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Abstract

The microbiome is a complex and dynamic community of microorganisms that co-exist interdependently within an ecosystem, and
interact with its host or environment. Longitudinal studies can capture temporal variation within the microbiome to gain mechanistic
insights into microbial systems; however, current statistical methods are limited due to the complex and inherent features of the data.
We have identified three analytical objectives in longitudinal microbial studies: (1) differential abundance over time and between
sample groups, demographic factors or clinical variables of interest; (2) clustering of microorganisms evolving concomitantly across
time and (3) network modelling to identify temporal relationships between microorganisms. This review explores the strengths and
limitations of current methods to fulfill these objectives, compares different methods in simulation and case studies for objectives
(1) and (2), and highlights opportunities for further methodological developments. R tutorials are provided to reproduce the analyses
conducted in this review.
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Introduction
The microbiome is defined as a collection of co-existing
microorganisms within an environment, and is often
viewed as a ‘mini-ecosystem’. The role of the microbiome
in biological systems and in disease has been broadly
explored [45, 53, 65], but is still lacking a thorough under-
standing of its structure and function [21]. In addition,
temporal variation in a microbiome is inherently com-
plex, with dynamic interactions between the host or
environmental factors that are understudied so far [19,
66]. The goal of longitudinal studies is to address these
issues [86].

We define longitudinal microbiome data as abundance
data from individuals collected across multiple time
points, similar to [13, 17]. The time dependency between
measurements creates a correlation structure within
individuals. Thus, longitudinal microbiome studies are
designed to capture both within-subject dynamics
and between-subject differences (heterogeneity among
subjects) to address different analytical objectives. For
example, microbiome researchers may want to identify
microorganisms with differential abundance over time,
between sample groups (e.g. case versus controls),
between demographic factors (e.g. sex), or between clini-
cal factors (e.g. mode of birth). Alternatively, they may
be interested in identifying microorganisms evolving

concomitantly across time and examining their temporal
relationships between each other (i.e. biotic interactions).
These biotic interactions can be in the form of positive
interactions (e.g. cross-feeding of byproducts) or of
negative interactions (e.g. competition for nutrients) [16].
Thus, the statistical analyses of longitudinal microbiome
data correspond to three main objectives (1) to identify
differentially expressed microorganisms; (2) to identify
microorganisms evolving concomitantly across time and
(3) to identify biotic interactions.

Although several methods have been proposed to
address these objectives, the inherent complexity,
sparsity, over-dispersed and high-dimensional aspects
of longitudinal microbiome data are challenging, and
require multivariate models with either specific data
distributions (i.e. negative binomial distribution), or
non-parametric models. Longitudinal studies also need
to take into account repeated measurements with
a temporal order, individual variability and variance
that may change over time or differ for individuals in
separate groups. A large number of missing time points
in some individuals also pose a challenge for developing
longitudinal microbiome methods.

Attempts have been made to address longitudinal
microbiome data challenges [80]. However, most meth-
ods account for some but not all characteristics of
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microbiome data: they may ignore compositionality
and struggle to jointly model over-dispersion and zero-
inflation [30, 86], they might be unable to manage
missing time points [7], or fail to capture the inter-
dependency between microorganisms [86, 87].

Based on these three analytical objectives, we have
reviewed existing statistical methods for longitudinal
microbiome studies to highlight their strengths and limi-
tations. We first describe the study design and the analyt-
ical challenges observed in a typical longitudinal micro-
biome study. We then review existing methods for each
analytical objective and benchmark some of these meth-
ods in simulation and case studies. The R code to repro-
duce our analyses are available online.

Data analysis of longitudinal microbiome
studies
Analytical objectives
A successful study begins with clear, well-defined sci-
entific research objectives. We have identified common
objectives of interest in longitudinal microbiome studies
as summarized in Figure 1. The first objective is to study
how microbial abundance changes over time between
groups of interest (e.g. cases versus controls, disease
or treatment groups, Figure 1A, and how the associa-
tion between microbial abundance and other factors
such as clinical outcomes, disease or treatments change
over time [7]. In this context, both time and differences
between patients or individual groups may be of interest.
The second analytical objective is to cluster microor-
ganisms with similar temporal patterns of abundance
(Figure 1B). This analysis often requires us to model the
temporal trajectories of each microorganism first. The
third analytical objective is to construct a microbial net-
work to understand the temporal relationships between
sets of microorganisms (Figure 1C). The latter two objec-
tives use methods based on distances, however, their
goals and outputs differ. Clustering methods aim to par-
tition taxa into clusters that reflect similar temporal
behaviours, whereas network construction methods aim
to discover positive or negative associations between
a core set of taxa. Contrary to cluster visualizations
that reveals similar taxa groups, most network visual-
izations reveal directed interactions between taxa and
their strengths. Networks methods can include covariate
information (e.g. age) as we discuss in this review, while
currently available clustering methods are limited in this
regard.

Study design
Longitudinal microbiome data often arise from two dif-
ferent scenarios; from designed experiments (such as
in mice) [L1] and from follow-up or cohort studies in
humans [L2] (Figure 2). For longitudinal data of type L1,
time points are typically close together than L2 studies
with the same (or very similar) number of time points for
each subject. In contrast, type L2 data typically feature

uneven number of time points for subjects and unequally
spaced time points, thus missing data due to attrition are
more problematic in L2 than L1. Additionally in L2 stud-
ies, a number of external factors, such as diet, may also
influence the microbiome but may often be unmeasured
or uncontrolled, making the modelling more challenging.

Data characteristics
Both L1 and L2 designs use 16S rRNA gene sequenc-
ing (16S) or metagenomic shotgun sequencing (shotgun)
to generate raw sequenced reads. 16S sequencing is a
form of amplicon sequencing that targets and reads
a region of the 16S gene exclusively found in bacte-
ria and archaea. Shotgun is an untargeted sequencing
method that extracts all genomic material for microbial
community classifications and gene annotations. From a
statistical perspective, the data obtained from 16S and
shotgun sequencing can both be represented as count
tables containing the number of sequences per sample
for a taxon [6]. In addition, from shotgun sequencing,
a gene pathway table can be obtained, providing the
number of sequences matching a specific gene function.
To account for varying depths of reads across samples,
researchers usually normalize the data by converting
the raw abundances into relative abundances. Data pro-
duced by both these sequencing methods have many
analytical challenges, due to the nature of the micro-
biome data, which are sparse, over-dispersed, of high
dimension, multi-collinear, multivariate and highly vari-
able [9, 22, 43, 63, 76]. Because of these analytical chal-
lenges, conventional methods for standard longitudinal
data cannot be directly applied to longitudinal micro-
biome data [86], as we describe next.

