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Abstract

Background: Muscular invasive bladder cancer (MIBC) is a common malignant tumor

in the world. Because of their heterogeneity in prognosis and response to treatment,

biomarkers that can predict survival or help make treatment decisions in patients with

MIBC are essential for individualized treatment.

Aim: We aimed to integrate bioinformatics research methods to identify a set of

effective biomarkers capable of predicting, diagnosing, and treating MIBC. To provide

a new theoretical basis for the diagnosis and treatment of bladder cancer.

Methods and results: Gene expression profiles and clinical data of MIBC were

obtained by downloading from the Cancer Genome Atlas database. A dataset of

129 MIBC cases and controls was included. 2084 up-regulated genes and 2961

down-regulated genes were identified by differentially expressed gene (DEG) analy-

sis. Then, gene ontology analysis was performed to explore the biological functions of

DEGs, respectively. The up-regulated DEGs are mainly enriched in epidermal cell dif-

ferentiation, mitotic nuclear division, and so forth. They are also involved in the cell

cycle, p53 signaling pathway, PPAR signaling pathway, and so forth. The weighted

gene co-expression network analysis yielded five modules related to pathological

stages and grading, of which blue and turquoise were the most relevant modules for

MIBC. Next, Using Kaplan–Meier survival analysis to identify further hub genes, the

screening criteria at p ≤ .05, we found CNKSR1, HIP1R, CFL2, TPM1, CSRP1, SYNM,
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POPDC2, PJA2, and RBBP8NL genes associated with the progression and prognosis of

MIBC patients. Finally, immunohistochemistry experiments further confirmed that

CNKSR1 plays a vital role in the tumorigenic context of MIBC.

Conclusion: The research suggests that CNKSR1, POPDC2, and PJA2 may be novel

biomarkers as therapeutic targets for MIBC, especially we used immunohistochemical

further to validate CNKSR1 as a therapeutic target for MIBC which may help to

improve the prognosis for MIBC.
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1 | BACKGROUND

Muscular invasive bladder cancer (MIBC) is a highly heterogeneous

cancer of the urinary system, and most bladder cancers are urothelial

carcinomas. Currently, 25% of patients have muscle-infiltrating or

metastatic disease at the initial diagnosis and have a poor prognosis.1

Neoadjuvant cisplatin-based chemotherapy (NAC) is the most effec-

tive approach and standard of care for MIBC before radical

cystectomy.2 But many patients do not respond to NAC and patients

with MIBC usually relapse within 2 years. A biomarker is a biological

substance whose detection indicates a specific disease state.3 To date,

several biomarkers have been introduced in daily clinical practice,

including risk assessment, screening, differential diagnosis, prognostic

determination, treatment response prediction, and disease progres-

sion monitoring.4

With the discovery and development of high-throughput

sequencing methods, the systematic analysis of high-throughput

sequencing data and screening of important information is the basis

for subsequent studies.5 The emergence of network biology has led to

a deeper understanding of complex biological systems, allowing the

realization of tissue or cellular functions with a modular character.

The development of cancer is a systems biology process (BP) that

spans different functional networks.6 Weighted gene co-expression

network analysis (WGCNA)7 is a systems biology tool for characteriz-

ing gene expression patterns in samples and has been widely used in

the analysis of various cancers,8 such as colorectal cancer,9 non-small-

cell lung cancer (NSCLC),10 and breast cancer.11 WGCNA is used by

studying the relationship between tissue microarray data and clinical

features to identify possible biomarkers for predicting relevant can-

cers and comparing differentially expressed genes and studying the

interactions between genes in different modules.12

In our study, the RNA sequencing (RNA-seq) profile data of MIBC

was downloaded from the Cancer Genome Atlas (TCGA) database.

Then, the differentially expressed genes (DEGs) between MIBC and

normal tissues were further analyzed at the expression and functional

levels. After that, The gene ontology (GO) functional enrichment ana-

lyses of DEGs were performed by clusterprofiler R package. Subse-

quently, WGCNA was used to identify modules related to disease

status, and pivotal genes for turquoise and blue modules were identi-

fied. Finally, the hub genes were verified by survival analysis, an

independent dataset, and an immunohistochemical (IHC) experiment

to determine these genes play an essential role in MIBC development.

