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The first meeting exclusively dedicated to the ‘High-throughput dense
reconstruction of cell lineages’ took place at Janelia Research Campus
(Howard Hughes Medical Institute) from 14 to 18 April 2019. Organized
by Tzumin Lee, Connie Cepko, Jorge Garcia-Marques and Isabel Espinosa-
Medina, this meeting echoed the recent eruption of new tools that allow
the reconstruction of lineages based on the phylogenetic analysis of DNA
mutations induced during development. Combined with single-cell RNA
sequencing, these tools promise to solve the lineage of complex model
organisms at single-cell resolution. Here, we compile the conference consen-
sus on the technological and computational challenges emerging from the
use of the new strategies, as well as potential solutions.

1. Introduction

Similar to family trees, all cells in any multicellular organism are connected by a
genealogical line that relates every cell to the first single cell in the organism
(zygote). Connecting the dots in this lineage tree, along with the identification of
cell types, is as basic as finding the building blueprints of any organism. However,
this fundamentally important task has been an ongoing challenge in most animals.
We only know the cell lineage at single-cell resolution for a few organisms. The
most remarkable one is Caenorhabditis elegans, which led Prof. Sulston to
discoveries for which he shared the 2002 Nobel Prize in Physiology or Medicine.
Despite the existence of many strategies for lineage reconstruction, this meet-
ing focused on the deployment of emerging tools built upon recent advances
from studies of natural somatic mutations [1,2]. These tools use accumulated
DNA mutations (CRISPR-induced in model organisms or natural mutations in
human studies) to deduct cell lineage via phylogenetic analysis. This technology
is powerful, in theory enabling the reconstruction of the lineage of any entire
organism at single-cell resolution. The confluence of inexpensive DNA sequen-
cing, generally applicable genome editing tools, and various strategies for the
introduction of recording elements, led to the appearance of multiple studies
aimed at this problem in a very narrow window of time. As Marshall Horwitz,
one of the pioneers in the phylogenetic analysis of spontaneous mutations,
pointed out: ‘I think it's the sign of a promising idea that so many people
have thought of it at once.” In addition to its importance to our understanding
of developmental biology, reconstruction of cell lineages can have an impact in
the clinic and in other applications, such as cancer therapy or tissue engineering.
The advancement of this technology led to the choice of single-cell lineage
reconstruction as a 2018 breakthrough of the year, by the journal Science.

1.1. The ideal tool for lineage tracing

Currently, we do not have a perfect method for lineage tracing and the gold
standard will probably be different for each model organism. Yet we can
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fantasize about what specific features the perfect tool should
have. (i) Given that lineages are far less informative without
knowledge of cell identities, the ideal tool should reveal
both the lineages and the cell identities. Currently, the
most powerful technology to characterize cell identity uses
single-cell RNA sequencing (scRNA-Seq), suggesting that
the ideal tool for lineage tracing be compatible with this
approach. (ii) Cell state may rapidly change over the course
of a single cell cycle. The ideal tool should therefore be able
to record such changes. (iii) Most tools only reveal the final
picture, the leaves in the lineage tree. We also need to under-
stand the identity of cells that are present only transiently,
including cells undergoing apoptosis and progenitor cells
that rapidly change state. (iv) Functional analyses relating
gene activity and cell lineage will be essential to understand
molecular mechanisms involved in developmental processes.
Ascribing mutant phenotypes to specific lineages will require
spatial and morphological cell and lineage information.
(v) Scalability is critical for achieving whole-organism lineage
analysis. In many scenarios, we will need to reconstruct
lineage information for thousands, if not millions, of cells.
When the organism is accessible for imaging, lineage infor-
mation can be recorded as images which are then stored in
our computers for all to share. This very rich form of infor-
mation can include much more than lineage data (e.g.
cellular movements). A beautiful example of this was pre-
sented by Anastasios Pavlopoulos for Parhyale, a crustacean
model [3]. The complete cell lineages of outgrowing Parhyale
limbs were reconstructed from multi-dimensional and
multi-terabyte light-sheet microscopy image datasets using
open-source software for cell lineaging and tracking [4].
However, even in optically tractable animals, the large
number of cells may often impair tissue-scale lineage tra-
cing. In those cases, as well as in the absence of imaging
accessibility (as occurs in most models in use today),
we need to record lineage histories using other memory
substrates. Currently, the most accessible is DNA, an ideal,
compact vehicle for data storage. For this reason, it is
the medium of choice for lineage information when the
specimen is not accessible for real-time imaging. Indeed,
strategies based on the phylogenetic analysis of DNA
mutations seem to meet the requirement for scalability
and single-cell resolution. As one can control the transcrip-
tion of the DNA region undergoing mutations, these
strategies are also compatible with most RNA-seq analyses.
As discussed below, these strategies may be compatible with
other approaches that preserve morphological and spatial
information, as well as enable the acquisition of information
concerning transient cells.

