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Lifestyle and precision diabetes medicine: will genomics help
optimise the prediction, prevention and treatment of type
2 diabetes through lifestyle therapy?
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Abstract Precision diabetes medicine, the optimisation of ther-
apy using patient-level biomarker data, has stimulated enormous
interest throughout society as it provides hope of more effective,
less costly and safer ways of preventing, treating, and perhaps
even curing the disease. While precision diabetes medicine is
often framed in the context of pharmacotherapy, using biomarkers
to personalise lifestyle recommendations, intended to lower type
2 diabetes risk or to slow progression, is also conceivable. There
are at least four ways in which this might work: (1) by helping to
predict a person’s susceptibility to adverse lifestyle exposures; (2)
by facilitating the stratification of type 2 diabetes into subclasses,
some of which may be prevented or treated optimally with spe-
cific lifestyle interventions; (3) by aiding the discovery of prog-
nostic biomarkers that help guide timing and intensity of lifestyle
interventions; (4) by predicting treatment response. In this review
we overview the rationale for precision diabetes medicine, spe-
cifically as it relates to lifestyle; we also scrutinise existing evi-
dence, discuss the barriers germane to research in this field and
consider how this work is likely to proceed.
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Introduction

The major developments in genomic technologies and their
application to large, well characterised collections of samples
have led to the generation of extensive new knowledge about
disease biology. This has inspired new avenues for type 2 diabe-
tes prevention, treatment and cure that are inherent to the concept
of precision medicine. According to the National Research
Council [1], precision medicine is not intended to involve the
complete personalisation of medical devices and therapies; in-
stead, it should focus on the classification of ‘individuals into
subpopulations that differ in their susceptibility to a particular
disease, in the biology and/or prognosis of those diseases they
may develop, or in their response to a specific treatment’with the
expectation that ‘preventive or therapeutic interventions can then
be concentrated on those who will benefit, sparing expense and
side effects for those who will not’. By this and most other
definitions, precision medicine focuses on applying biomarker
technologies to the individual patient to help improve prediction
and assessment of: (1) risk-factor susceptibility; (2) disease strat-
ification; (3) prognosis; and (4) treatment response.

Our understanding of type 2 diabetes pathobiology has im-
proved dramatically recently, owing largely to a quantum leap
in human genome sequencing, precipitated by ground-breaking
achievements made in the preceding century, including
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mapping of the Drosophila genome [2] and the structural char-
acterisation of DNA [3]. These were the foundations for human
genome sequencing [4, 5] and affordable technologies for high-
resolution characterisation of the genome, metagenome, epige-
nome, transcriptome, proteome, and metabolome. Combined
with novel bioinformatics and the emergence of large global
collaborative networks, exciting possibilities have emerged for
the prediction and prevention of disease in ways that are more
personal and precise than ever before.

Genetic variation is quite literally the starting point of the
biological cascade that underpins phenotypic expression
(known as the ‘central dogma of molecular biology’) [6]. But
for complex diseases like type 2 diabetes, genetics is by no
means the absolute determinant, and thus an enormous amount
of downstream work remains before we will adequately under-
stand how genetic and lifestyle factors (e.g. nutrition, exercise,
medications and stress) work jointly to affect gene transcription

and translation, and phenotypic expression (Fig. 1). The model
is thus one of primers and catalysts: environmental triggers in
the context of genetic predisposition.

Given that significant changes in human genetic variation
manifest over many generations, the consensus is that the
global surge in type 2 diabetes prevalence is caused predom-
inantly by the rapid and widespread adoption of obesogenic
lifestyles. Metabolic dyshomeostasis is a common conse-
quence of unhealthy lifestyles, driven by disturbed substrate
production and/or metabolism in the liver, skeletal muscle and
adipose tissue, or by interfering with the synthesis, secretion
or action of insulin. However, diabetes pathophysiology is
complex and heterogeneous with multiple feedback loops,
such that people vary in susceptibility to risk factors and re-
sponse to therapies, and the molecular defects that cause the
disease in a given patient are rarely known. Nevertheless, the
measurement or prediction of primordial factors might
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Fig. 1 Type 2 diabetes results from the complex interplay between envi-
ronmental and genomic factors. The model is thus one of primers and
catalysts, whereby environmental triggers act against a backdrop of ge-
netic susceptibility to affect the transcriptional and regulatory processes

that cause diabetes (e.g. through methylation, chromatin remodelling or
histone modifications). The figure shows the key lifestyle risk factors,
candidate loci (with evidence of gene–lifestyle interactions) and target
organs purported to affect adiposity and/or glycaemic control
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facilitate more effective diabetes prevention if they helped
determine the specific risk factors to which a person is sus-
ceptible and the therapies they are likely to respond well to.