Therefore, our research may identify several effective biomarkers for

MIBC and provide practical help for treating diseases.

2 | MATERIALS AND METHODS

2.1 | Data collection and processing

The resource-rich public database (TCGA: https://www.cancer.gov/

tcga) provides insight into the mechanisms of cancer progression and

the opportunity to discover new biomarkers. The RNA-seq data

included 19 normal and 414 tumor samples. Principal component

F IGURE 1 Flow chart of data collection, preparation, processing,
analyzing, and validation in the study
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analysis (PCA) was performed on the gene expression data of MIBC

using the “factoextra” (version: 3.3.3) R package. A follow-up analysis

was performed after the exclusion of outliers. The workflow for our

experimental study of the MIBC dataset in TCGA is shown in Figure 1.

2.2 | Identification of differentially expressed
genes

The “limma” R package (version: 3.3.3) was utilized to identify the

DEGs between MIBC and normal samples in the dataset for valida-

tion. jLog2FCj > 2 and adj. value < .01 are used as cutoff criteria. We

use the R package “ggplot2” (version: 3.3.3) to visualize the DEGs and

show it with a volcano plot.

2.3 | Gene ontology enrichment analyses of
differentially expressed genes

A comprehensive understanding of the biological significance behind

the genes is essential. GO is widely used for functional annotation and

enrichment analysis; BP, molecular function (MF), and cellular compo-

nent (CC) are the three major components of gene function.13 The

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database

resource that integrates genomic, chemical, and phylogenetic informa-

tion. It enables efficient candidate genes for pathway enrichment anal-

ysis. In this study, GO enrichment analysis and KEGG pathway

analysis of previously obtained DEGs were performed using the R

package “clusterProfiler” (version: 3.14.3) and “org.Hs.eg.DB” (version:
3.10). p values < .05 for DEGs were considered statistically significant.

2.4 | Co-expression network construction

Weighted gene co-expression networks analysis (WGCNA) of DEGs

was performed according to the “WGCNA” (version: 1.70–3) R language

package.14 WGCNA, which aims to find co-expressed genes(modules)

and explore the association between gene networks and phenotypes of

interest and the hub genes in the network. Methodologically, WGCNA

is divided into two parts: expression clustering analysis and phenotype

association, which mainly include five steps: (1) network construction,

(2) module identification, (3) relationship of modules and clinical traits,

(4) topological property analysis, and (5) network visualization.

First, construct a scale-free expression network degree, and used

Pearson correlation matrix method and average linkage method for all

two-paired genes. Then, a weighted adjacency matrix was created

using amn = jcmnjβ (cmn = Pearson's correlation between gene m

and gene n; amn = adjacency between gene m and gene n).

ai ¼power sij,β
� �

sij
�� ��β:

β is a soft threshold parameter that emphasizes strong correlations

between genes and penalizes weak correlations. After selecting the

power of β, the neighborhood relationships are converted into a

topological overlap matrix (TOM), which measures the network connec-

tivity of a gene defined as the sum of its neighborhood relationships

with all other genes for network generation corresponding similarity

(1-TOM) is calculated Average linkage hierarchical clustering was per-

formed based on the TOM-based dissimilarity measure to classify genes

with similar expression profiles into gene modules. For the gene dendro-

gram, the minimum size gene group was 30. To further analyze the

modules, we calculated the dissimilarity of module feature genes,

selected a cut line for the module dendrogram, and merged some mod-

ules. Topological overlap measurements generated network modules

with a power cutoff threshold of 3 and a module size cutoff of ≤50. The

Pearson correlation test analyzed correlations between each module

and clinical traits p < .05 was considered significant.