2. From natural mutations to CRISPR/Cas9
dynamic barcoding

2.1. Lineage tracing based on somatic mutations

Accurate sequencing of the entire genome of every single
cell of an organism may reveal enough natural somatic
mutations to reconstruct its lineage. This is the premise for
pioneering retrospective lineage tracing methods based on
phylogenetic analysis of natural mutations, the only valid
approach currently available for human studies ([1,2] and
figure 1a(i)). Despite recent technological advances, the
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cing remains prohibitive. That is the reason why several
groups attending this meeting, interested in unravelling
human lineage and cancer progression, focus their efforts
on specific genomic regions which accumulate mutations,
including microsatellites, CNLOH (copy neutral loss of het-
erozygosity) and CNVs (copy number variations). These
genomic regions can be accessed without the need for
single-cell whole genome amplification and have allowed
the reconstruction of lineage trees from human and mouse
samples [5-9].

Several challenges remain, as highlighted by Ehud Shapiro,
including the need to combine lineage information with cell
type, state and anatomical characterization, as well as vali-
dation of the inferred lineages in the absence of ground-truth
data. To address the latter, in silico simulations in which a refer-
ence tree is generated have been used to evaluate various
reconstruction algorithms [10]. More recently, the emergence
of CRISPR/Cas9 dynamic barcoding in model organisms
opened new opportunities to validate the various recon-
struction systems as well (figure 1b(ii)). As Ehud Shapiro
suggested, these technologies could be used not only to solve
lineage in those organisms, but to cross validate the results
from classical natural somatic mutation approaches and
translate them to human lineage reconstruction.

2.2. Lineage tracing based on CRISPR/Cas9 mutations

Lineage reconstruction based on CRISPR/Cas9 accumulative
editing relies on the use of synthetic or endogenous
sequences which can be targeted by Cas9 and a specific set
of gRNAs. The targets, specific sequences recognized by
each gRNA, can be placed next to each other as an array or
dispersed across the genome (table 1). The pairing of each
gRNA with its corresponding target directs Cas9 to make
double-stranded breaks which, after an error-prone repair
mechanism, result in deletions or insertions (indels), creating
a record of genetic events (barcodes) over time (figure 1b(ii)).
In addition, synthetic transgenes can be transcribed, allowing
simultaneous lineage reconstruction and cell-type character-
ization via RNA sequencing. These new lineage tracing
approaches are often called ‘dynamic lineage tracing’ or
‘dynamic barcoding’ (see Glossary). The first reported
example of dynamic barcoding was GESTALT (genome
editing of synthetic target array for lineage tracing), in
which transgenic zebrafish embryos carrying an array of 10
different targets (the barcode) were microinjected with Cas9
and a set of gRNAs at the one-cell stage. Thousands of
mutations were recovered from adult dissected organs
allowing correct proof-of-principle reconstruction of known
lineage relationships during germ layer patterning and
discovery of widespread clonal dominance [11].

Since the first implementation of this technology, many
other strategies have emerged in a very short time, support-
ing CRISPR/Cas9 barcoding as a valid method for lineage
tracing in several model organisms. These studies hold
enormous promise for resolving complex lineages and have
been reviewed elsewhere [21-23]. However, technical chal-
lenges remain which have prevented lineage reconstruction
at single-cell resolution [16,24]. These challenges constituted
the main focus of discussion of the meeting, along with the
introduction of imaging tools which could be complementary
to barcoding methods (figure 1 and table 1).
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Figure 1. Summary of lineage tracing methods. (a) Based on cumulative mutations for retrospective phylogenetic reconstruction. (i) Somatic mutations accumulate
naturally during development. (i) Mutations induced by Cas9 accumulate on predefined targets along time. (jii) Barcode readout through tissue dissociation followed
by single-cell isolation and sequencing from DNA or RNA (left) or through fluorescent in situ hybridization (orange star probe) of transcribed barcodes on intact tissue
samples (right). (b) Based on reporter activation. (i) Conditional activation of a fluorophore in a progenitor cell (black arrow) and all its descendants (classically
known as clonal labelling or fate-mapping). (ii) In twin-spot MARCM, induced interchromosomal recombination allows differential labelling of daughter cells derived
from the same progenitor cell (black arrows). (iii) In CLADES, the induction by Cas9 (purple arrow) of a predefined cascade of fluorescent reporters in progenitor cells
along time allows the distinction of the progeny for subsequent generations. This is a simplified representation of CLADES. Experimentally, the transitions from one
colour to the next do not necessarily happen every cell division. For simplicity, all methods are exemplified using asymmetric lineages. In symmetric lineages and
unlike other methods, CLADES could provide temporal information of emerging parallel lineages.

