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ABSTRACT
Monogenic diabetes represents a heterogeneous group of disorders resulting from defects
in single genes. Defects are categorized primarily into two groups: disruption of b-cell
function or a reduction in the number of b-cells. A complex network of transcription
factors control pancreas formation, and a dysfunction of regulators high in the hierarchy
leads to pancreatic agenesis. Dysfunction among factors further downstream might cause
organ hypoplasia, absence of islets of Langerhans or a reduction in the number of b-cells.
Many transcription factors have pleiotropic effects, explaining the association of diabetes
with other congenital malformations, including cerebellar agenesis and pituitary agenesis.
Monogenic diabetes variants are classified conventionally according to age of onset, with
neonatal diabetes occurring before the age of 6 months and maturity onset diabetes of
the young (MODY) manifesting before the age of 25 years. Recently, certain familial
genetic defects were shown to manifest as neonatal diabetes, MODY or even adult onset
diabetes. Patients with neonatal diabetes require a thorough genetic work-up in any case,
and because extensive phenotypic overlap exists between monogenic, type 2, and type 1
diabetes, genetic analysis will also help improve diagnosis in these cases. Next generation
sequencing will facilitate rapid screening, leading to the discovery of digenic and
oligogenic diabetes variants, and helping to improve our understanding of the genetics
underlying other types of diabetes. An accurate diagnosis remains important, because it
might lead to a change in the treatment of affected subjects and influence long-term
complications.

INTRODUCTION
The prevalence of monogenic diabetes is estimated at 2–5% of
all patients with diabetes1. The first description of a hereditary
form dates back to 1928, when Cammidge identified families
with autosomal dominant diabetes2. In 1975, Maturity Onset
Diabetes of the Young (MODY) was defined as diabetes
occurring before the age of 25 years with autosomal dominant
inheritance as a result of an intrinsic b-cell defect3. The first
gene causally implicated was coded for the enzyme glucokinase
(GCK)4. A few years later, two other monogenic forms of dia-
betes, MODY1 and MODY3, were attributed to mutations in
transcription factor genes; the hepatocyte nuclear factor 4 and
1 alpha (HNF4A, HNF1A), respectively5,6.
Historically, the age at diabetes onset has been a criterion for

classification. For example, neonatal diabetes is diagnosed
within 6 months of birth, whereas MODY forms of diabetes
occur before the age of 25 years. However, recent studies report

that specific gene mutations occurring in the same family can
present clinically as a neonatal form as well as ‘type 2-like’ or
‘type 1-like’ forms during adulthood.
Currently, many monogenic forms are missed or misclassi-

fied as type 2 or type 1 diabetes. Improved access to genetic
testing will help determine the exact origin of diabetes. In the
present review, I delineate the different gene defects using a
functional approach, discussing developmental and cellular
defects, glucose uptake at the cell surface, and then following
the intracellular destiny of glucose molecules eliciting insulin
secretion (Figure 1).

PATH TO MONOGENIC DIABETES
Nucleopathies Causing Developmental Pancreatic Defects
A network of nuclear transcription factors controls pancreatic
development in humans and mice. Depending on their hierar-
chical position, defects lead to a severe phenotype, such as
pancreatic agenesis with neonatal diabetes and exocrine insuf-
ficiency, or a milder phenotype, with diabetes onset duringReceived 16 December 2013; accepted 17 December 2013
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adolescence or adulthood. Pancreatic agenesis leads to severe
intrauterine growth retardation as a result of the absence of
insulin secretion, a major growth factor. Homozygous or com-
pound heterozygous mutations usually cause more severe forms
of diabetes, and many heterozygous mutations are associated
with later-onset diabetes (Table 1). Numerous transcription fac-
tors play a pleiotropic role, leading to syndromic forms of dia-
betes associated with malformations in other organ systems,
such as congenital heart defects and gastrointestinal defects.
The first gene defect described in human pancreatic agenesis

was pancreatic duodenal homeobox gene 1 (PDX1/IPF1)7.
Homozygous and compound heterozygous mutations lead to a
severe phenotype with neonatal diabetes and exocrine pancreatic
insufficiency8. Heterozygous carriers present with late-onset dia-
betes that can be misdiagnosed as type 2 diabetes9. PDX1 has
dual functions. Early in embryogenesis, PDX1 is expressed in
the forming pancreatic bud and controls the cell fate of
pancreatic progenitors. During the postnatal period, PDX1
becomes restricted to b- and d-cells, where it is involved in
b-cell survival10 and regulates b-cell susceptibility to endoplas-
mic reticulum (ER) stress11. This change in function could
explain why diabetes worsens over time in heterozygous carriers.
Similarly, homozygous mutations in the pancreas-specific