2.5 | Identification of clinically significant modules

Two approaches were used to identify modules related to the clinical

traits of MIBC. First, gene significance (GS) was defined as the log10

transformation of the p value (GS = lgP) in the linear regression

between gene expression and the clinical traits. In addition, module

significance (MS) was defined as the average GS for all the genes in a

module. The module with the jMSj ranked first or second among all

the selected modules was considered the one related to the clinical

trait. Module eigengenes (MEs) were considered the major component

in the principal component analysis for each gene module. The

expression patterns of all genes could be summarized into a single

characteristic expression profile within a given module. In addition,

we calculated the correlation between MEs and clinical traits to iden-

tify the relevant module. The module with the maximal jMSj among all

the selected modules was usually considered the one related to clini-

cal traits. Finally, the module highly correlated with certain clinical

traits was selected for further analysis.

2.6 | Identification of hub genes

In this study, the key gene was defined by modular connectivity, measured

by the absolute value of the module to measure the relationship between

Pearson correlation (cor.gene Module Membership >0.8) and clinical traits,

and measured by limiting the absolute value of Pearson correlation (cor.

gene Trait Significance). Next, the Gene Expression Profiling Interactive

Analysis (GEPIA) website (http://gepia2.cancer-pku.cn/) was used to verify

the hub genes expression level, and the “survival” (version3.2–7) of R

package was performed to Kaplan–Meier survival analysis to check hub

genes were associated with prognostic significance.

2.7 | Single nucleotide polymorphism validation of
hub genes

The cBioportal (http://www.cbioportal.org/) database can provide a

resource: visual analysis of multidimensional cancer genomic data.

It also provides a graphical analysis at the gene level. We selected
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the bladder cancer database with 413 samples from cBioPortal to

map the genome, including mutations, copy-number variance

(CNV), and mRNA expression z-scores (RNASeqV2 RSEM). Mean-

while, we also showed the mutation types of some hub genes by

the lollipop maps.

2.8 | Immunohistochemical analysis

Clinical samples of MIBC were obtained from three MIBC patients

from the Department of Pathology, Tangdu Hospital, Fourth Military

Medical University. In preparation for using these clinical materials for

research purposes, prior approval was obtained from the Patient Con-

tent and Institutional Research Ethics Committees. The IHC of the

patient's MIBC tissue and its paired normal tissue sections is

described previously.15 The CNKSR1 antibody (product #10885-1-AP)

was used to detect CNKSR1 in this study. Two independent experts

evaluated the results of the experiment. The scoring criteria of

CNKSR1 protein expression in MIBC samples are as follows: intensity

score (� negative, + weak, + + moderate, + + strong) � positive

reaction score (<10% �, 10% 25% +, 26% 50% positive +, > 50%

moderate +).

F IGURE 2 Differentially expressed genes ***analysis of transcription profile of muscular invasive bladder cancer (MIBC) and normal samples.
(A) Principal component analysis showing the first 2 PCs of tumor and normal samples. (B) Volcano grams are used to show genes that are
significantly differentially expressed in MIBC and normal samples. The red dots indicate the genes that are up-regulated in MIBC samples, while
the blue dots indicate the genes that are down-regulated in MIBC samples. (C) Gene ontology on up-regulated genes analyzed by difference
analysis biological process. (D). KEGG on up-regulated genes was analyzed by difference analysis
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2.9 | Statistical analysis

The R software (version 3.6.1) was utilized for all statistical analyses

of our study, and a p value <.05 was categorized as statistically

significant.

3 | RESULTS

3.1 | Data collection and processing

After principal component analysis, 120 tumor samples and nine

normal samples were selected. The PCA result showed a

significant difference between tumor samples and normal

samples (Figure 2A). The Percentage of explained variances of

the PC1 and PC2 of the data are 7.1% and 3.4%, respectively.

The RNA-seq data from these 120 samples were used in the

subsequent studies.

3.2 | Identification of differentially expressed
genes and gene ontology functional annotation

A total of 2084 genes were up-regulated, and 2961 genes were

down-regulated (Figure 2B). Then, the GO analysis results showed

that the up-regulated DEGs were mainly enriched in epidermal

F IGURE 3 The identification of key modules related to muscular invasive bladder cancer tumorigenesis. (A) Clustering dendrograms of genes,
with dissimilarity based on the topological overlap, together with assigned module colors. As a result, five co-expression modules were
constructed and were shown in different colors. (B) The eigengene dendrogram and heatmap identify groups of correlated eigengenes termed
meta-modules. (C) Module-trait associations. (D,E) Scatter plot of module eigengenes in blue and brown module
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cell differentiation, mitotic nuclear division, and sister chromatid

separation (Figure 2C). They are also involved in the cell cycle,

p53 signaling pathway, PPAR signaling pathway, and son forth

(Figure 2D). The results are consistent with the known dysfunc-

tional process of MIBC, demonstrating the reliability of the

method. The down-regulated DEG enrichment results are as

shown in Figure S1.