2.3.1. Cell and barcode loss

A common problem encountered by many groups is low cell
recovery from dissociated cell preparations made from tissues
or entire organisms. As dissociated cells are often subjected
to single-cell RNA-Seq (scRNA-Seq), their loss, which can
be greater than 50%, can leave many gaps in the lineage
reconstruction [25,26]. Among the many different techniques
which have emerged that increase throughput, a new
strategy called sci- (single-cell combinatorial indexing) was
reported by Jay Shendure. Sci calls for running several
rounds of split-and-pool of cells along with nucleic acid
tagging [27,28]. Because each cell passes through a unique
combination of wells, this results in unique transcript
tagging. Although cell loss is still high using sci-, this strategy
increases scalability exponentially while lowering total costs
and has been applied to the reconstruction of developmental
transcriptomic trajectories during mammalian organogenesis
[29]. Similarly, the application of sci- to sort cells for dynamic
lineage tracing would require combining many samples to
compensate for the cell loss.

Another issue affecting CRISPR/Cas9-based lineage
tracing is barcode loss, due to the reduced probability of
sequencing a barcode in those cells that are captured. The
reasons for this issue can be many. First, missing barcodes

in RNA-seq may result from low RNA expression levels.
In this regard, Bushra Raj, Aaron McKenna and James
Gagnon, who were pioneers in the GESTALT technology in
the Schier and Shendure laboratories, relied on a heat-shock
promoter to express the barcode. This system led to a low
recovery rate (barcode information was recovered from
approximately 6-28% of the total isolated cells [12]). They
presented alternative promoters and regulatory sequences
which increased expression levels both in zebrafish and
Drosophila (B. Raj & A. McKenna 2019, unpublished results).
Second, reduced transcript stability could stem from the pres-
ence of highly repetitive sequences and/or a high complexity
of the transcript secondary structure, which could lead to
degradation, contributing to barcode loss. Thus, placing
repeated target sequences far away from each other, as well
as using RNA-fold prediction software to avoid complex sec-
ondary structures, could help overcome this limitation [30].
At this point, it is worth noticing that single-cell DNA detec-
tion-based protocols have shown much higher barcode
recovery rates (higher than 90%) than those based on RNA-
seq. Anna Alemany from the Oudenaarden lab explained
that targeted-DNA amplification is more efficient because
barcode transcription might be tissue-specific, prone to silen-
cing and scars might affect the half-life of the mRNA. This
protocol requires more hands-on work and is lower through-
put, as single-cell transcriptome libraries and targeted-DNA
barcode libraries are generated independently [13].
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Third, a standing limitation stems from the use of Cas9
nuclease to edit compact arrays of targets. Large deletions
spanning several targets (inter-target deletions, see Glossary)
and/or deletions that eliminate the primer-binding region
impair total barcode recovery. In addition, the information
content in the recovered sequences is reduced, and recorded
information can be completely lost. Max Telford’s group
simulated these problems and showed that barcode loss
through inter-target deletions has a major impact in lineage
reconstruction accuracy [16]. Several alternatives to avoid
long deletions were proposed at this conference. The placement
of targets farther apart from each other [14,15] and/or the use
of alternative Cas9 versions which introduce point mutations
instead of indels [31] (see table 1 for more details on each of
these barcode designs) are two such alternatives.

2.3.2. Barcode efficiency: editing frequency, target capacity and
outcome variability

In addition to barcode recovery, other factors that impact the
efficiency of CRISPR/Cas9-based lineage tracing concern
the design of the target sequences and the properties of the
editor. Design features, such as the number of available
targets for editing (capacity) and the variability of editing
outcomes, are important determinants of efficiency. As
well, the editing frequency by the editor is an important
factor [16,24]. Currently, the total number of distinguishable
synthetic barcode targets is 10 in zebrafish [11,12], 32 in
Drosophila [16] and 60 in mouse (see below) (although in
the last two studies, not all targets were useful for lineage
reconstruction). Several computational models presented at
this meeting predicted that in order to reach single-cell
resolution and scalability to thousands or even millions of
cells, more than hundreds of targets would be required
[16,24]. Moreover, these studies agree that controlling the
editing frequency would expand the efficiency of recording
over longer time frames and increase the accuracy of lineage
reconstruction. Bushra Raj from the Schier lab presented
scGESTALT (a combination of GESTALT lineage tracing and
scRNA-Seq) and showed that controlling Cas9 expression,
so that zebrafish barcodes were edited at two different
developmental times, increased barcode variability over
time. In this case, a higher temporal resolution facilitated
the study of lineage relationships within a single-cell atlas
of the zebrafish brain [12]. Using a different approach in
Drosophila, Marco Grillo and Irepan Salvador-Martinez devel-
oped a synthetic barcode containing 32 variants of the
same target sequence (each of them carrying one or two
mismatches) integrated as an array in a single genomic
locus. They demonstrated that introducing different target
mismatches allows various editing frequencies in the same
barcode, expanding its capacity to record over time [16].