Lifestyle in type 2 diabetes

Inmost people at risk of or with type 2 diabetes, prognosis can be
improved by enhancing peripheral insulin sensitivity. Although
oral glucose-lowering agents are often used for this purpose,
reducing energy intake and increasing non-resting energy expen-
diture (physical activity) are highly effective first line therapeutic
options, with associated reduced lipid content in or around adi-
pose, liver and muscle tissue being pivotal to this process.

Although reduction of energy intake and an increase in phys-
ical activity can both cause weight loss, they do so through con-
trasting states of low and high metabolic turnover respectively,
which involve the activation of different molecular pathways and
processes that encompass both common and unique correspond-
ing health benefits. Accordingly, some patients will respond well
and others poorly to the same intervention, with response being
determined in part by individual biology, but also by psychoso-
cial factors that influence adherence and perceived success.

Non-resting energy expenditure Non-resting energy expen-
diture constitutes activities that are either structured, with the
intent of improving fitness or sports skills (i.e. exercise training),
or activities that are not explicitly intended as exercise (e.g.
active commuting, gardening, dog walking), as well as subcon-
scious movements (e.g. fidgeting). Regardless of mode, regular
physical activity can improve glucose homeostasis through
insulin-dependentmechanisms (e.g. by improving the sensitivity
of peripheral tissue to insulin) and insulin-independent mecha-
nisms (e.g.muscle contraction, shear stress, reductions in hepatic
glucose production), thereby reducing pancreatic beta cell stress,
and helping to prevent or slow progression of diabetes.

Diet Diet also plays many complex roles in metabolic homeo-
stasis. Frequently, the perceived link between diet and type 2
diabetes is through excess energy intake that leads to obesity,
and over-consumption of refined carbohydrates that rapidly
raises blood glucose and places a compensatory demand on the
beta cells for endogenous insulin. However, there are many other

roles diet plays in affecting diabetes risk: zinc, for example,
regulates insulin storage in the secretory granules of the pancre-
atic beta cells, and functional variants within SLC30A8, encoding
a zinc transporter, affect this process [7]; and long chain polyun-
saturated fatty acids are ligands for fatty acid receptors, like per-
oxisome proliferator-activated receptor gamma (PPARγ) [8].
Overall diet quality (e.g. Mediterranean diet) is also an important
feature of many successful diabetes prevention programmes [9].

Body composition Adequately characterising lifestyle expo-
sures is thus important, but so too is how body corpulence is
defined. Emphasis is often on total adiposity (e.g. weight
change); however, the regional distribution of adipose tissue
(particularly when it is deep within the abdominal cavity and
within or around the liver, heart and pancreas) [10] and the
patterns of change in response to an intervention [11], are
likely to elucidate diabetes aetiology better than weight
change per se. The emergence of optical triangulation 3D
scanning technologies that allow frequent assessments of
body form to be captured quickly, safely and at relatively
low cost, may facilitate this process [12].

Implementing structured lifestyle interventions for diabetes
prevention in clinical practice is cost effective [13]. Behavioural
assessment is a critical part of this process, helping to identify
key risk factors, determine appropriate intervention targets and
gauge adherence. Ideally such assessments would be performed
through the diabetes care system, but time and cost limitations
are major barriers to the implementation of lifestyle medicine
and careful lifestyle assessments are rarely undertaken in prac-
tice [14]. This is unfortunate, as appropriate lifestyle monitoring
and tailoring of lifestyle advice may help further improve the
efficacy and cost effectiveness of lifestyle medicine.

How precision lifestyle medicine might work

Precision medicine in type 2 diabetes is very much at a theo-
retical stage, particularly as it relates to personalised lifestyle
therapy. However, its successes in other diseases and with
pharmacotherapy offer a glimpse of how tailored lifestyle ad-
vice for type 2 diabetes prevention, guided by personal geno-
mic data, might be achievable (Fig. 2 and text box: Precision
lifestyle medicine in type 2 diabetes):

Biomarkers of risk-factor susceptibility

Biomarkers of treatment response

Type 2 diabetes time course

Biomarkers of progression or complications 

Biomarkers of early-onset T2D

Biomarkers for T2D stratification 

Fig. 2 Precision medicine for type 2 diabetes. A schematic showing key time points for intervention in the course of type 2 diabetes (T2D) pathophys-
iology where precision lifestyle medicine might play a role
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Biomarkers for type 2 diabetes stratification An excellent
example of precision diabetes medicine can be found in
MODY. The disease, often misdiagnosed as type 1 diabetes
owing to the young age of onset and insulin deficiency, can be
accurately and precisely diagnosed using genetic screening,
leading to subclassification and highly effective targeted drug
therapy.