3.3 | Identification of clinically significant modules

The clinic traits data set was obtained from the TCGA database. To

study the clinical significance of these modules, the correlations

between MEs and clinical traits including Gender, OS, Tumor_Normal,

BMI, T, and Stage were analyzed, evidencing that two modules were

associated with the aforementioned clinical features by the R-value of

F IGURE 4 Survival analysis of the gene expression levels of nine hub genes using an independent dataset. (A–I) Expression levels of
CNKSR1, HIP1R, RBBP8NL, CSRP1, POPDC2, CFL2, SYNM, TPM1, and PJA2 were significantly related to the overall survival of patients with
MIBC (p < .05). Kaplan–Meier survival curves of muscular invasive bladder cancer cancer patients stratified by low or high expression of the nine
hub genes
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correlation, which is shown in Figure 3. The power of β = 7 was

selected as the soft-thresholding to ensure scale-free networks

(Figure S2). In addition, Module membership versus gene significance

were blue module (cor = 0.94, p < 1e�200) and turquoise module

(cor = 0.8, p = 1e�200), respectively (Figure 3E,F). This indicating

that the above two modules apply to the Clinical Significance Module

and allow further identification of hub genes associated with

Sample_Type. The characteristic gene adjacency heat map is shown in

Figure 3D, showing the correlation between adjacent blocks of mod-

ules. By analyzing the module relationship (MM) and gene significance

F IGURE 5 Validation of the gene expression levels of nine hub genes in muscular invasive bladder cancer (MIBC) (based on TCGA data in
GEPIA). (A–I) Validation of the gene expression levels of PTTG1, RRM2, TOP2A, UHRF1, CEP55, BIRC5, UBE2C, FOXM1, and CDC20 are
significantly upregulated in MIBC compared with normal tissues (p < .01). The red * represents p < .01
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F IGURE 6 Genetic alterations associated with hub genes in muscular invasive bladder cancer (based on TCGA data in cBioPortal). Mutations
nine hub genes based on TCGA data. Bar plots and heatmaps showing mutations in the nine hub genes. (B) Visualization of mutation types and
mutation rates of single genes LIG1, CNKSRI, HIP1R, and CSRP1. (C) Lollipop plots showing the distribution of mutations in different domains of
the proteins encoded by the nine hub genes
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(GS), we found higher values of MM in this module with GS

(Figure 3E,F). Eleven genes were identified in the turquoise module,

and 25 genes were identified in the blue module with thresholds of

MM >0.8 and GS >0.8. Ultimately, these 36 genes were identified as

relevant for tumor progression to analyze further and validate these

hub candidate genes.

3.4 | Survival and expression analysis of hub genes

Gene expression validation was performed for all 36 genes, and the

data were from the TCGA database through the GEPIA2 website

(http://gepia2.cancer-pku.cn/) (Figure 4A,B). Since tumor progression

always affects tumor prognosis, we investigated the role of these

36 genes in MIBC prognosis, including overall survival time. K-M and

log-rank analysis showed that the important genes in the turquoise

module were CFL2, TPM1, CSRP1, SYNM, POPDC2, and CNKSR1,

HIP1R, PJA2, and RBBP8NL in the blue module (Figure 4A–I). Survival

analysis using the GEPIA database was performed to estimate the

relationship between the nine hub genes and the prognosis. As can be

seen from the box-profiles in Figure 5, the CNKSR1, HIP1R, and

RBBP8NL were lower expressed in MIBC than normal bladder tissues

(p < .05), and they may be tumor suppressor genes in MIBC. CFL2,

TPM1, CSRP1, SYNM, POPDC2, and PJA2 were highly expressed in

normal tissues (Figure 5A–C). A previous study, which found differen-

tial expression of the SYNM, TPM1, CSRP1 gene in bladder cancer,

demonstrated the reliability of our study.16

3.5 | Single nucleotide polymorphism analysis of
hub genes

We used cBioPortal for Cancer Genomics (https://www.cbioportal.