In another study, Reza Kalhor reported the generation
of transgenic mice bearing 60 independent integrations of
self-targeting gRNAs (see Glossary) with various editing
speeds, increasing barcode capacity by allowing evolution
of the same sequences over time. Proof-of-principle
experiments using this method demonstrated correct recon-
struction of placenta, yolk sac and embryonic tissues, as the
first lineages recorded in mice [15]. Unlike previous studies
which used compact target arrays, this method avoids long
inter-target deletions by placing the targets dispersed across
the genome. Although the earliest mouse lineages could be
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inactivating mutations that cannot be overwritten, tracking
later segregating lineages such as brain lineages required
slower self-targeting gRNAs [15]. Those slower self-targeting
gRNAs remain mutable over a longer time frame, which
could confound lineage reconstruction at single-cell resolution.

In a different study called LINNAEUS, presented by
Jean Philipp Junker, multiple dispersed copies of ubiqui-
tously expressed RFP transgenes were targeted in zebrafish
embryos, avoiding mutation over-writing and allowing
barcode recovery by RNA-Seq. In combination with
scRNA-Seq, LINNAEUS faithfully reconstructed known
germline lineage relationships [14]. A limitation of this
method, which could confound lineage inference, however,
is that the multicopy targets are indistinguishable from
each other. To address the latter, Michelle Chan from the
Weissman lab presented a different version of these technol-
ogies for tracing mammalian embryogenesis. In this case,
unique molecular identifiers (see Glossary) were introduced
into independent transgenes carrying each unit of the tran-
scribed barcode, consisting of an array of three targets,
allowing distinction of mutations coming from different inte-
grated copies. This lineage recorder recapitulated canonical
mammalian tissue relationships and unveiled an endoderm
population with extraembryonic origin [17].

2.3.3. Endogenous barcode sequences

All of the abovementioned studies were aimed at improving
barcode efficiency, by regulating the editing frequency, increas-
ing barcode recovery or increasing mutational variability.
However, the low number of available targets remains the
limiting factor to reach single-cell resolution when the lineages
of thousands to millions of cells are to be reconstructed.
A proposed solution by several groups was to target
endogenous, instead of synthetic, sequences. This strategy
avoids the current limitations of genetic engineering, which
include low cargo capacity and difficulty in obtaining high
copy number integrations. Endogenous target arrays suitable
for lineage tracing have been identified in the zebrafish
and mouse genomes by James Cotterell from the group of
James Sharpe [18]. As in GESTALT, they rely on the use of
Cas9 nuclease to edit compact arrays of targets, but interest-
ingly in this case they found fewer inter-target deletions,
possibly due to lower target sequence similarities. In another
study, the group of Duhee Bang decided to target endogen-
ous L1 repeats, present in thousands of copies, with a base
editor variant of Cas9 which introduces point mutations
instead of deletions or insertions [31]. They obtained
ground-truth tree data by time-lapse imaging of HeLa
cells transfected with a PiggyBac transposon carrying the
Cas9 base editor and a gRNA. After four generations, they
picked individual cells and sequenced the L1 repeats. Their
study demonstrated accurate single-cell lineage reconstruc-
tion in vitro using this method [19]. However, the editing
frequency of this Cas9 variant is low (0.06 edits per hour)
and it remains to be determined if it is sufficient, and if
barcode recovery from distant loci can be combined with
single-cell transcriptomics, and scaled up for in vivo lineage
tracing studies. More importantly, although targeting
endogenous sequences has major advantages, as described
above, we should be cautious and consider all possible
deleterious effects on the genome [32,33].



CRISPR/Cas9 barcoding has emerged as a powerful tool for
lineage tracing. However, we still need to overcome the major
technical challenges discussed above in order to reach single-
cell resolution and scalability in vivo. Validating new lineage
tracing approaches in the absence of ground truth would
require proof-of-principle experiments using very well under-
stood systems. Examples of fully reconstructed lineages
include that of C. elegans and specific neuronal lineages in
Drosophila [34,35], but reaching such a level of resolution in
vertebrates has remained elusive. Nevertheless, there were
several beautiful examples at this meeting of highly resolved
lineage relationships obtained through continuous imaging
and computational reconstruction, such as the process of
neuromast regeneration presented by Hernan Lépez-Schier,
or the reconstruction of inner ear development in zebrafish
by Cristina Pujades [36,37]. Thus, we could take advantage
of those optically accessible and relatively small vertebrate
systems to validate new lineage tracing methods.

To understand the lineage relationships among cells
during development, lineage reconstruction with cell-type
characterization is required. This would allow for the
definition of the patterns that emerge as cell-type diversity
is generated and allow for an appreciation of the lineage
relationships among tissues and organs. Moreover, knowing
both lineage and cell-type information would allow us to
better assess inter-individual variability, essential to estimate
the impact of lineage on developmental decisions.