From an aetiological perspective, type 2 diabetes is far
more complex than MODY, and in type 2 diabetes the direct
diagnostic assay is restricted to blood glucose (or glycosylated
haemoglobin). However, elevations in blood glucose are usu-
ally the consequence of other cellular defects in the liver,
pancreas, skeletal muscle and other peripheral tissues, primar-
ily affecting the endogenous production of glucose and insulin
and the rate of glucose metabolism. There is no clinically
accessible causal biomarker for type 2 diabetes, although
markers of beta cell function are often used to help diagnose
other causes of abnormal blood glucose concentrations. Thus,
diagnosing type 2 diabetes and distinguishing it from other

causes of elevated blood glucose is challenging and rarely
elucidates the primary cause of the disease.

Subclassification of type 2 diabetes using biomarkers and
other information might not pinpoint specific molecular
causes, but it may bring the diagnosis closer to that point
and guide therapeutic decisions. In a recent study conducted
in the USA, the use of electronic medical records for the clas-
sification of type 2 diabetes into subtypes (coinciding with
cardiovascular diseases, neurological diseases, allergies and
HIV infections) that were subsequently genetically
characterised provides an example of how type 2 diabetes
diagnoses might be refined through genotype-guided patient
stratification [15]. Moreover, amongst the millions of people
diagnosed with type 2 diabetes annually undoubtedly reside
those with rare monogenetic disorders that appear like type 2
diabetes, yet are caused by rare single gene mutations. These
mutations might be targetable with specific treatments, such as
recently described for the SUR1 (also known asABCC8) locus
[16]. Conceivably, different lifestyle interventions,

            Precision lifestyle medicine in type 2 diabetes
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Biomarkers of risk factor susceptibility and treatment response Type 2 diabetes guidelines 

concerning diet and exercise are relatively generic and there is considerable variation in how people 

respond to lifestyle therapies. Predicting a patient’s response to treatment could help optimise the 

management of their disease
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particularly those with a nutritional emphasis, would be more
or less effective at preventing or treating each type 2 diabetes
subtype, thus providing avenues for personalised lifestyle
therapy.

Biomarkers for therapies that target specific genetic de-
fects Some of the most remarkable successes in precision
medicine to date have involved the design of drugs that target
specific pathogenic mutations. Two striking examples are
drugs for treating chronic myelogenous leukaemia and lung
adenocarcinoma, imatinib (Glivec/Gleevec) and crizotinib
(Xalkori), respectively. Imatinib targets the protein product
of a novel fusion gene, BCR–ABL [17], whereas crizotinib
targets a genetic abnormality (a fusion gene called EML4–
ALK) caused by the inversion of the anaplastic lymphoma
kinase (ALK) gene [18]. In type 2 diabetes, a rare example
of a specific gene defect that has been successfully treated
with naturally occurring chemical compounds is that of the
α2A adrenergic-receptor (α2AAR) encoding gene, ADRA2A
[19]. Here, an ADRA2A variant causes type 2 diabetes as a
result of impaired insulin secretion owing to receptor overex-
pression; treatment with the naturally occurring indole alka-
loid, yohimbine (a chemical compound extracted from
Pausinystalia johimbe tree bark) blocks the receptor and im-
proves insulin secretion.

Biomarkers of early-onset, progression or complications
Biomarkers of the early-onset or progression of type 2
diabetes, or of the onset of diabetes-associated compli-
cations, would be highly relevant for diabetes therapy.
Carriers of these biomarkers might be prioritised for
intensive lifestyle therapy before or soon after the dis-
ease is manifest, much as people with a family history
of diabetes are treated today. However, no tangible ex-
amples of these biomarkers currently exist.