org) to verify the single nucleotide polymorphism of nine mutated hub

genes and showed the mutation type and mutation rate of each gene

(Figure 6A). Among them, the mutation rates of RBBP8NL, HIP1R, and

CNKSR1 were the highest, which were 12%, 7%, and 5%, respectively.

And the site mutation type and mutation rate of CNKSR1, HIP1R, and

other CSRP1 in amino acid sequence (Figure 6B). The mutation rates

and mutation types of the nine genes were shown in Table 1.

3.6 | CNKSR1 immunohistochemical analysis

As mentioned earlier,17 we used Proteintech-branded CNKSR1 anti-

body (10885-1-AP; Proteintech) for IHC analysis. Immunohistochem-

istry was analyzed by two independent researchers who were

unaware of the clinical results. According to the Shimizu criteria

standard,18 the expression of CNKSR1 protein in MIBC samples

ranged from 0 to 2+. CNKSR1 was highly expressed in tumors as com-

pared to matched normal, unaffected resected specimens (Figure 7).

The expression levels of CNKSR1 protein were divided into two low

expression groups (0 or 1+) and one high expression group (2+). The

TABLE 1 Mutation types and mutation rates of genes

Gene

Somatic mutation

frequency (%) Somatic mutation types

CNKSR1 1.0 Missense

HIP1R 2.2 Missense Truncating

CFL2 1.0 Missense

TPM1 0.7 Missense Splice

CSRP1 0.2 Missense

SYNM 1.7 Missense Truncating

POPDC2 0.5 Missense Truncating

PJA2 1.2 Missense

RBBP8NL 0.7 Missense truncating

F IGURE 7 Immunohistochemistry CNKSR1 in tumor tissue (Ca) and adjacent normal tissue (Para-Ca) from three patients with muscular
invasive bladder cancer.Visualization of CNKSR1 genes in immunohistochemical analysis
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experiments also suggested that the site of CNKSR1 coloration was in

the cytoplasm.

4 | DISCUSSION

TCGA is a cancer research project established by the National Cancer

Institute (NCI) in collaboration with the National Human Genome

Research Institute (NHGRl) to provide an extensive, free reference

database for cancer research by collecting and organizing a variety of

cancer-related histological data. The database covers genomic, trans-

criptomic, epigenomic, and proteomic data, providing a comprehen-

sive, multidimensional data set. Despite significant improvements in

the treatment of MIBC, it remains the most common malignancy with a

high incidence in men worldwide.19 DNA microarray gene expression

profile has been proved to have a specific application value and has been

widely used to explore the differentially expressed genes involved in

tumorigenesis and provide valuable information for clinical application.20

For MIBC patients with highly variable progression and prognosis, there

is an urgent need for better and valuable biomarkers as prognostic or

predictive molecules to provide patients with more useful clinical treat-

ment strategies. In addition, these novel biomarkers could promote our

understanding of tumorigenesis at the molecular level. Meanwhile,

WGCNA as a method to screen indicators has many outstanding advan-

tages over other methods, based on the association between

co-expression modules and clinic traits. Therefore, the WGCNA screen-

ing results have higher reliability and biological significance.