At this point, it is worth noticing the fundamental
conceptual difference, stated by Sean Megason in his talk,
between ‘cell lineage’ and ‘cell state manifold’. While ‘cell
lineage’ refers to the topological structure that emerges
from the connection of mothers with daughters through cell
division, ‘cell state manifold” defines a structure connecting
changes in cell ‘state” over time. Knowing only the branches
of the lineage tree (which might vary in complex systems)
or only the transcriptional cell states would not solve the
question of how a single progenitor cell gives rise to the
immense diversity of cells and tissues of an organism.
In addition, one should be able to assess the effect of signal-
ling events on lineage and cell-type formation to better
understand developmental decisions.

Recent advancements in the field of scRNA-Seq have
allowed high-throughput reconstruction of the transcriptomic
landscape of several model organisms at several developmen-
tal stages [38—41]. Acquiring time series of scRNA-Seq data
allows the generation of trajectories (named cell state mani-
folds above), which show how the transcriptome of cell
populations changes over developmental time. Alex Schier
highlighted the immense amount of relevant biological infor-
mation within the developmental trajectories inferred from
such data. As an example, he showed gene expression patterns
linked to interesting cell biological changes during early noto-
chord differentiation in zebrafish (A. Schier 2019, unpublished
results). However, differentiation trajectories cannot be used
alone to infer lineage relationships, as this can lead to erro-
neous interpretations [34]. Supporting the need to combine
both cell lineage and state information, two examples at this
conference including the study by Anna Alemany from the
Oudenaarden lab and that by Michelle Chan from the Weiss-
man lab, showed cell types with extremely similar
transcriptomes but very different clonal origins [13,17].

Unravelling such differences could be the first step towards
identifying similar cells with distinct functional properties.

To obtain even more accurate views, we should record
transient states and signalling events, as well as lineage
relationships, which can be retrieved from developing
and terminally differentiated cells. Weixin Tang presented
CAMERA (CRISPR-mediated analogue multi-event recording
apparatus), a system in which external and internal cell signals
induce the expression of a base editor Cas9 variant and
gRNAs, which, in turn, mutate a safe locus which serves as a
recorder. Endogenous pathways relevant during cancer devel-
opment, the immune response or stress were recorded in
human cells using this method [42] (W. Tang 2018, unpub-
lished results). However, recording the number, order and
complexity of signalling events and transcriptome transient
states during development would require the capacity of this
technology to be dramatically expanded. One way to do this
could be to regulate the expression of multiple gRNAs under
specific Polll promoters, which is possible if they are placed
between self-cleaving ribozymes or tRNAs [43]. Similarly, one
could record spatially regulated expression patterns, which
would serve as ‘genetic landmarks’: spatial locators for single
cells which would otherwise lose any anatomical reference
after tissue dissociation. Finally, a prevalent topic at this
meeting was the need for a cell cycle recorder, which would
make for a major improvement in lineage reconstruction.

All the previously discussed recording methods rely on
tissue dissociation prior to sequencing, but a full understand-
ing of the function of biological systems also requires
anatomical and morphological characterization of cells as
tissues or organisms develop. Because of this, strategies to
retrieve lineage and molecular information by imaging,
while preserving tissue integrity, have also been developed.

The first proof-of-principle method which combined CRISPR/
Cas9 barcoding with in situ imaging readout, called MEMOIR,
was developed by Michael Elowitz and Long Cai’s labs. This
system, which was tested in ES mouse cells, consists of mul-
tiple transcribed identifiers (see Glossary), each placed after
a common array of 10 identical targets which ‘collapse’
when edited (deletions comprising one or more targets).
Retrieval of the identifier along with one of the two possible
mutational states (mutated or unmutated) is done by multi-
plexed single-molecule RNA fluorescence hybridization
(smFISH) or seqFISH, uncovering both cell lineage and spatial
information [20]. Although this technology allowed concur-
rent analysis of endogenous gene expression and cell lineage
in situ, it suffered from limited resolution due to variable bar-
code expression. Increasing barcode diversity and expression
level are therefore central to expanding the memory encoded
in the MEMOIR system.

At this meeting, two laboratory members from the Elowitz
lab presented upgrades of this technology to overcome those
limitations. Ke-Huan K. Chow showed an improved and con-
densed MEMOIR 2.0 system based on integrases which avoids



double-strand breaks (DSBs) created by Cas9, demonstrating
increased barcode variability for more accurate recording and
lineage reconstruction in vitro, and which is being implemented
in vivo using Drosophila as a model organism. Amjad Askary pre-
sented a novel in situ imaging method capable of reading more
compact barcodes and distinguishing single-base edits with
improved barcode recovery [44].