Time trend and within-subject correlation

Compared to single time point data, longitudinal micro-
biome data include the presence or absence of trend over
time. A trend, loosely speaking, is a pattern that shows
the behaviour of the series as increasing or decreasing
over a long period [51]. Since samples in longitudinal
studies are collected over time, the ordering of the sam-
ples is inherent and irreversible and thus exhibit time-
dependencies that are a function of time [19]. Ignoring
the ordering of data points and the continuity of changes
across time in the statistical analysis can lead to erro-
neous conclusions [20]. To model trends in longitudinal
microbiome studies, spline models [67] or linear mixed
models (LMMs) that regress the observations as a func-
tion of time [84, 86] can be used. These models can easily
account for missing values observed across time through
interpolation.

However, as samples are collected from the same sub-
ject for multiple times, we also need to consider auto-
correlation among within-subject samples [35], where
the independent error assumption in standard LMMs is
no longer applicable. Dependent within-subjects errors
in LMMs [84, 86] in the form of auto-regressive of order 1
(AR(1)) or continuous-time auto-regressive of order 1 can
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Figure 1. Three analytical objectives may arise from longitudinal microbiome studies: (A) To identify microorganisms with differential abundance
over time, between groups or both between groups and over time. For example, a taxon’s abundance may not exhibit any between-group or temporal
difference across subjects (A.1); may only exhibit group difference (A.2); or only time difference (A.3); both group and time differences without any
interaction between the two effects (i.e., same slope with different intercept) (A.4); or with interaction. (B) To identify microorganisms with similar
temporal patterns. For example taxa that belong to cluster 1 have a similar time trajectory, whereas other taxa that belong to cluster 2 exhibit a
different pattern. (C) To understand biological and temporal relationships between different microorganisms. In this network representation, the positive
(beneficial) interactions and negative (competitive) interactions are represented by blue and red colours, respectively. Note: in (A) each line represents
a given taxon’s abundance for each subject, whereas in (B) and (C) each line or node represents a different taxon across groups of subjects.

be used. A generalized Dirichlet-Multinomial distribution
model [79] has also been proposed as an alternative
approach to account for within-subject correlations [35].

Sparsity

Microbiome data from both single time point and longi-
tudinal studies are sparse with frequently observed zero
values, which is known as zero-inflation [33, 77]. These
zeros can be due to (1) physical absence (a microorgan-
ism is not present at a particular time point), (2) under-
sampling of the microbial population or (3) sequencing
error. In contrast to single time point microbiome data,
where the degree of sparsity is typically microorganism-
specific (proportions of zeros may vary across microor-
ganisms), in longitudinal microbiome data the degree of
sparsity is either microorganism-specific or time-specific
(proportions of zeros in microorganisms may vary across
time). To manage the sparsity issue, approaches such
as zero-inflated beta regression models [7] have been
proposed.

Over-dispersion and high inter-subject variability

In both single time point and longitudinal microbiome
studies, data are over-dispersed, i.e. highly variable. Pois-
son models assume an equal mean and variance and lack
flexibility to model over-dispersed data [57]. Therefore,
negative binomial models [53, 78] have been extended
to a longitudinal setting using a separate parameter to
model the dispersion in the data [86].

High inter-subject variability of microbiome data is
well known in single time point studies [1, 29, 83] but
is exacerbated in longitudinal studies, as we need to
consider difference of inter-subject variability across dif-
ferent time points. Thus, modelling approaches must
consider this complexity, as well as the influence of
measured and unmeasured confounders.

Multivariate and high-dimensional

These characteristics pertain to both single time points
and longitudinal studies. The number of taxa included in
a typical study may vary in the thousands [40, 82]. These
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Figure 2. Characteristics of longitudinal microbiome studies. Data generated from a designed experiment [L1] – typically in mouse studies, include
dense time points, with a similar number of time points for all subjects, whereas data generated from follow-up or cohort studies [L2] – typically in
human studies, include uneven, unequally spaced time points for each subject.

microorganisms work in concert to modulate and influ-
ence their environment [37]. We need to consider the
multivariate relationship among microorganisms at a
single time point, as well as across time points in the case
of longitudinal studies. However, most existing modelling
approaches consider one microorganism at a time and
fail to capture the multivariate nature of the data [7, 30,
67, 86]. Moreover, in a longitudinal setting, representing
the interactions and similarities or connectivity between
microorganisms becomes complex when the data are
high-dimensional, resulting in high computational
cost and low prediction accuracy of most statistical
methods.

Compositional nature

Single time point microbiome count data are compo-
sitional due to unequal sequencing reads. This results
in uneven library sizes across individuals. Longitudinal
data add complexity as the compositionality arises from
uneven library sizes across individuals and time points. In
both experimental settings, each microorganism count is
commonly converted into a relative abundance (propor-
tion) in each sample, using ratio transformations, such as
total sum scaling, producing compositional data. Thus,
the data exist in a simplex. One pragmatic solution is
to move from this simplex into a Euclidean space that
is more suitable for current modelling methods. Several

data transformations have been proposed, including cen-
tred log-ratio transformation (CLR). However, the inter-
pretation of CLR transformed data should still be relative
to other taxa as we refer to ratios of taxa to their geomet-
ric mean. The geometric mean can change if some taxa
are removed beforehand. Thus, the CLR transformed data
are incoherent to sub-compositions [55], as we illustrate
in Figure 3. Note that prior to CLR transformation, an
offset value is added to all raw counts to manage the
zeros. However, this offset associated to CLR transforma-
tion will prevent from modelling zero counts.

Compositionality may result in spurious correlations
among taxa, as the presence or absence of one taxa
depends on the others [55]. It is unclear whether the
inflated correlations between taxa are due to normal-
ization techniques such as proportional abundance or
rarefaction (in complex microbial communities, such as
the gut microbiome) or if it is due to having only a few
dominant taxa (in low-diversity communities, such as
the vaginal microbiome) [73]. In Figure 4, we extended
the example discussed in [22] to multiple time points to
illustrate that the relative abundance patterns observed
in longitudinal microbiome data do not necessarily
resemble the behaviour of the true abundance. Thus, an
analyst should interpret the relative abundance results
with regards to all other taxa and the library size of each
sample (i.e. per individual and per time point).
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Figure 3. CLR trajectories for two individuals over five time points for a
given taxon. The CLR is calculated per time point and per individual (i.e.
per sample). For individual 1, the CLR abundance is greater than individ-
ual 2 at time 2, 3 and 5. However, we may not observe the same trend if we
had access to the (true) absolute counts, as the geometric means are not
directly comparable between samples. Similar problems arise when we
consider multiple time points to assess differential abundance between
two groups over time or between different time points within the same
group.