transcription factor 1A gene (PTF1A) lead to pancreatic agenesis

associated with cerebellar hypoplasia. PTF1A is important for
pancreatic outgrowth in early embryogenesis and cerebellar for-
mation12. Interestingly, low C-peptide and insulin levels can be
detected in the blood of patients with these homozygous muta-
tions13. The source of insulin production has not been elucidated
in humans; but in mice, insulin is thought to be secreted by scat-
tered ectopic b-cells in the spleen. Even if PTF1A mutations
remain rare in human diabetes14, recessive mutations in a distal
PTF1A enhancer are a frequent cause of pancreas agenesis in
consanguineous families15.
Heterozygous mutations in the human GATA-binding

protein 6 gene (GATA6) can lead to pancreatic agenesis with
neonatal diabetes and exocrine pancreatic insufficiency, or to
later-onset diabetes as well as type 2-like diabetes with variable
exocrine insufficiency16,17. GATA6 is expressed before PDX1 in
the developing endoderm, the pleiotropic effects are explained
by the expression in the developing heart, lung, allantois, mus-
cle and gut18. Therefore, many of the human cases have heart
malformations, and gastrointestinal, pituitary and cognitive defi-
cits19,20. Homozygous mutations are probably lethal. The func-
tions of GATA6 and GATA4 have been studied extensively in
mouse models, but only the double GATA6/4 knockout repli-
cates the human phenotype21,22. GATA factors bind the PDX1
promoter and are involved in the proliferation of pancreatic

GLUT2

ER

Glucose

Ca2+

Glycolysis

Glucose

Glucose-6-phosphate

ATP/ADP

Insulin
secretion

K+
Channel
closure

Glucokinase

Cell membrane

Cytoplasm

Depolarization

Lysosomes

Insulin
granules

Nucleus:
Transcription
factors

Mitochondria

KATP
channel

Figure 1 | Schematic b-cell. Subcellular localization of defects within the b-cell leading to monogenic diabetes. Starting at glucose uptake at the
GLUT2 transporter, during phosphorylation by the enzyme glucokinase or during glycolysis. Dysfunction of the adenosine triphosphate-sensitive
potassium (KATP) channel with the KIR6.2 subunits (brown) and SUR1 subunits (red) will interfere with insulin secretion. Malfunction of the
transcription factors located in the nucleus will lead to the nucleopathies and finally endoplasmic reticulum (ER) stress and lysosomal defects can
also cause diabetes. ADP, adenosine diphosphate; ATP, adenosine triphosphate; GLUT2, glucose transporter 2.
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Table 1 | Summary of mutations

Gene Protein Mutation Phenotype References

Nucleus
PDX1/IPF1 Pancreas/duodenum homeobox

protein 1
Hom, CHet
Het

Pancreatic agenesis
Adult onset

7–9

PTF1A Pancreas transcription factor 1A Hom Pancreas and cerebellar agenesis 13
PTF1A Enhancer Non-coding region Hom, CHet Pancreatic agenesis 15
GLIS3 Zinc finger protein GLIS3 Hom PNDM and hypothyroidism 24
NGN3 Neurogenin 3 Hom, CHet PNDM or later onset diabetes,

congenital diarrhea
31–33

RFX6 DNA binding protein RFX6 Hom PNDM, variable pancreas hypoplasia,
intestinal atresia, gall bladder
hypoplasia

39

GATA6 Transcription factor GATA6 Het PNDM and adult onset diabetes,
variable exocrine pancreatic
insufficiency

16,17

GATA4 Transcription factor GATA4 Het Possible pancreatic agenesis and
cardiac defects

23

NEUROD1 Neurogenic differentiation factor 1 Hom PNDM, cerebellar hypoplasia,
sensorineural deafness, retinal
dystrophy

44

Het Adult onset diabetes 45
PAX6 Paired box protein Pax6 CHet PNDM with brain anomaly 50

Het Diabetes and aniridia 51,52
PAX4 Paired box protein Pax4 Adult onset diabetes 54
HNF1B Hepatocyte nuclear factor 1beta Het PNDM with pancreas hypoplasia,

RCAD syndrome
55,57

MNX1 Motor neuron and pancreas
homeobox protein 1

Hom PNDM 66
Het Sacral dysgenesis without diabetes 68

KLF11 Krueppel-like factor 11 Het Adult onset diabetes 84
HNF1A Hepatocyte nuclear factor 1alpha Het Macrosomia and hypoglycemia at

birth, adolescent onset diabetes
5

HNF4A Hepatocyte nuclear factor 4 alpha Het Macrosomia and hypoglycemia at
birth, adolescent onset diabetes