In situ methods for cell-type characterization based on
RNA expression profiles have also been improved to
reach higher detection efficiency and multiplexing capacity.
Emma West, PhD student in Connie Cepko’s lab, presented
SABER (signal amplification by exchange reaction), a method
which relies on the addition of long single-stranded DNA con-
catemers to the specific antisense probes and capable of
amplifying the original FISH signal by up to 450-fold [45].
Its multiplexing capacity allowed in situ distinction of the 15
subtypes of retinal bipolar neurons, identified previously by
classical methods and recent scRNA-Seq data [46]. Cellular
morphology was revealed by wheat germ agglutinin (WGA)
staining, and 3D reconstruction of morphology and quantifi-
cation of FISH puncta allowed for the unambiguous
assignment of cell identity within clones. Clonal marking
was initiated using Cre to activate a fluorescent reporter.

Discovery-driven studies in situ would require full tran-
scriptome profiling, but the high optical density of mRNAs
in cells has remained a limiting step. Long Cai presented seq-
FISH+, a new implementation of the pre-existing technology
(seqFISH) based on deterministic super-resolution microscopy
which allowed imaging of up to 10 000 genes from single cells
in mouse brain slices [47]. This study shows that while some
gene expression is cell-specific, others define spatial regions
but are characteristic of very different cell types. These spatial
gene clusters were not resolved by scRNA-Seq, showing the
advantage of conserving an intact tissue while performing
molecular profiling of single cells. Also, this technology not
only allows cell typing, but also distinguishes gene enrichment
and subcellular RNA localization which can unveil interesting
cell communication mechanisms.

Combined with lineage information obtained by the
previously mentioned barcoding tools, SABER and seqFISH+
could uncover cell-type specific spatial and temporal rela-
tionships in situ. However, a standing limitation of the
mentioned in situ readout tools is that they all require prior
information about the target RNA sequences. Thus, dis-
tinguishing barcodes which accumulate random mutations
such as GESTALT becomes challenging. An alternative
would be to use other methods which have allowed in situ
sequencing of unknown RNAs [48].

In situ barcode and transcriptome retrieval relies on RNA
targeting, and the obtained images often contain empty
spaces that lack resolution of cell morphology. Co-labelling
by a cell-type agnostic stain (e.g. WGA) and immunofluores-
cence could help integrate cell-type and lineage information
with morphological characterization within intact tissues [45].

Although alternative imaging-based strategies resolve
lineages at a lower scale as compared to dynamic barcoding,
they allow to conserve morphology and spatial information.

These strategies for clonal analysis are typically based on

the conditional activation of fluorophores (genetic switches)
in a particular progenitor cell, whose expression is then
retained by all of its progeny. Techniques such as Brainbow
expand the simultaneous clonal labelling capacity by incor-
porating multiple colour combinations [9,49,50]. However,
this method cannot scale to resolve a great number of cell
lineages, as clonally unrelated cells might be identically
labelled. In addition, recombinases can result in the labelling
of postmitotic cells, which can confound lineage interpret-
ations [51]. An increase in scale can be achieved by viral
infections with barcoded libraries. Libraries of greater than
10° complexity can be used [52,53], but recovery of the bar-
codes relies upon cell dissociation with an approximate 50%
loss in cells. Both of these methods of clonal marking will be
improved if combined with an in situ method for the identifi-
cation of cell type. The method discussed above by Amjad
Askary may allow for the identification of cell type as well
as barcode recovery in situ, using a lentiviral library to initiate
clonal marking. The method uses phage RNA polymerases to
amplify the barcodes in fixed tissue sections, followed by FISH
detection of the resulting transcripts. Barcode recovery is thus
not plagued by low RNA expression from the array in vivo.
This method can be combined with FISH for marker genes
to identify cell types in addition to barcodes.

To date, the only strategy which allows differential labelling
of paired sister clones with high resolution is twin-spot
MARCM (mosaic analysis with repressible cell markers) devel-
oped by Tzumin Lee in Drosophila [54] and later expanded to
mouse as MADM (mosaic analysis with double markers) by
Hui Zong at Liqun Luo’s lab [55]. Both methods rely on
the activation of two independent reporters after inducible
interchromosomal recombination. In Drosophila, neuronal devel-
opment is highly stereotypic and full neuronal lineages have
been assembled by this method [35]. Also, this technology
allows the characterization of mutant clones and has revealed
the role of lineage-specific temporal factors on neuronal fate
determination in the Drosophila central brain [56,57].

Songhai Shi presented his work using MADM to characterize
neocortical gliogenesis in mice. This work revealed the precise
timing of the transition between neurogenesis and gliogenesis,
suggesting that both astrocytes and oligodendrocytes emerge
from radial glial progenitors simultaneously, but, independently,
in a quantal fashion (S. Shi 2019, unpublished results). Simon
Hippenmeyer presented an alternative application of MADM:
the induction of uniparental disomy to assess the consequences
of genomic imprinting at single-cell resolution. This technique
allowed him to demonstrate a requirement in parental
imprinting for correct postnatal stem cell expansion of cortical
astrocytes (S. Hippenmeyer 2018, unpublished results).

Despite MARCM and similar clonal labelling techniques
being highly informative, they are limited by poor cell
typing and a very low throughput which require the analysis
of hundreds to thousands of samples in order to reach high
resolution of lineages.