Biomarkers of risk-factor susceptibility and treatment re-
sponse Type 2 diabetes guidelines concerning diet and exer-
cise are relatively generic. Such guidelines are typically
derived from epidemiological studies on the risk attributable
to modifiable lifestyle exposures and clinical trials showing
that intervening with those same factors reduces risk.
Importantly, these data reflect population averages, often with
wide confidence intervals, indicating that, although targeting
risk factors diminishes type 2 diabetes risk on average, there
are people within intervention groups who improve greatly (so
called ‘super-responders’), and others who may not improve
at all (so called ‘non-responders’) or whose condition worsens
(so called ‘adverse responders’). One of the first studies on
blood glucose variability in response to chronic exercise
showed that although mean insulin sensitivity increased by

10% following the intervention 42% of the participants
experienced no change or became more insulin resistant
[20]. According to a recent review, the proportion of non-
responders to exercise training regarding glucose homeostasis
ranged between 7% and 63% [21] and the number of adverse
responders averaged 8.4% [22]. The relatively high proportion
of people who do not appear to respond well to exercise has
motivated the search for the underlying mechanisms [23],
with the assumption that genetic and epigenomic variation
play a key role. However, as we discuss later, how much of
this variability is of biological origin and how much is driven
by other factors remains unclear.

Evidence base: strengths and weakness

Early twin and family studies showed that response to diet and
exercise interventions vary to a significantly greater extent
between sibships and pedigrees than within them, suggesting
a heritable component to some treatment response phenotypes
[24–26]. A 100-day overfeeding protocol conducted in 12
pairs of monozygotic (MZ) male twins showed, for example,
that the gain in fat mass was roughly three times more similar
within the MZ twin pairs than between non-twins [26].
Elsewhere, a study conducted to investigate the response to
a negative energy balance in seven pairs of MZ male twins
found that the variance in change in fat mass was 14.1 times
more similar within than between twin pairs [25].

When used to model interactions between common ge-
netic variants and lifestyle exposures, data from observa-
tional studies can generate hypotheses relevant to treat-
ment response and risk-factor susceptibility. However,
the inherent limitations of epidemiology (chance, bias,
confounding), the difficulties in accurately and precisely
assessing phenotypes and lifestyle behaviours in free-
living populations, as well as challenges that specifically
hinder the estimation of interaction effects in observation-
al data (e.g. heteroscedasticity and scale dependency) ne-
cessitate caution when interpreting the causal relevance of
observational data. In interaction studies, the imperative
of replication has been especially difficult to achieve ow-
ing to winner’s curse, heterogeneous study designs, envi-
ronmental idiosyncrasies, etc. (see [27]). Nevertheless, a
complete absence of replication in the face of concerted,
adequately powered attempts undermines the value of the
original findings, as they likely reflect idiosyncratic ef-
fects or false-positives.

There is little extensively replicated epidemiological
evidence of gene–lifestyle interactions, with the excep-
tion of those at the FTO locus (see text box: What we
know about the FTO–physical activity interaction). Soon
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after the finding that FTO variation affects obesity risk,
data emerged from two epidemiological studies showing
that FTO variation may modify the relationship between
physical activity and estimates of adiposity in European
[28, 29] and North American [30] adults. An analysis of
clinical trial data from the Diabetes Prevention Program
(DPP) found no evidence that FTO modified the effects
of lifestyle intervention on weight loss, although there
was weak evidence that an interaction might affect sub-
cutaneous adipose mass [31]. Many studies followed,
but with mixed results; therefore, we undertook a large
meta-analysis (N= 220,000) to test the hypothesis, which
confirmed the presence of an interaction [32]. Those
findings were recently extended in the UK Biobank
[33], where statistically robust interaction effects were
reported between the FTO variant and physical activity,
frequency of alcohol consumption, sleep duration, diet
and salt consumption. Cross-sectional analyses focusing
on lifestyle interactions with genetic risk scores com-
prised of other obesity-associated loci have also been
widely replicated, although the extent to which those
interactions are driven by FTO is rarely described.

Observational studies can generate hypotheses 

for treatment response and risk-factor suscepti-

bility. However, replicated epidemiological 

evidence of gene–lifestyle interactions is scarce. 