6,79,80

Cell membrane and cytoplasm
SLC2A2 Glucose transporter 2 Hom Fanconi Bickel syndrome PNDM,

TNDM
87,88

GCK Glucokinase Het Mild non-progressive hyperglycemia 4
Hom PNDM 73

SLC19A2 Thiamine transporter 1 Hom PNDM or early onset, megaloblastic
anemia, sensorineural deafness

96–98

Lysosome
SLC29A3 Hom, CHet Diabetes, pigmented hypertrichosis 101,103

Endoplasmic reticulum
WFS1 Wolframin CHet Diabetes mellitus and insipidus, optic

atrophy, deafness (Wolfram
syndrome 1)

104

CISD2 CDGSH iron-sulfur domain-
containing protein 2

Hom Wolfram syndrome 2 without
diabetes insipidus

145

EIF2AK3 Eukaryotic translation initiation
factor 2-alpha kinase 3

Hom PNDM, skeletal defect, growth
retardation (Wollcot-Rallison
syndrome)

112,113

IER3IP1 Immediate early response 3
interacting protein 1

Hom Microcephaly, epilepsy, PNDM (MEDS
syndrome)

114

Insulin synthesis and secretion
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progenitor cells; the double knockout has a reduced number of
PDX1-positive cells during embryogenesis, resulting in pancre-
atic hypoplasia. During development, GATA4 is expressed in
the pancreas, heart, liver and small intestine. Human GATA4
mutations mostly cause congenital heart malformations. A sin-
gle report has associated an atrial septal defect with neonatal
diabetes as a result of pancreatic agenesis and a heterozygous
GATA4 mutation23.
Defective GLIS family zinc finger 3 (GLIS3), acting

downstream of PDX1 and PTF1A, leads to neonatal diabetes
combined with hypothyroidism, congenital glaucoma, hepatic
fibrosis and polycystic kidneys24. GLIS3 directly transactivates
the neurogenin 3 promoter, as well as the insulin promoter,
and controls b-cell expansion through transcriptional control of
the cell cycle gene CCND225. This explains why targeted dis-
ruption of GLIS3 causes defective islet cell differentiation with a
marked reduction in b-cells. Intrauterine growth retardation
points to insulin hyposecretion during pregnancy. Incomplete
syndromes exist when residual transcripts are formed in a
specific tissue, but neonatal diabetes and hypothyroidism persist
throughout all families that have been described26. GLIS3 is
vital for adult b-cell function and mass, as conditional
knockout of GLIS3 in adult b-cells results in apoptosis and
fulminant diabetes27. Interestingly, genome-wide association
studies have identified GLIS3 as a candidate gene in type 1 dia-
betes and type 2 diabetes28,29.
The transcription factor neurogenin 3 (NGN3), which acts

downstream of PDX1, PTF1A and GLIS3 is the master gene
controlling endocrine cell fate decisions in multipotent pancre-
atic endodermal progenitor cells. Targeted disruption leads to a
failure of islet development, neonatal diabetes and early death.
Therefore, NGN3 is required for the development of the four

endocrine cell lineages30. In humans, loss-of-function mutations,
such as compound heterozygosity for E28X and L135P, or
homozygous mutations in the coding region (E123X), are asso-
ciated with neonatal diabetes and congenital malabsorption
diarrhea as a result of enteric anendocrinosis31,32. Thus, NGN3
is important in human islet and enteroendocrine cell develop-
ment. Clinical characterization of these patients showed residual
insulin secretion with a stimulated C-peptide level of up to
546 pmol/L during a mixed meal test; however, the glucagon
levels were not measurable. Interestingly, incomplete loss of
NGN3 function still leads to severe diarrhea, but only to later-
onset diabetes at the age of 8 years33,34. Heterozygous NGN3
mutations rarely contribute to a type 2-like diabetes in Japanese
and Indian subjects35–37.
In 2004, several children from two different families were

reported to have a syndrome comprising neonatal diabetes with
a hypoplastic pancreas, intestinal atresia and gall bladder hypo-
plasia38. In 2010, the cause of this syndrome was attributed to
mutations in regulatory factor X-box binding 6 (RFX6) tran-
scription factor39. All studied mutations except one were homo-
zygous, and heterozygous parents had a normal oral glucose
tolerance test40. The functional role of RFX6 was analyzed in
mice harboring a targeted disruption of RFX6, these mice fail
to generate islet cells, with the exception of pancreatic polypep-
tide (PP) cells41. During development, RFX6 acts downstream
of NGN3, and directs the b-cell fate. The size of the pancreas
was reduced in most of the mice, as well as humans.
The transcription factor, NEUROD1, plays a multisystemic

role in brain and pancreas development, and lies downstream
of NGN3. Targeted disruption of NEUROD1 in mice results in
a 74% reduction of insulin-producing cells, as well as a 39%
decrease in glucagon-producing cells. The newborn mice