Figure 4. (A) For a given individual, we consider the true abundances
(absolute counts) of two taxa (X and Y) across 3 time points and (B) their
corresponding relative abundances. In (A), Y’s true abundance does not
change from time 1 to time 2 but increases from time 2 to time 3. After
time 1, Y’s true abundance is greater than X’s true abundance. In (B), after
calculating relative abundance, both taxa have a relative abundance of
1/2 at time 1, but the relative abundance of X and Y changes to 1/3 and
2/3, respectively. Thus, we might incorrectly interpret that the abundance
of Y increases from time 1 to time 2 and does not change from time 2 to
time 3 (Figure adapted from [22] for a longitudinal scenario).

Another question of interest is the identification of
microbial signatures; i.e. groups of microbial taxa that
are predictive of a phenotype of interest. However, we
need to keep in mind the principles of compositional
data analysis while answering this question. One such
approach proposed for single time point analysis is Selbal,
which is based on compositional balances — a measure
that compares the average abundances of two groups of

microbial species [59] based on their log ratios. Selbal is a
forward selection approach that identifies the best sub-
set of taxa according to their predictive power, measured
by mean squared error or by the area under the receiver
operating characteristic curve. However, the approach is
not guaranteed to converge to a global optimum. Similar
model selection approaches for longitudinal microbiome
data are yet to be developed.

In the next sections, we review the strengths and lim-
itations of methods currently available for longitudinal
microbiome analysis according to the analysis objectives
highlighted in Figure 1.

Identification of microorganisms with
differential abundance over time, between
groups and between both group and time
Most approaches we have reviewed are univariate. They
seek to identify differential microbial abundance over
time, between groups of interest (e.g. disease or treat-
ment groups), and between groups. These approaches fail
to capture the complex interactions between microor-
ganisms and may provide limited insight into the micro-
biome. We describe current methods that use either
count data or relative abundance data for differential
abundance analysis, and assess them in both simulation
and case studies.

Current methods
• Zero-inflated beta regression Model

Zero-inflated beta regression (ZIBR) simultaneously
evaluates abundance changes over time and between
groups for each taxon [7]. The model is applied to relative
abundance (proportion) data and captures both the pres-
ence or absence of a microorganism – using a Bernoulli
distribution, and non-zero abundance – using a Beta
distribution. Thus, ZIBR can be considered as a mixture of
a logistic regression and a Beta regression component. In
order to capture within-subject correlations, individual-
specific random intercepts are included to the model.
Parameters of the model are estimated using Gauss-
Hermite quadrature maximum likelihood. A likelihood
ratio test is used to assess the effect of a covariate of
interest (time, treatment or other clinical variables) on
the presence or absence of a microorganism and its non-
zero abundance. Time and its interaction with a given
covariate can be incorporated into the model. Thus, ZIBR
is highly flexible and can evaluate all effects illustrated
in Figure 1A.

One of the strengths of ZIBR is its ability to account
for the sparse nature of the data via use of the logis-
tic component. However, ZIBR has several limitations.
The model does not account for within-subject correla-
tion structure (i.e. auto-regressive correlation structure)
explicitly in the model [84]. The authors suggested that
individual-specific random intercepts were often ade-
quate in practice to capture these correlations. ZIBR
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cannot handle missing data at a given time point for
a given subject [25, 72]. The method is also challenged
when there are too few, or too many, zero values, which
affect the accuracy of the logistic and beta component
respectively [8]. It is also unclear how ZIBR manages
compositional data. The authors argue that the sum to
one constraint is not relevant as differential taxa are
determined via use of a false discovery rate (FDR) and
since each taxon is analyzed separately [7]. Other limi-
tations highlighted by [44] include the lack of cross-part
correlation in the model, which specifies the correlation
between the individual-specific random intercepts in the
logistic and beta components. This may result in inaccu-
rate inference on treatment effect, as the magnitude of
the relative abundance tends to be larger than expected
for taxa that are more present, or dominant.

The method has been validated in simulation studies
and applied to detect differential abundance between
treatments for inflammatory bowel disease over an 8
week period [7], and subsequently in other microbiome
studies [12, 23, 69].

• Negative binomial mixed model

Negative binomial mixed model (NBMM) was devel-
oped to detect associations between microbial counts
(without transformation) and covariates (such as treat-
ment, phenotype, age, dietary habits, etc.) while con-
sidering time trends of microbial abundance within
and between subjects [86]. The iterated weighted least
squares (IWLS, [85]) algorithm was extended to account
for within-subject correlation structures. The algorithm
iteratively approximate the NBMM using a LMM. NBMM
model can be fitted with different fixed effects such as
time effect, treatment effect, and interaction between
time and treatment. Thus, similar to ZIBR, NBMM can
also evaluate all effects illustrated in Figure 1A.

NBMM is able to handle over-dispersion with a disper-
sion parameter, as well as varying read lengths, by includ-
ing an offset for differing total sequence reads. Fixed and
random effects of varying types can be included, allowing
for the inclusion of, or the adjustment for, confounders. A
key strength is that NBMM can accommodate for differ-
ing correlation structures among observations from the
same subject, compared to ZIBR that does not offer such
flexibility. With adequate sample sizes, modelling of non-
linear trends is also possible. However, the method does
not explicitly handle zero-inflation.

NBMM has been validated in simulation studies and
applied to previously published data [14] to detect dif-
ferential abundance between term and preterm during
pregnancy [86]. Of note, other authors had previously
applied a zero-inflated negative binomial mixed-effects
model (ZINBMM) in a longitudinal study of the vaginal
microbiota during pregnancy [61].

• Block Bootstrap Method

Block bootstrap method (BBM) is an extension of a
bootstrap method for longitudinal microbiome count

data. The method uses a ‘moving block bootstrap’
approach using a blocking and re-sampling procedure
while accounting for autocorrelation within the time
series. To obtain bootstrap samples that approximate the
distribution of the chosen statistic, blocks of temporally
contiguous observations are constructed and resampled
with replacement. An overlapping block bootstrap
procedure was proposed to account for the small number
of repeated observations [30], a procedure that has been
demonstrated to produce the smallest mean squared
error for most statistics [36]. To identify the optimal block
size, a modified empirical sub-sampling approach was
proposed. BBM aims to identify differential abundance
between sample groups but does not focus on time
effect. Thus, this method can only identify taxa that are
differentially expressed between groups, as illustrated
in Figure 1 A.2. P-values are adjusted for multiple testing
using the Benjamini and Hochberg’s procedure [3] to rank
the microbial variables.