An exception is the interaction of FTO and physi- 

cal activity in obesity risk

Although the epidemiological evidence of this 

interaction is strong [32, 33], a meta-analysis of 

clinical trial data [40] found no evidence of 

interaction between FTO and lifestyle in weight

change

The opposing conclusions may be explained by 

differences in: (1) study setting: the observa-

tional analyses are cross-sectional while the 

clinical trials are prospective; (2) study duration: 

the observational analyses reflect long term 

exposures, whereas the exposures in clinical 

trials are shorter duration; (3) study size: the 

epidemiological studies are large (N=100,000–

200,000), whilst the clinical trials are smaller 

(N=9563) and possibly underpowered to detect 

interaction effects; (4) sample type: the clinical 

trials were conducted in more highly selected 

populations than the observational studies

What we know about the FTO–physical activity

interaction

While the epidemiological data seem compelling, it is pre-
dominantly cross-sectional and evidence of gene–lifestyle in-
teractions in large observational datasets may be biased or
confounded. Hence, epidemiological evidence of gene–life-
style interactions should not only be replicated but also sup-
ported by other types of causal evidence before exploiting the
findings for the purposes of genotype-guided lifestyle pre-
scription. There are some functional data positioning FTO as
a plausible candidate for lifestyle interactions (e.g. FTO en-
codes a 2-oxoglutarate oxygenase that is highly expressed in
hypothalamic nuclei in mice and humans [34], and phospho-
creatine and inorganic phosphate levels have been shown to
recover more rapidly following exhaustive exercise in FTO
(rs9939609) risk allele carriers [35]), but the discovery of
long-range activation of IRX3 and IRX5 by FTO [36, 37]
suggests that simple interpretations about how FTO and life-
style interact are unlikely to be accurate.

Nevertheless, while understanding the functional basis of in-
teractions is desirable, the absence of this knowledge does not
preclude using evidence of gene–lifestyle interactions for preci-
sionmedicine, whereas demonstrating cause and effect in trials is
essential. A recent systematic review of selected published trial
data concluded that FTO variants modify weight loss in response
to lifestyle interventions [38]. However, the meta-analysis of
published data for gene–lifestyle interactions may be biased
[39], and a subsequent meta-analysis of clinical trial data, which
adopted a more rigorous and more inclusive approach involving
de novo, standardised interaction analyses, found no evidence of
interaction between FTO and lifestyle [40]. A recent clinical trial
analysis (DPP and Look AHEAD [The Action for Health in
Diabetes] studies) that focused on the spectrum of BMI-
associated variants reached similar conclusions for FTO and al-
most all other variants assessed; the exception was for MTIF3,
which showed evidence of gene–lifestyle interactions in the trials
[41], as well as in epidemiological cohorts [42].

Although the starkly opposing conclusions drawn about
FTO from the observational and clinical trial data appear con-
tradictory, they are potentially reconcilable. For example, the
observational analyses [32] are cross-sectional and may reflect
the modifying effects of very long-term lifestyle exposures
and outcomes, whereas the clinical trials [40] are prospective
and confined to a relatively short intervention period (ranging
from 8 weeks to 3 years). Moreover, the epidemiological
studies are large (N = 100,000–200,000) and apparently
adequately powered, whereas the trials analysis is an order of
magnitude smaller (N=9563), may have been underpowered
to detect interaction effects, andwas conducted in very selected
populations compared with the observational studies (Fig. 3).
Nevertheless, the absence of an interaction effect in the trials
indicates that, for the benefit of enhancing weight loss for
diabetes prevention, there may be little clinical value in tailor-
ing common lifestyle interventions to FTO genotype.
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The future

Determining the causal effects of lifestyle, even in randomised
controlled trials, is much more challenging than for drug thera-
pies, not least because most lifestyle interventions cannot be
masked and no placebo exists. Thus, a participant’s behaviours
during a lifestyle trial that affect the trial’s outcomesmay change
as a consequence of the intervention in ways that are not ex-
pected or measured. This phenomenon was first described in a
study of older men and women (58–78 years old) who
underwent an 8 week supervised aerobic training programme
(cycling three times per week) [43]. Objective assessments of
total energy expenditure were made using doubly labelled
water, resting metabolic rate by respiratory gas exchange, and
physical activity energy expenditure using the latter values com-
bined with information about sleep and exercise. The authors

found that despite an increase in exercise energy expenditure of
628 kJ/day (150 kcal/day), non-exercise-activity energy expen-
diture decreased proportionately and no overall change in total
energy expenditure was hence observed.