Table 1 | (Continued)

Gene Protein Mutation Phenotype References

INS Insulin Hom, Het PNDM, TNDM, adult onset 119,122
Het Adult onset 117,118

BLK Tyrosine-protein kinase Blk Het Adult onset diabetes 124
KCNJ11 KIR6.2 Het PNDM, TNDM, adult onset 126
ABCC8 SUR1 Het PNDM, TNDM, adult onset 127

Exocrine pancreas
CEL Bile salt-activated lipase Het Adult onset progressive diabetes,

exocrine insufficiency
128

Autoimmune diabetes
AIRE Autoimmune regulator Hom, Het Systemic autoimmune disease 146
FOXP3 FOXP3 protein X-linked PNDM, diarrhea, eczema, thyroid

autoimmunity
74

SIRT1 NAD-dependent protein
deacetylase sirtuin-1

Het Adult onset autoimmune diabetes,
insulin resistance

136

CHet, compound heterozygous; Het, heterozygous; Hom, homozygous; MEDS, microcephaly, epilepsy and permanent neonatal diabetes syndrome;
NAD, nicotinamide adenine dinucleotide; PNDM, permanent neonatal diabetes mellitus; RACD, renal cysts associated with diabetes; TNDM, transient
neonatal diabetes mellitus.
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develop diabetes and die after birth42. NEUROD1 also func-
tions as an activator of both GCK and insulin (INS)43. In
humans, a homozygous mutation leads to permanent neonatal
diabetes associated with cerebellar hypoplasia, learning difficul-
ties, profound sensorineural deafness, and visual impairment as
a result of severe myopia and retinal dystrophy44. Malecki
et al.45 were the first to describe a family with late onset diabe-
tes associated with a heterozygous mutation in NEUROD1.
More recently, a novel mutation was reported that led to auto-
somal dominant diabetes in a Chinese family with diabetes
onset between 27 and 73 years-of-age46. In several families,
NEUROD1 diabetes has been associated with obesity, increasing
the difficulties in clinically differentiating between monogenic
diabetes and type 2 diabetes47.
Paired box gene 6 (PAX6) is highly expressed in b-cells, the

developing brain, and eyes. In mice, targeted disruption of
PAX6 leads to microphthalmia and congenital diabetes with a
reduction in the number of insulin-, glucagon-, somatostatin-,
and PP-producing cells48. PAX6 is also involved in the regula-
tion of prohormone convertase 1/3 and contributes to proinsu-
lin processing49. In humans, compound heterozygosity of PAX6
results in severe developmental defects in the brain with hypo-
pituitarism and neonatal diabetes50. Heterozygous PAX6 muta-
tions provoke aniridia associated with glucose intolerance51,52.
Targeted disruption of the paired box gene 4 (PAX4) leads to
an absence of b-cells53. Surprisingly, only rare autosomal domi-
nant diabetes cases have been associated with heterozygous
PAX4 mutations, especially in some Asian populations54.
The first report implicating the transcription factor HNF1

homeobox B (HNF1B) was published in 1997 when Horikawa
identified two Japanese families with diabetes associated with
polycystic kidneys with heterozygous mutations55. The syn-
drome of renal cysts associated with diabetes (RCAD) some-
times includes genital tract abnormalities56. Defects in HNF1B
can lead to neonatal diabetes with polycystic, dysplastic kid-
neys57. Histopathological analysis of an affected fetus with het-
erozygous frameshift mutations in HNF1B has shown pancreas
hypoplasia, disorganized islets with decreased b-cell density and
a lack of GLUT2 expression58,59. This presentation can be
explained by the loss of transcriptional activation of GLUT2 by
HNF1B on its binding to the GLUT2 promoter. This work led
to the conclusion that HNF1B is essential for human b-cell
maturation60. During embryogenesis, HNF1B is expressed
widely in the visceral endoderm of all PDX1-positive cells. After
midgestation, HNF1B becomes a marker of ductal cells. In
adults, HNF1B is expressed in the liver, stomach, ductal pancre-
atic cells, lungs and kidneys. HNF1B forms homodimers or
heterodimers with the structurally similar HNF1A61. The b-
cell-specific knockout of HNF1B confirmed the importance of
HNF1B for glucose-stimulated insulin secretion, but not argi-
nine-stimulated insulin secretion, which remains intact62,63.
Severe non-diabetic renal disease can also be a phenotype of