BBM is nonparametric and does not require particular
data distribution. It can handle within-subject depen-
dency and accounts for unequal library sizes to address
the compositional nature of the data. The authors report
a high true positive and small false positive rate. As
limitations, the method is computationally intensive and
requires an adequate number of time points (at least
five) to specify two tuning parameters (initial block size,
number of repeat observations for sub-sampling). Spar-
sity and variability are still problematic and require pre-
filtering to remove unwanted noise due to temporal vari-
ation (of both technical and biological origins). BBM does
not account for other covariates and performs best when
there is an equal number of observations for all subjects.
In terms of interpretation, the method assesses whether
the abundance is greater or lesser in one sample group
compared to another but without quantifying this differ-
ence.

The method was validated in synthetic data, but has
not been widely used in the literature so far. The authors
applied BBM in three pregnancy studies to identify micro-
bial variables differentially abundant between preterm
versus term birth and whether these variables may over-
lap between studies, and in an oral microbiome study.

• SplinectomeR

SplinectomeR is an R package that uses weighted local
polynomials (loess splines) to summarize data for hypoth-
esis testing in longitudinal studies. Loess splines are suit-
able for microbiome data, as the data differ from classical
models or shapes [67]. This framework includes three
methods: the first method tests for the overall difference
between two groups over the full time course, the second
method tests for the difference between two groups at
defined intervals to identify regions of time with group
differences, and the third method tests for an overall
trend in a single population over time. SplinectomeR can
only assess group and time effects separately, and not
their interactions as illustrated in Figure 1 A.5.
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The methods in SplinectomeR are easy to interpret and
can compare observations across multiple time points
directly, without averaging or summarizing these points.
They can also handle missing or unbalanced data. How-
ever, the methods may be influenced by outliers, par-
ticularly in sparse data sets, and do not account for
compositional data. In addition, the third method that
tests for overall trends can be time consuming as it is
based on a permutation test.

The method was tested and validated on simulated
data that included 10 individuals with 12 time points. The
response variable was perturbed at three magnitudes in
one or two regions of the time series and was detected
by the third method. Using the prodigious data set [81],
the authors evaluated the claims made on the dynamics
of the gut microbiome over the first three years of life
using the SplinectomeR methods. These methods were
also applied to assess the effect of chemotherapy on the
gut microbiota in acute leukaemia patients [58] and to
test sex bias in gut microbiome transmission in newly
paired marmosets [88].

• Zero-inflated Gaussian mixed models

Zero-inflated Gaussian mixed models (ZIGMM) was
developed to account for within-subject correlations and
other properties of microbiome data [84]. Similar to all
methods presented above, ZIGMM is also univariate.
However, the model allows to either use counts or
relative abundances as input. Relative abundance are
transformed using square root arcsine. Count data
are transformed using pseudo counts log base 2. The
transformed data are then modeled with a zero-inflated
Gaussian distribution. Thus, ZIGMM is a mixture of a
logistic regression and a Gaussian regression component.
ZIGMM is fitted using an Expectation-Maximization (EM)
algorithm using the standard procedure for fitting LMMs.
Through simulations, the authors showed that ZIGMM
outperformed various previously developed methods
while being computationally efficient compared with
the other two zero-inflated methods, ZIBR and ZINBMM.
Similar to ZIBR and NBMM, ZIGMM can also evaluate
time effect, group effect and time × group interaction
effect as illustrated in Figure 1 A.

The main strength of ZIGMM is its ability to model
time-dependent effects and correlations among samples
within subjects. Additionally, the approach can include
various types of fixed effects and random effects with
both normal distribution and zero-inflated models. The
method can also account for different auto-regressive
correlation structures among samples, for example,
AR(1) or continuous-time auto-regressive of order 1.
Finally, the proposed method can analyze microbiome
proportional data as well as count data generated from
either 16S rRNA or metagenome shotgun sequencing
technologies. However, ZIGMM also encountered the
fitting issue of controlling false positive rates, specifically
when complex data (including metagenomics) are being
analyzed.

The method has been applied to two published data
sets to detect associations between host covariates and
taxa composition [61, 75]. The authors assessed the
performance of ZIGMM in analyzing 16S rRNA data
(raw counts) and shotgun sequencing data (proportions).
ZIGMM was found to detect more vaginal bacteria taxa
than LMMs and NBMMs. However in real data applica-
tions, the authors could not compare the performance of
ZIGMM to ZIBR due to ZIBR’s inability to handle missing
values.

• Bayesian semi-parametric generalized linear model

This multivariate approach considers succession
change in taxa abundance with covarying physical or bio-
logical factors [38]. A model-based normalization is used
to fit taxa counts. The normalization and estimation of
the covariate effects on abundance is simultaneously
carried out in a joint analysis of all taxa. When including
time, group and their interactions as covariates in
the model, one can evaluate all effects illustrated in
Figure 1.

The method uses regularising priors with mean
constraints [41] to avoid identifiability issues, and
borrows information across microbial variables, samples
and time points. Sparse estimates are produced, which
is beneficial given the high dimension of the data and
the high correlations between covariates. In contrast to
other methods, this approach is multivariate. However,
more developments are needed to flexibly capture
differing shapes in response functions, incorporate
variable selection and to allow for time-dependent
covariates. Because of data sparsity, posterior com-
putations must be handled with caution, and prior
information need to be incorporated for accurate
inference.

The performance of the model was assessed through
a simulation study and applied to an ocean microbiome
data set. The performance was found to be superior to
the frequentist NBMM univariate model from [85]. Since
then however, the NBMM method has been extended
for longitudinal data (as listed above). A new extension
has been proposed to include variable selection using
asymmetric nonlocal priors regression coefficients [68].
This new approach is referred to as ‘Bayesian Sparse
Multivariate regression’ [38].

• Fast zero-inflated negative binomial mixed model

Fast zero-inflated negative binomial mixed model
(FZINBMM) models count data and is fitted using an
EM-IWLS algorithm [87]. This method can evaluate time
and group effects and time × group interaction effect
as illustrated in Figure 1A. FZINBMM inherits features
from LMMs, such as incorporating various types of fixed
and random effects and within-subject correlations. The
method also takes sparsity and over-dispersion of count
data into account. Through simulations and real data,
the authors showed that FZINBMM outperformed other
count methods such as LMMs, NBMMs and ZIGMMs in
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Table 1. Summary of methods used to identify differential abundance over time, between groups and between group and time, in
longitudinal microbiome studies. For each method, we specify the type of input data, the characteristics of microbiome data that are
accounted for, and additional modelling features, such as inclusion of covariates. We specify the range of time points, individuals from
the validation examples and the relevant R package name. In method ‘SplinectomeR’, users can define a minimum data sparseness
threshold. The symbol � for columns ‘Covariates’ and ‘Missing Values’ indicate methods that are suitable for analysing both L1 and L2
study designs. Others that do not satisfy the above condition are more suitable for analysing L1 study designs (L2 study design require
methods that can handle confounders and missing values, Figure 2). RA= Relative abundance.