Two novel CRISPR strategies based on imaging presented
by Jorge Garcia-Marques and Isabel Espinosa-Medina, mem-
bers of the Tzumin Lee lab, promise to overcome those
limitations. The first strategy, called CaSSA, involves the acti-
vation of fluorescent reporters by Cas9 and a gRNA through
a conserved DNA mechanism known as single-strand anneal-
ing (SSA). SSA repairs DSBs occurring between two direct
repeats by removing one of the repeats and also the inter-
vening sequence [58]. Unlike repair by non-homologous



end-joining, which creates random mutations (indels) at
DSBs, SSA is scarless and predictable, allowing the reconsti-
tution of reporter genes in a highly efficient manner. CaSSA
facilitates access to cell types which require complex combi-
natorial labelling, by acting conceptually as an unlimited
recombinase [59]. The second method, called CLADES,
also takes advantage of SSA as repair mechanism, but in
this case to activate a predefined cascade of gRNAs and
fluorescent reporters [60]. By tracking the different markers
expressed by the progeny, one can accurately reconstruct cell
lineages within a single sample, unlike previous strategies
which relied on lineage assembly from a large number of
samples (see above). Both CaSSA and CLADES technologies
are also being implemented in vertebrates (I. E. Medina
2019, unpublished results). Another powerful application of
CLADES which could reach single-cell resolution would be
the sequential editing of CRISPR barcodes. Computational
simulations from a related study predicted a significant increase
in accuracy of lineage reconstruction by combining predefined
gRNA cascades with dynamic barcoding approaches [24].
Without combining this technology with dynamic barcoding,
however, it is unclear how CLADES would perform resolving
symmetric lineages in which the cascade progresses in all
growing sublineages as cells increase exponentially.

4. Computational challenges for lineage
reconstruction

4.1. Towards refined lineage reconstruction strategies

Sophisticated algorithms have been developed for construct-
ing phylogenic trees. Despite general similarities, different
assumptions apply to using CRISPR edits versus somatic
mutations for lineage analysis. Mutable sites in the genome
are innumerable, whereas Cas9 targets are usually very
limited. Moreover, somatic mutations are transient—they
can be overwritten by successive mutations. Conversely,
CRISPR edits can be fixed, at least theoretically. These
differences call for systematic evaluation of reconstruction
algorithms for CRISPR-coded cell lineages, in addition to
the optimization of Cas9 targets to augment coding capacity.

Given no ground truth for many lineages, simulations are
being used for an assessment of the performance of recorders
or tree-building methods for the reconstruction of CRISPR-
encoded cell lineages. Max Telford noted that target dropouts
following inter-target deletions could drastically reduce
the accuracy of lineage reconstruction. Acknowledging this
issue, Aaron McKenna and coworkers tried to improve
GESTALT lineage reconstruction using inclusion of a penalized
maximum-likelihood estimation [61]. Notably, the custom algor-
ithm used in Michelle Chan’s work in Jonathan Weissman’s lab
also involves searching for trees with highest likelihood [17].
However, such likelihood-based algorithms could be extremely
slow when the tree-searching space is huge. Through bench-
marking conventional phylogeny methods, Ken Sugino from
Tzumin Lee’s lab identified hierarchical clustering with the Rus-
sell-Rao metric and complete linkage as the best performing
algorithm in the dense reconstruction of robustly encoded cell
lineages without severe cell loss [62].

To date, however, no lineage reconstruction algorithms
have been rigorously examined for their robustness across
diverse recorders and various extents of cell/code dropout.

It remains unclear if any computer program can consistently n

reconstruct the underlying cell lineages to a high degree of
accuracy, given the reality of the limits of actual experimental
data. Reconstructed trees should carry some indication about
the confidence level of any branch within the trees. To
mobilize a larger community for establishing such optimal
tree-building methods promptly, Jay Shendure promoted a
DREAM challenge on this subject, which received support
from meeting participants after an introduction by Pablo
Meyer, a DREAM Challenge director.

Down the road, computer-assisted bioinformatic and
imaging analyses are needed for (i) connecting partial trees in
space and time to derive a complete tree with experimentally
validated internal nodes, (i) mapping the in silico reconstructed
trees back to developing tissues to reveal the corresponding cell
for each node in vivo and (iii) comparing trees across samples,
genotypes and even species to unveil the cell lineage mechan-
isms of organism diversity (i.e. intra-species variations/
diseases and evolution). As hinted in many talks, including
Sean Megason’s illustration of cell state manifold and Jay Shen-
dure’s single-cell RNA-seq of organogenesis, synthesizing
insightful cell lineage trees entails multi-modal information at
both single-cell and genome-wide levels. Having a joint tree
depository, potentially within the rapidly progressing cell
atlas consortium, would expand the synergy into a larger
community and greatly expedite the discovery of new biology.