HNFB1 loss. Intriguingly, no phenotypic differences exist
between large deletions, large genomic rearrangements and

point mutations64. One contiguous gene deletion syndrome
combining mental retardation, severe growth deficit, eye abnor-
malities and immune deficiency with RCAD was recognized by
the identification of a chromosomal microdeletion involving
1.3–1.7 Mb on Chr17q1265.
Motor neuron and pancreas homeobox 1 transcription factor

(MMNX1; also called HLXB9) is expressed in the pancreas
during embryogenesis. The first described homozygous muta-
tion in humans leads to permanent neonatal diabetes with nor-
mal pancreas morphology66. Earlier work showed dorsal
pancreatic agenesis in knockout mice with disorganized islets
and a marked reduction in the number of b-cells67. Heterozy-
gous deletions have been described in autosomal dominant
sacral dysgenesis without diabetes68.

Nucleopathies Causing Functional Defects
Despite the expression of HNF1A and HNF4A during embryo-
genesis, their absence does not cause structural pancreatic
defects, and diabetes manifests mostly during adolescence or
young adulthood63,69,70.
In early embryogenesis, HNF1A is expressed in most epithe-

lial cells and follows the pattern of HNF4A. After birth, HNF1A
is localized predominantly in exocrine cells with lower expres-
sion in islet cells69. The functional HNF1A protein forms a
dimer that is able to homodimerize or heterodimerize with
HNF1B71. HNF1A is an essential transcription factor for the
glucose-stimulated insulin secretory response63,72. Progressive
hyperglycemia is the hallmark of this diabetes phenotype. As
the human phenotype can vary, even in the same family, espe-
cially in regards to diabetes onset, several factors that influence
the phenotype have been identified. For example, the presence
of maternal diabetes during pregnancy leads to an earlier mani-
festation of diabetes in offspring by more than 10 years.
Despite a favorable lipid profile, an increased risk of vascular

complications is present in HNF1A-diabetes75. The presence of
HNF1A binding sites in the C-reactive protein (CRP) promoter
leads to a decrease in CRP levels when HNF1A is defective76.
Therefore, CRP can be used as a biomarker, with a cut-off for
highly sensitive CRP levels of ≤0.2 mg/L, to distinguish
HNF1A-diabetes from type 2 diabetes with a sensitivity of 79%
and specificity of 83%. Because of the decreased renal glucose
absorption, an action controlled by HNF1A, renal glycosuria
can assist in making the diagnosis77.
HNF4A is a nuclear transcription factor expressed in almost

all PDX1-positive cells in the pancreatic bud at very early stages
of embryogenesis. At the end of pancreas development, HNF4A
is expressed in all endocrine cell types as well as exocrine
cells69, therefore mutations in HNF4A affect the function of the
entire islet of Langerhans and is not restricted to the b-cell.
HNF4A functions primarily as a homodimer, and binds to the
HNF1B promoter and HNF1A promoter78.
Subjects with HNF4A mutations can present with a dual

phenotype, with hyperinsulinemic hypoglycemia at birth and
diabetes many years later79. This paradoxical phenotype
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might be explained by functionally different HNF4A targets
with sequential temporal expression leading to fetal and peri-
natal hyperinsulinemia and adolescent hypoinsulinemia80. Fur-
thermore, progressive b-cell exhaustion might contribute to
the later onset of diabetes. Clinical studies have shown a
concomitant decrease of insulin, glucagon, PP and amylin
secretion in humans with HNF4 mutations81. Reduced
HNF4A activity in humans is also associated with decreased
lipoprotein (a) and apolipoprotein A-II levels82, because
HNF4A regulates the expression of a large number of genes
involved in lipid metabolism83.
The transcription factor, Kr€uppel-like factor 11 (KLF11), is

responsible for an autosomal dominant form of diabetes84.
Functional analysis has shown that KLF11 regulates PDX1 and
INS transcription by binding to their respective promoters85.
Interestingly, the diabetes-causing mutation, c-331, in the insu-
lin gene promoter lies in the KLF11 binding site, showing the
importance of KLF11 in humans86.

Cellular Defects in Non-Nuclear Compartments
Defects in cellular structures, such as at the plasma membrane,
the lysosome, the cytoplasm and the endoplasmic reticulum,
are at the origin of many diabetes variants.