Method Input Sparsity Over-
dispersion

Multi-
variate

Composi-
tionality

Co-
variates

Missing
Values

Explicit
within
subject
correlations

Time
points

Individuals Package
name

Simulation
5 50 - 150

ZIBR RA � � - � � - - Real data ZIBR
2 - 6 31 - 59
Simulation
5 - 10 50 - 150

NBMM Counts - � - - � � � Real data NBZIMM
52 40
Simulation
10- 15 20

BBM Counts - � - - � � � Real data bootLong
30 - 52 8 - 96
Simulation
12 10
R data

SplinectomeR RA � - - - - � - 12 50 SplinectomeR
Real data
12 - 28 16 - 39
Simulation

Counts, 5 50 - 150
ZIGMM RA � � - - � � � Real data NBZIMM

2 - 24 54 - 98
Simulation
55 3

Bayesian semi-
parametric
generalized
linear model

Counts � � � - � � � Real data SBJReg

55 2 - 3
Simulation
5 30 - 100

FZINBMM Counts � � - - � � � Real data NBZIMM
4 90 - 212

terms of empirical power and high proportion of detected
taxa. However, when the data were not highly sparse,
FZINBMM performed similarly to ZIGMMs and NBMMs.
Similar to other methods discussed in this section,
FZINBMM also analyses one taxon at a time, and thus
fails to capture the multivariate nature of microbiome
data. Additionally, data compositionality is not taken
into consideration.

FZINBMM was applied to two 16S rRNA and whole-
genome shotgun sequencing count data sets [60, 61, 74].
The method was applied to detect the dynamic asso-
ciations between taxa compositions, between different
groups (i.e. use of antibiotics in infants, birth delivery
type of mothers). The authors confirmed that the taxa
they identified were biologically relevant as reported in
the original study [60].

Assessment on simulation data
In this section, we simulated data to assess the perfor-
mance of differential abundance methods. The simu-
lated data are similar to an L1 study in Figure 2 with no
missing values to accommodate ZIBR. All taxa profiles
had at least one zero count between time 0 and time 10
for at least one individual to accommodate ZIGMM and
FZINBMM. The accuracy of the methods was assessed
using sensitivity and specificity values.

Simulation design

We simulated longitudinal count data from a general-
ized linear model with a negative binomial distribution
using the ‘tscount’ R package [42]. More details on the
simulation strategy are provided in the Supplemental
Section S1. We estimated realistic parameter values for
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Figure 5. Simulation study. An example of simulated taxa with time, group, group × time and no effects with 0.3 dispersion and 0.2 AR parameters. The
top panel shows the count data, and the bottom panel shows the relative abundance data for the same profiles (calculated by dividing the taxa count
for a given individual at a specific time point by the total number of counts across all 300 taxa for that same time point and individual). Taxa count
across time with a) time effect only, b) group effect only, c) group × time interaction effect and d) no effect. Relative abundances across time with A)
time effect only, B) group effect only, C) group × time interaction effect and D) no effect.

dispersion and auto-regressive (AR) coefficients using
the pregnancy data from [14]. Nine case scenarios were
created with three dispersion parameters (i.e. noise) and
three AR values (see Table 2). For each case scenario, 50
data sets were simulated with 300 longitudinal profiles
(referred to as taxa) measured on 10 time points and 20
individuals from two groups. The 300 profiles included
ten profiles in each category that were differentially
abundant through:

• time only,
• group only,
• time, group and their interaction,

and the remaining profiles that were not differentially
abundant (i.e. noise). Figure 5 illustrates five simulated
profiles with different effects with 0.3 dispersion and
0.2 AR.

Simulation results

We present the simulation results for moderate parame-
ter values (i.e. dispersion=0.3 and AR=0.2) for all methods
reviewed earlier, with the exception of BBM that was
deemed computationally expensive, and the Bayesian
semi-parametric generalized linear model, which is not
conducive to sensitivity and specificity measures as it

does not generate P-values. All R packages used are listed
in Table 1.

Figure 6 shows the sensitivity and specificity results
for time, group, and time × group interaction effects.
With the exception of ZIGMM, all other methods based
on count data (NBMM, FZINBMM) performed well in
detecting the time effect and group effect. However, the
ZIGMM count model outperformed all methods to detect
variables with time and group interaction effects. Among
methods based on relative data (e.g. ZIGMM, Splinec-
tomeR), ZIBR performed well in detecting both time and
group effects.

As expected, sensitivity was higher when dispersion
was low. Conversely, specificity was low when dispersion
was high (Supplemental Figures S10, S11, S12). When
comparing the effect of the three AR parameters, we
observed that specificity was improved for the mod-
els with increasing AR within-subject correlation struc-
ture compared to the models without the within-subject
correlation structure. Thus, ignoring the AR structure
may generate spurious effects over time, especially for
data with a high within-subject correlation (i.e. high
AR parameter) (Supplemental Figures S12). However, the
improvement in specificity with the AR parameter is at
the expense of lower sensitivity.
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Table 2. Simulation study. Parameter settings for nine simulation scenarios with three dispersion parameters and three AR
parameters. The dispersion parameter is used to control the noise among different individuals, whereas the AR parameter is used to
control the within-subject correlations for an individual. For each of these nine scenarios, 50 data sets were simulated with 300
longitudinal taxa profiles measured on 10 time points and 20 individuals from two groups. The 300 taxa profiles were further divided
into time, group, interaction effects, as indicated. The parameter values used in the linear predictors of the generalized linear model
are the intercept, AR coefficient and covariate coefficients (see Supplemental Section S1). The intercept for each individual was
generated from a uniform (0, 5) distribution in these models and beta values used for each taxa profile are indicated in the table. The
choice in parameter values is detailed in Supplemental Section S1.1

Dispersion/
AR Parameter

0.04; 0.2; 0.4

0.1; 0.3; 0.6 Effect Number of taxa Time Group Group*Time
Time 10 1.5 0 0
Group 10 0 13 0
Group+Time+Group*Time 10 1.5 13 5
Noise 270 0 0 0

Figure 6. Simulation study. Sensitivity and specificity results from differential abundance methods for time effect, group effect and time × group
interaction effect (AR = 0.2, dispersion = 0.3). Each figure is partitioned in to two panels according to input type (i.e. count or relative abundance).
NBMM and FZINBMM with an AR within-subject correlation structure correctly identified taxa with time or group effects compared to other methods.
The ZIGMM count model outperformed other methods in identifying time and group interaction effects. Overall, the count methods performed well in
detecting time, group, and time and group interaction effects. ‘∗’ indicates a model fitted with AR structure for within-subject correlation; As a reminder,
SplinectomeR tests for time and group effects separately in contrast to other methods where time, group and time and group interactions are included
in the same model.



