C/S, cesarian section; GA, gestational age; BW, birth weight; HC, head circumference.

Karyotyping and CMA showed aberrations in 2/21 patients, including one patient
with chromosomal anomaly and one with copy number variations (CNVs). SGA15 suffered
from respiratory distress syndrome (RDS) and patent ductus arteriosus, which was ligated
surgically. Although karyotyping revealed X chromosome deletion and she was diagnosed
with Turner syndrome, she did not have typical morphologic features of Turner syndrome
in the neonatal period. SGA2 was a preterm infant who suffered from RDS after birth.
Karyotyping and CMA revealed heterozygous deletion at 4p, related to Wolf–Hirschhorn
syndrome (WHS). Over time, she revealed sucking difficulty and distinctive facial features
and was diagnosed with WHS.

We identified 8 gene mutations in 19 patients with normal karyotype and CMA.
Among them, three mutations (SGA 6, 16, and 18) were pathogenic or likely pathogenic
(Table 2). SGA 6 was born as a preterm infant and suffered from RDS and necrotizing
enterocolitis. On the routine thyroid function test, he was diagnosed with congenital
hypothyroidism. TES showed monoallelic LHX3 mutation (c.935G.A) associated with
combined pituitary hormone deficiency (CPHD).

Table 2. Mutations detected in TES/WES.

Method of
Detection Gene cDNA Change Protein Change Classification Related Disease or Gene/OMIM Disease

SGA 5 TES CDT1 c.366G > T p.Glu1224Asp VUS Meier-Gorlin syndrome
SGA 6 TES LHX3 c.935G > A p.Arg312Gln LPV Combined pituitary hormone deficiency (CPHD)

SGA 8 TES PCNT
PCNT

c.3167G > A
c.5543A > G

p.Gly1056Asp
p.Glu1848Gly

VUS
VUS

Microcephalic osteodysplastic primordial dwarfism
Microcephalic osteodysplastic primordial dwarfism

SGA 12 TES KMT2D
PCNT

c.6548A > G
c.5647C > T

p.Tyr2183Cys
p.Arg1883Trp

VUS
VUS

Kabuki syndrome
Microcephalic osteodysplastic primordal dwarfism

SGA 13 WES FLNB c.5959A > C p.Asn1987His VUS Atelosteogenesis, boomerang dsyplasia, Larsen
syndrome

SGA 16 WES TLK2 c.31C > T p.Arg11Ter LPV Mental retardation, autosomal dominant 57
SGA 18 WES MED13L c.5698C > T p.Arg1900Ter PV MED13L syndrome
SGA 20 WES OBLS1 c.2810_2812del p.Glu937del VUS 3-M syndrome

Abbreviations: SGA, small for gestational age; cDNA, complementary deoxyribo nucleic acid; OMIM, online
mendelian inheritance in man; TES, targeted-exome sequencing; WES, whole-exome sequencing; VUS, variant of
uncertain significance; LPV, likely pathogenic variant; PV, Pathogenic variant.
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SGA 16 was born as a preterm infant and suffered from RDS, bronchopulmonary
dysplasia, and retinopathy of prematurity. WES showed TLK2 gene mutation, which was
associated with mental retardation. She was followed up after discharge from NICU and
revealed developmental delay and microcephaly at ten months of age. SGA 18 was born
as full term and showed an incomplete imperforated anus. A novel de novo missense
mutation, c.5698C > T (p.Arg1900Ter), was identified in MED13L associated with MED13L
syndrome. He developed hypotonia and developmental delay progressively. He was
finally diagnosed with MED13L syndrome.

In SGA 5, 8, 12, 13, and 20, CDT1 (n = 1), PCNT (n = 3), KMT2D (n = 1), FLNB (n = 1),
and OBLS1 (n = 1) were identified, respectively, but these genes have been classified to
be variants of uncertain significance; none of the parents have been tested for variants
identified in our study.

6. Discussion

SGA can be the result of both constitutional or fetal growth restriction (FGR), which
is defined as a fetus being unable to reach its growth potential [13]. Among genetic
causes of SGA, chromosomal anomalies, including trisomy 18 and Turner syndrome, have
accounted for up to 19% of fetuses with FGR [8]. However, the incidence of submicroscopic
duplications/deletions and single gene disorder in FGR with normal karyotype is not well
established.

Array-based genomic copy number analysis has recently become a research tool and a
clinical genetic test in the diagnostic work-up in several clinical settings [14]. The detection
rates of CMA in FGR patients were 10–18.8% in several studies. Canton et al. analyzed
51 patients with SGA with unknown cause using CMA and found that 8 of 51 patients
(16%) had pathogenic or probably pathogenic copy number variants (CNVs) [15]. Hui
zhu et al. investigated the clinical value of CMA in 107 FGR patients. Karyotyping
identified chromosomal aberration in 9.3%, while CMA detected them in 18.8% of the study
population [16].