When one considers that exercise interventions deployed in
clinical trials typically occupy about 150 mins per week, or
about 1.5% of the total time, it is possible that compensatory
behaviours underlie much of the apparent heterogeneity in re-
sponse. Even in tightly controlled inpatient studies, unintended
variations in the participants’ behaviours can hinder data inter-
pretation. For example, in one of the studies cited above, 84 days
of overfeeding with restricted physical activity resulted in an
average weight gain of 8.1 kg (range: 4.3–13.3 kg) [26]. The
very lowest and highest weight gains suggest that the diet and
exercise regime was not strictly followed, as a weight gain of
4.3 kg with this level of overfeeding accounts for only ∼40% of

Epidemiology (Kilpeläinen et al, 2011) 

Population: heterogeneous cross-sectional cohorts 
of European ancestry adults (N=218,166)

Cross-sectional assessment in 
setting of progressive weight gain75% active 25% inactive

KG

Clinical trials (Livingstone et al, 2016) 
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comprised of mixed-ancestry adults (N=8452) 
followed for 1.2 years (average)
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of enhanced weight loss 54% active 46% inactive
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15% 80%Power

Fig. 3 Estimating the required power for clinical trials focused on inter-
action effects of diabetes risk factors that have been previously reported in
epidemiological studies. The figure compares two core studies focused on
the interaction of FTO variants and lifestyle in obesity. We sought to
estimate the power that the sample size reported by Livingstone et al
[40] had to detect the interaction of the FTO variant and physical activity
in obesity, as previously described in Kilpeläinen et al [32]. The conclu-
sions regarding power and sample size in trials in this figure are

predicated on the assumption that the interaction effect reported in the
cross-sectional epidemiological analysis [32] can be applied to the setting
of a randomised lifestyle intervention meta-analysis. However, there are
several factors that are likely to confound this comparison; these are
outlined in the figure. The given estimates of power and sample size are
intended only to illustrate that the trials are likely to be substantially
underpowered to observe previously reported interaction effects, rather
than provide precise estimates of these variables

790 Diabetologia (2017) 60:784–792



the predicted weight gain for that participant and would require
energy expenditure equivalent to running ∼17–29 km each
week during the intervention. By contrast, a weight gain of
13.3 kg would require complete indolence during the protocol.
While individual biological variation in energy metabolism
might explain some of these differences in weight gain, it seems
probable that lack of adherence to the study protocol is the
predominant explanation.

In current research and practice, lifestyle behaviours are
frequently assessed through self-report methods, despite some
key limitations [44]. However, numerous wearable technolo-
gies exist that are relatively inexpensive, suitable for long-term
monitoring, and valid, albeit also with important caveats [45].
Nevertheless, modern wearables, used in combination with self-
report methods have tremendous potential to characterise health-
related behaviours and exposures, as the continuous assessment
of movement, sleep, temperature, blood glucose and other rele-
vant factors is possible without apparently impacting behaviour
[46]. The use of such devices in epidemiology and clinical trials is
likely to be necessary to delineate biological drivers of risk-factor
susceptibility and treatment response from other sources of error
and bias that cause heterogeneity. The continuous assessment of
quantitative phenotypes germane to a clinical trial’s outcomes
would also help overcome a further major limitation of some
lifestyle trials that only assessed outcomes at enrolment and the
trial’s end. In those settings, regression dilution, which occurs
when changes in quantitative traits are inferred from too few data
points, generates error. Thus, continuous (or frequently repeated)
assessments of the trial’s quantitative outcomes would further
help isolate response variability from error. In a recent eloquent
study that focused on personalised diets, Zeevi and colleagues
collected detailed diet data and objectively assessed physical ac-
tivity and blood glucose in 800 Israeli adults during a 1 week
observational phase. In combinationwith gut microbiota data, the
authors were able to predict individual postprandial glucose ex-
cursions to specific foods and designed personalised diet inter-
ventions that improved glucose control [47]. This approach had
the added benefit of allowing the background heterogeneity in the
participants’ lifestyles to be factored into the intervention design,
further reducing error.

Summary

Although evidence of specific genetic loci that modulate
risk-factor susceptibility and treatment response in type 2 diabe-
tes is weak, the rationale, which is supported by data from twin
and family studies, remains strong, motivating continued re-
search in this area. For example, the National Institutes of
Health’s (NIH’s) Common Fund initiative called the Molecular
Transducers of Physical Activity (http://commonfund.nih.
gov/MolecularTransducers), is a multimillion dollar funding

programme focused on defining ‘optimal physical activity
recommendations for people at various stages of life’ and
developing ‘precisely targeted regimens for individuals with
particular health needs.’ Nevertheless, this topic is clearly
challenging, and to realise the vision of the NIH and others
will likely require new study designs and analytical methods
that overcome the major barriers to precision lifestyle medicine
in type 2 diabetes.
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