Challenges in longitudinal microbiome data analysis | 11

VREfm case study
We applied all methods to a longitudinal study investi-
gating the role of the gut microbiome during Vancomycin-
resistant Enterococcus faecium (VREfm) colonization
following an antibiotic treatment [50]. The authors used
16S rRNA sequencing to profile the bacterial community
composition in 9 mice over a 14-day period. The mice
were administered a ceftriaxone antibiotic treatment at
days 6 and 7, and were then colonized with VREfm at day
9 (Supplemental Figure S4). We considered the samples
during the naive phase of the experiment (day 0 to day
5) as control group, and the samples during the VRE
phase of the experiment (day 9 to day 14) as treatment
group (see details in Supplemental Section S3). After
filtering, 193 taxa were tested for time effect, group effect
and their interaction effects with the same methods
as in previous Section. With the exception of ZIBR and
SplinectomeR, all other methods resulted in at least one
error during model fitting due to the methods’ technical
constraints (as detailed in Supplemental Section S3.3).
Using a significance level of 0.05, we reported the number
of significant taxa with time, group and time × group
interaction effects for each method along with the
number of common significant taxa across different
methods. Significant taxa with time, group and time ×
group interaction effects varied widely across methods
(see Supplemental Figures S6, S5 and S7). Overall, we
found that FZINBMM without the AR within-subject
correlation produced the most number of significant
taxa across all effects, a result that we might expect
given the large antibiotic and VREfm effects compared
to the naive phase.

In Figure 7, we explored the most abundant taxa with
statistically significant effects across all effects. A major-
ity of these taxa were from S24-7 family (i.e. currently
known as Muribaculaceae family) or Bacteroidaceae family
which belongs to the Bacteroidia class. Figure 7 indicates
that the taxa from Bacteroidia class had strong group
difference. According to the authors of the study [50],
Bacteroidia class were of biological relevance as their
dominance in the naive phase was shifted in response
to ceftriaxone antibiotic treatment and regained in the
late phase of the experiment. Since the treatment group
was colonized with VREfm pathogen that belongs to
the Enterococcus genus, we expected a group difference
in the Enterococcaceae family. All methods except ZIBR
output significant P-values for group and interaction
effects for Enterococcaceae family. In addition, one taxon
belonging to the Enterobacteriaceae family with a group
and a time × group interaction effects have been found
to be associated with the antibiotic-mediated disruption
of the microbiota [34].

Identification of microorganisms with
similar temporal patterns
Clustering methods mainly seek to identify microorgan-
isms that evolve similarly across time. We review the

applications of such approaches for longitudinal micro-
biome data and briefly discuss other clustering methods
with slightly different analytical objectives. Similar to
the previous section, we assess the methods in both
simulation and case studies.

Current methods
• Dynamic time warping distances

A dynamic time warping (DTW) distance-based
clustering method was proposed to identify taxonomic
groups with similar temporal patterns [2]. Data normal-
ization is crucial in this context to minimize the differ-
ences caused by different orders of magnitude in taxa
abundances, using for example proportion or rarefaction
normalization. The DTW distance between two time
series is then calculated and normalized by the average
sum of the absolute difference between each time
series and its vertically flipped image (i.e. mirror image),
resulting in a value called ‘Time-DTW distance’ that is
bounded between zero and one. The distances among dif-
ferent taxa are visualized using a heatmap, and then hier-
archically clustered based on their similarity measures
and taxonomic hierarchies. Compared to Euclidean dis-
tance based clustering methods, DTW takes into account
the distortion across time series, and is thus suitable to
identify temporal behaviours that are out of phase [2].

• Partitioning around medoids and agglomerative clus-
tering

In [11], the authors applied these two types of cluster-
ing algorithms to microbiome time-series data. Partition-
ing around medoids (PAM) [32] is a popular algorithm for
implementing k-medoids clustering [52], whereby data
are allocated into k clusters (similar to k-means cluster-
ing). In k-medoids clustering, each cluster is represented
by a cluster medoid that is most centrally located in
the cluster. A medoid is a data point that minimizes the
average dissimilarity between itself and all the other data
points in the cluster. Because PAM uses medoids instead
of means, the approach is less sensitive to noise and
outliers, compared to k-means clustering [31].

Agglomerative clustering (Hclust) is a hierarchical
clustering algorithm which adopts a bottom-up approach
to group taxa based on their similarity. The algorithm
starts by assigning each taxon to a singleton cluster
and then iteratively merges pairs of clusters with the
highest similarity until all clusters have been merged
into a single cluster. The authors used the complete
linkage distance for clustering, which tends to produce
compact clusters as the distance between two clusters
is defined as the maximum value of all pairwise
distances between the taxa in the two clusters. For both
clustering approaches, variance-stabilization and scaling
normalization of the data were applied.

• Clustering using principal component analysis and
sparse principal component analysis
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Figure 7. VREfm study. P-values for time, group and their interaction effects for the ten most abundant taxa. P-values range from < 0.05 (red) to 1
(blue). White cells indicate methods that produced a numerical error. The most prominent effect in these taxa is the group effect, as expected. We
observed group differences in Bacteroidales, Enterococcaceae and Enterobacteriaceae families. Significance level = 0.05, ‘∗’ indicates a model fitted with a AR
within-subject correlation structure.

Multivariate dimension reduction techniques princi-
pal component analysis (PCA) and sparse principal com-
ponent analysis (sPCA) were used to cluster taxa profiles
with similar temporal patterns [4]. In this approach, the
original data matrix with N number of biological sam-
ples, P number of taxa and T number of time points
are first summarized with linear mixed model splines
(LMMS), resulting in a spline fitted matrix of size (T ×
P). The matrix dimensions are then further reduced by
PCA, resulting in H principal components of length T
and their associated loading vectors of length P. For a
given dimension of PCA, strongly correlated profiles are
identified through their loading coefficients and their
signs (i.e. positive or negative). To determine the opti-
mal number of principal components, H, the average
silhouette coefficient [62] is used. With sPCA, only a
subset of the taxa profiles are selected. Different subsets
define each of the components, where the selected taxa
are highly correlated within a component. Thus, sPCA
does not highlight profiles that deviate from the average
cluster profile.