Clinical feature-associated modules changed differently along

with etiologies and histopathological characteristics, and two modules

positively correlated with MIBC clinical traits were picked out. Func-

tion enrichment analyses for the turquoise module showed module

hub genes involved in the TGF-β signaling pathway, Wnt signaling

pathway, and Ras signaling pathway. The reported study revealed that

YY1 inhibits the EMT process in bladder cancer cells by reducing

expression levels, regulating the TGF-β pathway, and maybe a poten-

tial therapeutic target for future bladder cancer.21 Function enrich-

ment analyses for the blue module showed module hub genes

involved in the cAMP signaling pathway. cAMP is an important intra-

cellular second messenger responsible for various cellular responses

to external stimuli.22,23 In previous studies, activation of the cAMP

signaling pathway could be an important mechanism by which pro-

vascular propellants exert their therapeutic effects on lower urinary

tract symptoms (LUTS).24 These findings could confirm our conclu-

sions from another perspective. Meanwhile, according to previous

studies, we found that TPM1,25 SYNM,26 CSRP1,27 CFL2,28 HIP1R29

are often found in the cancer genetic sequence of bladder cancer.16,30

The protein encoded by TPM1 is a member of the widely distributed

actin-binding protein myosin (Tm) family, which participates in the

contractile system of striated and smooth muscles and the cytoskele-

ton of non-muscle cells, and studies have shown that TPM1 is a tumor

suppressor gene31 and plays a role in inhibiting the development of

bladder urothelial carcinoma.25 It plays a key role in lymph node

metastasis and may be a candidate marker of bladder cancer.32

Synemin (SYNM) is an IV-type intermediate filament that has recently

been shown to interact with the LIM domain protein zyxin, which may

regulate cell adhesion and cell movement.33 For this diversity of

potential functions associated with cancer development, studies have

shown that SYNM genes are involved in carcinogenesis, such as, aber-

rant promoter methylation of the synemin gene is associated with

early breast cancer recurrence,26 SYNM appears in pancreatic

cancer,34 the oncogene sequence of hepatocellular carcinoma,35 and

synemin expression in myofibromyopathy and other muscle dis-

eases.36 The cofilin-2 protein encoded by CFL2 plays an important

role in regulating sarcomere actin filaments. According to previous

studies, the CFL2 gene is a tumor suppressor gene in the oncogene

sequence of bladder cancer, which has the biological significance of

“Axon guidance”, “FC gamma R-mediated”,28 and actin cytoskeleton

regulation.37 DNA ligase I encoded by LIG1 participates in DNA repli-

cation and repair. The function of HIP1R in the oncogene of bladder

cancer is related to huntingtin interacting protein 1.29

The other three genes, CNKSR1, POPDC2, and PJA2, are also

essential and highly involved in the process of many tumors. The

CNKSR1 gene encodes a connector enhancer for an enzyme, a kinase

inhibitor of ras gene 1. This gene is an essential element in the recep-

tor tyrosine kinase pathway and may be used to target tyrosine phos-

phorylation. It participates in the regulation of RAF in the MAPK

pathway and may also play a role in the MAPK independent pathway.

In addition, the PH domain of CNKSR1 combines with mut-KRAS to

inhibit the growth of mut-KRA cells, which can treat a variety of can-

cers, such as pancreatic cancer.38 POPDC2 belongs to the POPDC pro-

tein family. The POPDC protein is a promising target for anticancer

therapy.39 The deletion of the POPDC gene and the inhibition of

POPDC protein are related to the proliferation, migration, invasion,

metastasis, drug resistance, and low survival ability of cancer cells in

various human cancers. Overexpression of POPDC protein in vitro can

inhibit the migration and invasion of cancer cells. For example, POPDC

protein is used as a new target to inhibit the migration and prolifera-

tion of breast cancer cells.39 POPDC2 was found to be present in can-

cer tissue sequences,40 such as prostate cancer.41 PJA2 activates viral

transcription by reducing the level of TCF/LEF1 by inhibiting Wnt/β-

catenin signal transduction, regulating KSR1 stability and mitotic

signal,42 controlling PKA stability and signal transduction43 and PJA2

ubiquitination of HIV-1 Tat proteins with atypical chain bonds. We

also found that the PJA2 gene is often found in oncogene sequences

of non-small cell lung cancer,44 gastric cancer,45 lung cancer,46

glioblastoma,47 thyroid carcinoma,48 and so on.

To sum up, The research suggests that CNKSR1, POPDC2, and

PJA2 may be novel biomarkers as therapeutic targets for MIBC, espe-

cially we used IHC further to validate CNKSR1 as a therapeutic target

for MIBC which may help to improve the prognosis for MIBC.
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