Glucose Uptake and Sensing
Glucose is taken up by the facilitative glucose transporter 2
(GLUT2) expressed at the surface of the human b-cell, liver,
kidney and intestine87,88. In 1997, Santer et al.89 reported the
cause of Fanconi Bickel syndrome (FBS) as homozygous muta-
tions in the solute carrier family 2 gene (SLC2A2) encoding the
GLUT2 protein (Figure 1). FBS is an autosomal recessive disor-
der characterized by hyperglycemia, especially in the fed state,
glycosuria and hepatorenal glycogen accumulation. Fasting
hypoglycemia can also occur as a result of massive renal glu-
cose loss. A defect in the glucose transporter leads to impaired
monosaccharide uptake and accumulation in the blood. Fur-
thermore, the rate limitation of glucose uptake by b-cells leads
to a decrease in insulin secretion, amplifying postprandial
hyperglycemia. Diabetes onset varies greatly, but neonatal dia-
betes associated with galactosemia has been described90. Hetero-
zygous mutations might lead to gestational diabetes91 or only
renal glycosuria92.
After glucose enters the b-cell, the enzyme GCK catalyzes

the formation of glucose-6-phosphate and functions as a glu-
cose sensor (Figure 1). GCK is also expressed in the liver and
controls glycogen synthesis, gluconeogenesis, lipid synthesis
and urea production. In the brain, GCK mediates glucose
sensing93. Heterozygous loss-of-function mutations lead to
mildly elevated fasting blood glucose levels, up to 6.7 mmol/L
with a postprandial increase of 2 mmol/L up to 8.6 mmol/
L4,29. Patients with one of the two specific mutations (GCK
G261R and L184P) have exceptionally high postprandial glu-
cose levels, sometimes exceeding 13 mmol/L94. No worsening
occurs over time, and no long-term complications have been

described. However, homozygous inactivating mutations lead
to severe neonatal diabetes, and insulin therapy is required73.
Activating mutations of the same enzyme have the opposite
effect, leading to neonatal hyperinsulinemic hypoglycemia95.

Cellular Metabolism
Solute carrier family 19 (thiamine transporter), member 2
(SLC19A2) encodes a high-affinity thiamine transporter that is
expressed in the pancreas, heart, skeletal muscle, placenta,
brain, liver, retina, bone marrow and fibroblasts. Therefore, a
loss-of-function of SLC19A2 results in manifestations such as
megaloblastic anemia, diabetes, and sensorineural deafness,
called thiamine-responsive megaloblastic anemia (TRMA) or
Rogers syndrome96,97. Diabetes can appear during the neonatal
period, and has been found to be associated with visual system
disturbances, neurological deficits, and cardiac abnormalities98.
Adequate intracellular thiamine levels are important for mito-
chondrial adenosine triphosphate (ATP) synthesis and cellular
function99.

Lysosome
Solute carrier family 29 (nucleoside transporter), member 3
(SLC29A3) encodes a nucleoside transporter localized to intra-
cellular membrane compartments and expressed in the endo-
crine and exocrine pancreas100,101. Intracellular localization
seems to be cell-type dependent, and can involve lysosomes or
mitochondria102. Mutation in SLC29A3 can lead to the autoso-
mal recessive disorder with pigmented hypertrichosis and insu-
lin-dependent diabetes mellitus (PHID) manifesting in
childhood103.

Endoplasmic Reticulum
Several forms of diabetes are due to dysfunction in the endo-
plasmic reticulum (ER); the first described form was Wol-
fram syndrome 1 (WFS1). WFS1 is an autosomal recessive,
multisystem degenerative disorder also known as diabetes in-
sipidus, diabetes mellitus, optic atrophy and deafness (DID-
MOAD). WFS1 was first reported in 1938, but the causative
gene, WFS1, encoding the wolframin protein, was not identi-
fied until 1998104. Wolframin is expressed in the ER in
many cell types, including the pancreas, heart, retina, brain,
placenta, lung, liver, skeletal muscle and kidney. The predom-
inant role of this protein is to protect the cell from ER stress
and subsequent death; in b-cells, wolframin associates with a
cyclic adenosine monophosphate-generating enzyme, increas-
ing insulin production and release105–108. Generally, diabetes
onset varies from age 3 weeks to 16 years, usually requiring
insulin substitution. Optic atrophy starts around 11 years
(range 6 weeks to 19 years), with most patients going
blind109. Diabetes insipidus presents at an average age of
14 years (range 3 months to 40 years), and sensorineural
deafness at an average of 16 years (range 5–39 years). Neuro-
degenerative symptoms, including cerebellar ataxia, peripheral
neuropathy and psychiatric illnesses, manifest in the fourth
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decade. Most patients are compound heterozygous for two
mutations. A rare autosomal dominant form of WFS1 also
exists110.
Recently, CDGSH iron sulfur domain 2 (CISD2) was found

to give rise to WFS2, a phenotype similar to WFS1, but with-
out diabetes insipidus111. Some patients also show a significant
bleeding tendency as a result of defective platelet aggregation
with collagen. CISD2 encodes a protein that localizes in the ER
and is involved in calcium homeostasis.
The eukaryotic translation initiation factor 2-alpha kinase 3