These approaches are most suitable when the number
of time points is small (i.e. 5–10) and when the data
are expected to follow regular and similar trends across
time [4].

In addition to the methods presented above, other
clustering methods were applied for different analyt-
ical objectives. For example, two distinct clustering
approaches (PAM and Hclust) were used to group samples
to discover comparable microbiome states between

different individuals [18].The Ananke algorithm was
proposed to cluster distinct temporal patterns in micro-
biome sequence data (i.e. FASTA-formatted data) rather
than sequence-identity-based taxa [26]. As another
example, k-medoids clustering was also used to cluster
time points based on Jenson—Shannon divergence
matrix [2]. Thus, clustering methods can be applied to
longitudinal microbiome data to answer a wide range of
biological questions.

Assessment on simulation data
In this section, we simulated data to assess the perfor-
mance of clustering methods. We first needed to sum-
marize the profiles across different subjects to reduce
subject-level variability. This can be done by calculating
the mean or median at each time point for each taxon
(i.e. mean or median profiles) or by using smoothing
splines and more sophisticated LMMS as presented with
the PCA approach. LMMS were shown to outperform the
mean, median and smoothing splines profiles to identify
temporary changes [70].

Simulation design

We used the simulation from [4], which included profile
modelling using LMMS. We generated 200 reference pro-
files from time one to time nine that belonged to four
clusters (50 profiles each). These reference profiles were
then used to simulate five new profiles (corresponding to
five different individuals) with a fixed level of noise (see
Supplemental Section S2 for details). Thus, for a given
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Figure 8. Simulation study. Clustering accuracy for PCA, k-medoid, DTW and Agglomerative clustering for original LMMS profiles. The top panel provides
an example of the time profiles for different noise levels. The bottom panel shows that on average, k-medoid clustering method outperformed the other
methods when clustering the LMMS profiles with varying noise levels.

noise level, 100 data sets were generated with 200 time
profiles and five individuals. Time profiles were then
modeled with LMMS, resulting in 100 data sets of size
(9 × 200) for each level of noise. These LMMS profiles
were then used as inputs in clustering methods. We cal-
culated the clustering accuracy by dividing the number
of correctly clustered profiles by the total number of time
profiles. Three noise levels (0.5, 1.5, 3) were considered to
assess the effect of inter-individual variability on cluster-
ing accuracy. We compared the original, centred, scaled,
centred and scaled LMMS profiles as inputs in each of
the clustering methods (see Figures 8 and Supplemental
Figures S13, S14 and S15).

Simulation results

We present the simulation results for all clustering
methods presented earlier. As DTW is implemented as a
web application in [2], we used the ‘dtwclust’ R package
[64] for more flexibility in our analyses. To assess PAM,
agglomerative and PCA clustering, we used the ‘stats’
[56], ‘cluster’ [48], ‘mixOmics’ [15] and ‘timeOmics’ [4] R
packages, respectively.

Across all three noise levels (i.e. 0.5, 1.5, 3), k-medoid
clustering resulted in the highest median clustering
accuracy compared to other clustering methods (i.e.
PCA, DTW, Agglomerative clustering, bottom panel of
Figure 8). However, as expected, the clustering accuracy
across all approaches decreased as the noise levels
increased. When the noise level increased, the number
of straight line LMMS profiles also increased (top panel
of Figure 8). Interestingly, we observed different clus-
tering performances depending on whether the LMMS
profiles were centred, scaled or centred and scaled.
For example in Supplemental Figure S13, when the
LMMS profiles were centred, both k-medoid clustering
and PCA clustering had a similar clustering accuracy
for the lowest noise level 0.5. However, for scaled
LMMS profiles, k-medoid clustering outperformed all
other methods across all noise levels (Figure S14).
For the centred and scaled LMMS profiles, k-medoid
clustering, DTW and agglomerative clustering all had
similar median cluster accuracy, but DTW had a high
variability in its accuracy (Supplemental Figure 15).
With the highest noise level, all clustering methods
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performed similarly for centred and scaled LMMS
profiles.

VREfm case study
We compared the clustering methods on the VREfm
case study described earlier and Supplemental Section
S3. Clustering methods were applied separately to two
groups: naive phase (control group) and VRE phase (treat-
ment group). In the control group, we expect a stationary
behaviour as the microbiome should be relatively stable
during the naive phase. In the treatment group, we expect
groups of taxa with increasing abundance with time as
some microbial communities recover from the antibiotic
effects, and groups of taxa with decreasing abundance
with time as some microbial communities recover from
VREfm colonization. This was confirmed in the clustering
results in Supplemental Figure S8. Taxa clustered from
the control samples resulted in mostly straight lines,
whereas taxa clustered from treatment group resulted in
clusters with increasing or decreasing abundance trends.
In Supplemental Figure S9, we explored the most abun-
dant taxa clustering for the treatment group. All four
methods assigned the taxon related to VREfm (i.e., Entero-
coccaceae) in a small cluster indicating its difference from
other taxa assigned to larger clusters. Additionally, two
taxa belonging to the Bacteroidaceae family in treatment
group showed an increased abundance with time, and
were assigned to the same cluster by both PCA and DTW
clustering, suggesting a good performance of these two
approaches. However, these two taxa were assigned to
two different clusters by k-medoids and agglomerative
clustering. The increase in Bacteroidaceae family in treat-
ment group is expected, as [50] demonstrated a shift in
the dominance of Bacteroidia class in response to ceftri-
axone treatment.

Understanding biological and temporal
relationships between microorganisms.
Another prime analytical objective of longitudinal micro-
biome analysis is to study temporal relationships among
taxa. These relationships can have a positive, negative or
no impact on the taxa involved. Inferring the associations
between taxa can be used to predict the effect of com-
munity alterations or perturbations. In this section, we
review three strategies to identify temporal associations
between microorganisms, either across all individuals, or
per individual.

Current methods
• Two-stage dynamic Bayesian Nnetwork

Dynamic Bayesian networks were employed to model
the gut microbial ecosystem in infants using the
CGBayesNets (Conditional Gaussian Bayesian Network)
MATLAB software package [49]. This approach uses a
simplified two-stage dynamic Bayesian network (TS-
DBN) that assumes that the network model only depends
on the variable values at the current time point and the

previous time point. The other assumption is that all
transitions of interest are from the prior time point to the
subsequent time point and not within each time point.
TS-DBN builds networks with discrete and continuous
variables, where a conditional probability distribution is
specified over discrete variables and a conditional linear
Gaussian density function is defined over continuous
variables. In the case of small sample sizes, the inclusion
of clinical and demographic variables may result in over-
fitting [49]. Currently, this method is limited to two time
points and may not perform well for rare taxa, as network
connections showed lower levels of confidence [49].