Borrell et al. performed a meta-analysis to estimate the incremental yield of CMA
compared to karyotyping in FGR. They revealed a 4% incremental yield of CMA over
karyotyping in non-malformed FGR fetuses and a 10% incremental yield in FGR when
associated with fetal malformations. The most frequently found pathogenic CNVs in that
study were 22q11.2 duplication, Xp22.3 deletion, and 7q11.23 deletion, particularly in
isolated FGR [8].

We identified one infant with chromosomal aberration (5%) and one with CNVs (5%)
among the 21 patients using karyotyping and CMA simultaneously. These detection rates
(2/21 patients, 9.5%) were quite a lot lower than in previous studies (18–19%) [8,14–16].
In the present study, we focused on SGA infants without a known cause. We excluded
major structural anomalies such as omphalocele. One SGA infant with omphalocele was
diagnosed with down syndrome in our study period, but the infant was excluded from
the present study because of a major anomaly. Therefore, the rate of genetic abnormalities
would be higher if we included all the SGA neonates. Nevertheless, karyotyping and CMA
helped establish an early diagnosis in this study. In the case of SGA 2, we might not have
been able to diagnose WHS so early without performing CMA because the patient had no
typical symptoms and signs for WHS in the neonatal period. Of course, he could have been
diagnosed when the symptoms became more distinctive later. Further, SGA 15 may have
been eventually diagnosed with Turner syndrome after the clinical symptoms developed
progressively. However, we could not diagnose her so early in the neonatal period because
she had no typical Turner syndromic features.

The advent of new genomic technologies, including massively parallel sequencing,
has provided a genetic diagnosis for many children with short stature of unknown cause,
especially among patients with syndromic conditions [12]. Experience with molecular ge-
netic testing is still limited, but WES revealed approximately 23–50% of genetic variations
in cases with normal cytogenetic and CMA results. Susanne et al. reported that genetic anal-
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yses in SGA newborns using an array comparative genomic hybridization, genome-wide
methylation studies, and exome sequencing. That study identified the genetic abnormality
that likely contributed to SGA in 4 of 21 patients (19%) [17].

We detected three single-gene mutations in 19 SGA infants with normal karyotype
and CMA (15.7%). One infant (SGA 6) showed congenital hypothyroidism, hypoglycemia,
cholestasis, and cryptorchidism, which were symptoms of combined pituitary hormone
deficiency (CHPD) and prematurity [17]. Therefore, we might not have been able to
consider him as CHPD during the hospital days because he was also a preterm infant.
Brain MRI was performed after WES to confirm pituitary abnormalities, but his MRI was
normal. This variant has been described previously in a patient with CHPD with normal
brain MRI [18,19]. LHX3 mutation in SGA 6 might be a strong candidate gene to cause
SGA [20]. However, this patient needed further investigation to confirm CHPD and its
potential pathogenic nature.

In the case of SGAs 16 and 18, both were diagnosed by WES. They would otherwise
be diagnosed after developmental delay, and mental retardation had developed more
distinctly, thus resulting in a delayed diagnosis. Specifically, infant SGA 18 showed FGR
and an incomplete imperforated anus without any other symptoms and signs of MED13L
syndrome. Smol et al. reported 36 patients with MED13L molecular anomaly [20]. Among
the 36 patients, only one had FGR/IUGR, while no one developed an imperforated anus.
All patients had motor, speech, and moderate to severe intellectual delay, and the median
age for independent walking was 25 months (ranging from 18 to 30 months).

In our study of SGA infants without known risk factors, the prevalence of pathological
chromosomal or subchromosomal abnormalities was 22% (5/21), similar to the previous
report. However, caution should be excised in the interpretation because our study included
only SGA without known etiology. As a result, the diagnostic yield of TES or WES in SGA
infants was 3/19 (15.7%).

However, there are opposite opinions. Ma Y et al. studied 85 SGA infants without
a known cause and concluded that molecular genetic analysis is not recommended for
isolated SGA pregnancies without other abnormal findings. In their study, pathological
subchromosomal anomalies were detected by CMA or WGS in 10% and 2% of SGA subjects
with and without malformation, respectively [21].

Our study has several limitations. First, only a small number of patients were included.
The study conclusions, especially regarding the diagnostic yield, cannot be generalized
because genetic tests could not be performed on all the SGA infants. Secondly, many
previous studies have defined IUGR exclusively by birth weight below the 10th percentile
for gestational age without further differentiation between infants that had suffered from
prenatal growth restriction and those born solely as SGA. In this study, we could not
separate SGA and IUGR distinctly. Some infants born exclusively as SGA constitutionally
might have been included in this study, even if they did not need to be tested.

We conclude that some sequence variants identified TES/WES might contribute to
prenatal growth failure, and TES/WES were quite helpful in establishing an early diagnosis
in SGA infants with normal karyotype and CMA. Early diagnosis in some patients of this
study may have important consequences for the care and counseling of patients and their
parents. Further studies are required to know the incidence of genetic causes of SGA and
whether such genetic evaluation in the neonatal period can become an effective diagnostic
approach in SGA neonates.
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