(EIF2AK3) and immediate early response 3 interacting protein
1 (IER3IP1) are also located in the ER and play a role in the
stress response. Gene defects in either of these genes leads to
an overlapping autosomal recessive syndrome. Mutations in
EIF2AK3 are associated with early onset diabetes, skeletal
defects and growth retardation, also called Wollcot-Rallison
syndrome (WRS)112,113. Mutations in IER3IP1 lead to micro-
cephaly, epilepsy and permanent neonatal diabetes (MEDS) in
MEDS syndrome114. In the mouse, the targeted disruption of
EIF2AK3 results in proinsulin accumulation in the ER of b-cells
and insulin deficiency. Therefore, EIF2AK3 seems to regulate
ER-to-Golgi trafficking and proinsulin degradation in response
to reduced insulin demand115. The pancreas-specific knockout
mouse model shows impaired b-cell differentiation and lower
insulin content at birth with a 50% reduction in b-cell mass
compared with wild type116. Postnatal proliferation of b-cells is
also reduced, leading to an 87% reduction in b-cell mass at
weaning. In addition, the b-cells show a distended ER and
squeezed mitochondria at birth. These results underline the
importance of EIF2AK3 function in the prenatal and perinatal
period.

Insulin Synthesis and Secretion
Mutations in INS were first described in a patient with mild
diabetes and hyperinsulinemia, resembling type 2 diabetes117,118.
In 2007, the first series of neonatal diabetes as a result of het-
erozygous INS mutations was reported119. The dominance of
these heterozygous mutations is explained by the misfolding of
preproinsulin, leading to intracellular accumulation and ER
stress. In two diabetes mouse models harboring human muta-
tions (C96S or C96Y in Ins2), the ultrastructure of the b-cell is
massively disrupted with dilatation of the ER, confirming
increased ER stress and cell death120,121.
INS mutations, together with mutations in ABCC8, KCNJ11

and GATA6, are the most frequent cause of neonatal diabe-
tes. The average age at diagnosis is 9 weeks, usually with ke-
toacidosis. However, some cases are diagnosed outside the
neonatal period, between 6 months-of-age and 1 year. Over
80% of mutations are de novo. Interestingly, some family
members carrying the same mutation have mild diabetes at
the age of 30 years. Therefore, the phenotypic spectrum is
quite broad. In 2010, recessive INS mutations were reported
to have a slightly different phenotype: neonatal diabetes is
diagnosed earlier, at 1 week-of-age, and growth retardation as

a result of decreased insulin secretion in utero is more severe.
Recessive mutations lead to decreased insulin biosynthesis
through different mechanisms, such as a lack of translation
initiation and decreased messenger ribonucleic acid stability.
Recessive mutations might also cause transient neonatal diabe-
tes, but these mutations are typically located in non-coding
regions, such as the insulin promoter122. Screening of over
1000 diabetic patients showed that INS mutations are rare
after the neonatal period123. Later-onset diabetes is mainly
associated with mutations in the C-peptide and signal peptide
regions.
B lymphocyte kinase (BLK) expressed in pancreatic islets is

an enhancer of insulin secretion, and the first mutation was
described to cosegregate with diabetes in several families124.
The human BLK mutant, Ala71Thr, leads to blunted insulin
secretion in vitro, but BLK has not been confirmed in other
cohorts with autosomally dominant diabetes125.

Channelopathies
Mutations in KCNJ11 and ABCC8, which encode the subunits
of the ATP-sensitive potassium (KATP) channel, lead to a simi-
lar phenotype as mutations in INS. Gain-of-function mutations
that severely affect channel function result in permanent neona-
tal diabetes, and milder mutations result in transient neonatal
diabetes126,127. All of the mutations impair KATP channel clo-
sure and, therefore, insulin secretion. As KCNJ11 is also
expressed in the brain and skeletal muscle, diabetes might be
associated with speech delay, epilepsy and muscular hypotonia.
This syndrome is called DEND for developmental delay, epi-
lepsy and neonatal diabetes, or intermediate DEND (iDEND)
without epilepsy.

Exocrine Pancreas Defects Affecting Endocrine Function
The enzyme, carboxyl-ester lipase (CEL), is involved in choles-
terol ester hydrolysis in the duodenal lumen, and is expressed
in the exocrine pancreas and lactating mammary glands, but
not islet cells. A gene defect leads to pancreatic lipomatosis and
exocrine pancreatic insufficiency in childhood, and progressive
diabetes diagnosed at a mean age of 34 years128. Protein mis-
folding with intracellular and extracellular aggregation probably
exerts a cytotoxic effect and lead to sustained disease progres-
sion involving the islets of Langerhans129.