Using the same DBN approach, others developed a
novel approach to infer causal relationships between
microbial taxa, clinical conditions, and demographic fac-
tors [47]. The authors used spline estimation and DTW
techniques to align microbial relative abundance data.
The aligned time-series were then integrated across indi-
viduals to learn DBNs. In three different longitudinal
microbiome studies, the authors showed that temporal
alignments improved prediction performance compared
to MTPLasso (described below) and TS-DBN.

• Granger causality based interaction networks

The network model in the web application ‘TIME’ [2]
is based on Granger causality [2] that assesses pairwise
causality between two taxa ‘A’ and ‘B’, for a given individ-
ual. The principle of this statistical test is that if taxon
A affects taxon B, then the past values of A must have
some information that would not be available otherwise
about the future values of B. The influence of A on B is
ascertained by comparing the goodness of fit between
two regression models. In the first regression model, the
present values of B are regressed on the past values of
both taxa. In the second regression model, the present
values of B are regressed on its own past values. If the
former regression results in significant increase in the
goodness of fit compared to the latter, then A is said to
‘Granger cause’ B, but causality should not be confused
with correlation.

In addition to the pairwise Granger causality, the
method also identifies potential causal relationships
among all taxa using ‘Granger Lasso Causality’ [27].
LASSO is a L1-norm penalty to the sum of squared errors
and is used as a variable selection and regularization
method in regression models [71]. One can use both
Granger approaches (i.e. pairwise Granger causality and
Granger Lasso Causality) to select causal pairs and
generate a directed causality network. However, causal
interactions in these networks are statistical predictions
that do not explain the causality (interactions could
be due to an indirect causes). Thus, interpretations
should be made with caution. Incorporating other
functional data such as metabolic co-dependencies
could strengthen interpretation [39]. One limitation
of this method is that it does not take clinical or
demographic variables into consideration when building
the interaction network.
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• Microbial time-series prior Lasso

Microbial time-series prior Lasso (MTPLasso) was
developed to infer interactions between microorganisms
[46]. Similar to Granger causality based interaction
networks, this method is also used to develop individual-
specific networks.

First, count data are transformed into relative abun-
dances. Dynamics and interactions amongst microorgan-
isms are modelled using the discrete-time Lotka-Volterra
(LV) model for population dynamics [28]. A stochastic
noise component is added to the LV model to account
for the affect of environments factors and other noise
sources (i.e. measurement errors) on the abundance
change. Assuming that the LV system of equations
have a unique steady-state solution and that the noise
component follows a normal distribution, the LV model
is converted to a standard linear regression problem,
with LASSO penalization to select the interactions that
minimize the mean square error. However, since the data
are high-dimensional with a limited amount of time
points, the number of possible interactions between
microorganisms is far greater than the number of
time points. As a consequence, the regression problem
becomes intractable. To solve this issue, Hofbauer et
al. [28] integrated biological information obtained from
the scientific literature and metagenomics data sets.
The model performance and robustness were enhanced
through bootstrap aggregating [5] and re-ranking [24].
Similar to the previous method, MTPLasso also ignores
any clinical or demographic variables when modelling
the interaction network.

The network methods discussed in this section
widely differ in their analytical objectives and input
requirements. For example, Granger causality-based
interaction networks and MTPLasso aim to fit a network
model explaining the relationship between taxa for
each subject, whereas TS-DBN aims to fit a network
model explaining the relationship between taxa for
the entire data set. Although Granger causality-based
interaction networks and MTPLasso have the same ana-
lytical objective they require different inputs. MTPLasso
requires biological information from scientific literature
and metagenomic datasets to solve the regressions,
whereas Granger causality-based interaction networks
only require the abundance values observed. As such,
we were unable to compare these approaches on data.

Conclusion
Longitudinal microbiome studies can help in under-
standing the links between the microbiome and health
or disease. In this review, we categorized longitudinal
analysis methods according to three main research
objectives: (1) differential abundance over time, between
groups and between both group and time, (2) temporal
pattern clustering and (3) network modelling. We
highlighted the current limitations of existing method
to manage the inherent characteristics of microbiome

data (i.e. compositionality, sparsity, over-dispersion, high
within-subject variability).

Differential abundance and clustering methods’ main
limitation is the compositional nature of the data. By
ignoring compositionality, these methods may produce
biased or misleading results. In addition, the majority of
differential abundance methods are univariate, and thus
ignore the mutual relationships between microorgan-
isms, which may lead to spurious results. It is important
to note that zero-inflated models such as ZIGMM and
FZINBMM should be used for taxa with excessive number
of zeros. In practice, however, researchers may prefer
to fit a specific method for all taxa regardless of their
degree of sparsity. Therefore, zero-inflated models could
be improved with greater flexibility to include or exclude
the zero-inflated part of each taxon based on their degree
of sparsity.

Network models are promising for longitudinal micro-
biome data analysis, but are still at their infancy. These
models infer interactions between microorganisms to
understand the role and influence of microorganisms
in diseases, and their co-evolution with time. Another
line of analysis is to investigate changes of microbial
networks across time (for example due to antibiotic
intervention). Future promising applications of networks
models will be the designs of synthetic microbiome to
validate data-driven ecological networks [10]. However,
substantial methodological developments are still
needed to establish causal inference networks. As we
highlighted in our review, there is also a lack of common
analytical objective in these approaches. For example,
some models focus on individual-specific networks while
others focus on a full sample-specific networks.

To conclude, we have identified a growing need for
flexible approaches that can suitably handle the intrinsic
challenges of microbiome longitudinal data. The ulti-
mate goal of these approaches is to capture the complex
interactions, dynamics and influences of microorgan-
isms that can shed light into the mechanisms under-
pinning health and disease. If successful, these methods
have a potential to advance preventive, personalized and
predictive medicine.

Key Points

• Longitudinal microbiome studies are conducted to
understand the temporal variations of the microbiome,
which is inherently complex, with dynamic interactions
between microorganisms, host and environment factors.

• Longitudinal microbiome data have inherent data char-
acteristics that are common to both microbiome data
(such as compositionality, sparsity and over-dispersion)
and longitudinal data (such as within-subject correla-
tion, high-variability between time points).

• We identified three analysis objectives, ranging from dif-
ferential abundance analysis, to clustering and network
modelling.
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• Most methods developed to address one of the three
objectives do not take the data characteristics into
account, which may lead to biased or spurious results,
and lack flexibility in their applications.

• Methods for longitudinal microbiome data are still at
their infancy, and require substantial methodological
developed to understand biological and temporal rela-
tionships between microorganisms.
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