4.2. Nomenclature clarification

To facilitate future communication, this meeting also sought
clarification of terminologies characteristic of cell lineage
reconstruction with cumulative CRISPR edits. First, each
gRNA ‘target’ can be regarded as a basic ‘unit’ of the code.
Second, the possible editing ‘outcomes’ in a gRNA target
can be referred to as ‘character states’ or ‘levels’ of the unit.
Third, the collective target states or unit levels in a cell
constitute the ‘barcode/scar/allele’ of the cell. Regarding line-
age reconstruction, there are two types of dropouts: ‘capture
dropout’ contributes to cell loss, and “collapse dropout” or “exci-
sion dropout’ typically refers to loss of targets/units due to
inter-target deletion. As to basic lineage topology, we propose
a broad adoption of the convention used by the Drosophila com-
munity to refer to various asymmetric-division lineages as
Type 0/1/2 lineages [63]. Along this convention, we refer to
symmetric-division lineages as Type 3 lineages (see Glossary).

5. Conclusion

At this meeting, many interesting talks and posters were
presented which could not be covered in this review, as we
decided to focus on the main technological challenges
and emerging solutions leading to high-throughput
reconstruction of cell lineages.

One thing that was clear is that inducible and dynamic
barcoding technologies combined with single-cell typing
and precise computational reconstruction algorithms have
the potential to solve complete lineages in model organisms
at single-cell resolution. The intersection of those strategies
with imaging and functional studies seems fundamental to
fully understand biological processes. Despite promising
steps towards this goal, several technical challenges still
need to be solved and will require a new generation of
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recorders and computational reconstruction methods. With
regard to these limitations/challenges, several discussions
of the goals of these technologies took place. One view is
that we may not need full lineage reconstruction of a complex
organism to greatly advance our understanding of, develop-
ment. Robust methods for lineage analyses of selected tissues
at defined times would provide most developmental biol-
ogists with the tools that they need to advance their
studies, particularly in combination with perturbations of
gene function. As there are different goals for different
types of studies, it is worth considering the requirements
for lineage data for each type of study.

As follow-up of this rapidly evolving field, another meet-
ing named ‘Hindsight” will take place at the Allen Institute
in Seattle March 2020, organized by Jay Shendure and
Michael Elowitz. This will also be an opportunity to discuss

Finally, we would like to end this review by highlighting [ 10 |

some comments from John Sulston, who described the lineage
of C. elegans. Back in 2011, he commented on the importance of
knowing what one is aiming for and noted the existence of
power tools for lineage tracing. He was aware of one of our
most complex challenges as biologists: to define our question
and choose the right technology to solve it. Today, incredibly
powerful tools are progressively making this dream come true.

This article has no additional data.
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the progress within the DREAM challenge competition.
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Cell state manifold

Dynamic lineage tracing

Genetic switch

Mutational outcomes/
levels/characters
Phylogenetic analysis of
mutations

Self-targeting gRNAs

Somatic or spontaneous

mutations
Target [unit

The topological structure connecting
changes in cell ‘state’ over time often
called state trajectories. Although the
transcriptional profile of a cell is
often used to define its ‘state’, other
molecular or structural features
could also serve as ‘state” hallmarks.
vAccumulative DNA editing which
records lineage information over
time. Also called dynamic barcoding
if the mutated sequences involve
barcodes.

A conditional sequence that can
activate or inactivate the expression
of an element in a system such as a
fluorescent protein and an effector.
All the possible sequences resulting
from an edition event on a target.
Estimating the genealogical
relationships of every cell within
an organism by comparing their
mutational profiles.

A gRNA which directs Cas9 to its
own DNA encoding sequence. It
contains a Cas9/gRNA recognition
motif which makes that sequence a
target for editing.

Genomic changes that occur natu-
rally in cells.

A specific DNA sequence recogni-
zed by a gRNA antisense sequence
necessary for Cas9 editing.

Types of lineages
Type 0

Type 1

Type 2

Type 3

UMI/ID.

Based on the Drosophila convention,
lineage types are defined as:

Each division results in a single
neuron and a progenitor.

The first division results in an inter-
mediate cell (called GMC or
ganglion mother cell in Drosophila)
which divides again to generate
two postmitotic cells.

The first division results in an inter-
mediate progenitor cell (called INP
in Drosophila) which undergoes
four to six divisions to generate
another INP and an intermediate
cell that in turn generates two post-
mitotic cells.

Unlike Types 0, 1 and 2 which rep-
resent  asymmetric  expansion
lineages, Type 3 defines a sym-
metric expansion lineage. Every
division produces two identical
daughter cells which continue to
divide until their differentiation.
Unique molecular identifier (UMI)
or identifier (ID) is an exclusive
and short molecular ‘tag’ added to
DNA sequences in order to dis-
tinguish them from each other. If
added to synthetic barcodes, they
allow distinction of multiple inte-
grated copies.
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