Monogenic Autoimmune Diabetes
The first single gene defect associated with a systemic auto-
immune disease, autoimmune polyendocrine syndrome type 1
(APS1) including diabetes, was found in the autoimmune
regulator gene (AIRE)130,131. Mutations in AIRE lead to the
highly variable APS1, affecting the pancreas, as well as the
parathyroid, adrenal, thyroid, liver, ovary, stomach and skin.
Dysfunctional fungal immunity gives rise to mucocutaneous
candidiasis. The transcription factor, AIRE, is mainly
expressed in lymphoid tissues, and is essential for generating
central tolerance through negative selection of autoreactive
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T cells in the thymus. Mutant AIRE does not have the capa-
bility to maintain immunological tolerance, leading to the
destruction of self, including b-cells132.
Similarly, forkhead box P3 (FOXP3) defects lead to a sys-

temic autoimmune disease, called immune dysregulation poly-
endocrinopathy enteropathy X-linked (IPEX)74,133. This severe
syndrome recognized in the neonatal period by diarrhea, diabe-
tes, eczema, thyroid autoimmunity and an exaggerated response
to viral infections often leads to death early in life. FOXP3 is
critical in the development of regulatory T cells and the sup-
pression of autoimmunity134,135. Female carriers have no estab-
lished phenotype.
Sirtuin1 (SIRT1) is another gene responsible for a monogenic

form of autoimmune diabetes associated with insulin resis-
tance136. SIRT1 belongs to the family of histone deacetylases,
regulating complex metabolic processes137. In b-cells, SIRT1
likely regulates insulin secretion in response to glucose through
downregulation of UCP2138. SIRT1 deacetylates p53, thereby
inhibiting apoptosis; therefore, loss-of-function favors apoptosis,
which occurs in autoimmune diabetes. Furthermore, SIRT1 has
been proposed to act as an insulin sensitizer, which fits the
human model in which SIRT1 mutation leads to insulin resis-
tance associated with b-cell destruction.

Implications for Treatment
Accurate diabetes diagnosis allows for improved treatment in
at least five variants. Sulfonylurea drugs, such as glibenclamide,
bind to the KATP channel and lead to channel closure thereby
stimulating insulin secretion in b-cells. These oral drugs over-
come the impaired channel closure, the hallmark of gain-of-
function mutations in the KCNJ11 and ABCC8 genes. This
explains why a switch from insulin to sulfonylurea treatment
improves metabolic control in most cases. As dysfunction of
KIR6.2 protein, encoded by KCNJ11, is thought to be respon-
sible for the neurological phenotype, several reports show an
amelioration of neurological functions, at least in chil-
dren139,140. In adults after decades of insulin treatment, a
transfer to sulfonylurea can similarly restore endogenous insu-
lin secretion141.
Patients carrying the HNF4A or HNF1A mutations are quite

sensitive to sulfonylureas, these oral antidiabetics bypass the
functional defect in b-cells by acting downstream of the meta-
bolic steps eliciting insulin secretion142.
Thiamine-responsive diabetes as a result of decreased avail-

ability of cellular energy in the form of ATP responds to early
substitution with thiamine, which enhances insulin secretion.
Finally, a new class of agents that activate GCK, enhancing

glucose-stimulated insulin release, is being developed for GCK-
deficient patients. These drugs could also be beneficial for type
2 diabetes143. However, the first clinical trials of the compound,
GKA MK-0941, were disappointing, reporting a loss of efficacy
over time, and resulting in increased systolic blood pressure
and serum triglycerides as a result of increased de novo lipo-
genesis144.

CONCLUSIONS
Over the past couple of years, discoveries about b-cell genes in
monogenic diabetes have led to a better understanding of the
human b-cell.
The availability of next-generation sequencing will help unra-

vel the full spectrum of genetic diabetes, ranging from truly
monogenic to digenic, oligogenic and polygenic traits. This tool
will certainly offer deeper comprehension of the different diabe-
tes variations and lead to optimized treatment of the specific
forms. The discovery of modifier genes will also be useful to
better understand the different diabetes phenotypes. Functional
analyses in vitro and in vivo will also help define specific gene-
related therapies. These results will prove to be relevant to the
pathophysiology of b-cell defects in type 2 diabetes. Broader
knowledge of human diabetes will lead to improved treatment,
outcomes, prevention and hopefully a cure.
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