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Abstract 

The circadian clock is an endogenous timekeeper system that controls and optimizes biological processes, which 
are consistent with a master circadian clock and peripheral clocks and are controlled by various genes. Notably, the 
disruption of circadian clock genes has been identified to affect a wide range of ailments, including cancers. The 
cancer-immunity cycle is composed of seven major steps, namely cancer cell antigen release and presentation, prim-
ing and activation of effector immunity cells, trafficking, and infiltration of immunity to tumors, and elimination of 
cancer cells. Existing evidence indicates that the circadian clock functions as a gate that govern many aspects of the 
cancer-immunity cycle. In this review, we highlight the importance of the circadian clock during tumorigenesis, and 
discuss the potential role of the circadian clock in the cancer-immunity cycle. A comprehensive understanding of the 
regulatory function of the circadian clock in the cancer-immunity cycle holds promise in developing new strategies 
for the treatment of cancer.
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Background
According to an assessment of the World Health Organi-
zation (WHO) in 2015, cancer is the major cause of 
death and the most significant barrier to the lengthen-
ing of lifespan expectancy. The incidence and mortal-
ity of cancer have sharply increased in every country in 
the twenty-first century [1]. At present, the first-choice 
treatment for various neoplasms is surgical excision and 
occasionally in combination with other therapies, includ-
ing chemotherapy, radiotherapy, and targeting therapies. 
However, these treatments effect are not satisfactory [2]. 
Over the last few years, immunotherapy has become the 
breakthrough treatment with mild side effect and sur-
vival rates in the most malignant tumors.

Circadian rhythms are dominated by an endogenous 
time-keeping system in mammals such that synchroniza-
tion with the 24-h environmental cycle generated by the 
Earth’s rotation is achieved. Existing evidence indicates 
that approximately 10% of the human genome is con-
trolled by the circadian clock, which also affects a vari-
ety of physiological processes, such as sleep–wake cycles, 
body temperature cycles, digestive and cardiovascular 
processes, endocrine systems and immunity systems 
[3–6]. In recent years, the effects of the circadian clock 
on tumor immunity have been studied; however, the role 
of the circadian clock in tumor immunity remain unclear. 
Here, we review the mechanism that places tumor 
immunity under the control of the circadian clock; this 
mechanism may be applied in developing biological clock 
targets and chrono-immunotherapies for the treatment 
of tumors.
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Tumor microenvironment and immune system
The tumor microenvironment (TME) is composed of 
tumor mass surrounded by fibroblasts, stromal cells, 
immune and inflammatory cells, and the extracellular 
matrix (ECM) [7]. In the TME, immune cells dominantly 
exert effects impact over tumor growth, immune surveil-
lance, tolerance, and escape. Moreover, multiple immune 
cells reportedly participate in the anti-tumor process, 
including natural killer (NK) cells, tumor-associated 
macrophages (TAMs), neutrophils natural killer T (NKT) 
cells, dendritic cells (DCs), T- lymphocytes, and B-lym-
phocytes [8–10].

An increasing number of evidence strongly support 
that the immune conditions of patients can be used to 
the predict outcomes of a broad range of solid tumors, 
such as non-small-rcell lung cancer (NSCLC), liver can-
cer, and breast cancer [11–14]. The general consen-
sus revealed that high macrophage infiltration in TME 
indicates resistance to therapy and poor prognosis [15]. 
Several early clinical trials targeting macrophages have 
been successfully performed [16]. The activation of a 
broad spectrum of T cells was suppressed in the immu-
nosuppressive TME, which eventually facilitated the 
circumvention of the immune system and the escape 
of malignant cells, thereby promoting cancer progres-
sion and metastasis [17]. The number of CD4+ T cells 
have been significantly associated with prognosis of 
NSCLC[18]. Thus, the inhibiting expression of CD4 + T 
cells is a potential approach for lung cancer immuno-
therapy [19]. Apart from immunity cells, a serious of 
chemokines or chemokine receptors regulate the migra-
tion of different subsets of lymphocyte into TME and 
contribute to cancer progression and therapeutic out-
comes [20]. Negative regulators of immune activation, 
including cytotoxic T-lymphocyte-associated antigen 
4 (CTLA-4), programmed death receptor1 (PD-1), can 
succeed in a struggle against lymphocyte exhaustion in 
the tumor microenvironment, thus triggering the antitu-
moral function of lymphocyte cells [21, 22].

The mechanism of tumor immunity is complex and 
a series of self-sustaining steps must be geared to be 
processed and expanded to kill cancer cells effectively 
[23]. Effective anti-tumor immunity can be established 
through a circulation mechanism, that is the cancer-
immunity cycle. The cancer-immunity cycle is composed 
of seven major steps, namely cancer cell antigen release 
and presentation, priming and activation of effector 
immunity cells, trafficking, and infiltration of immu-
nity to tumors, and elimination of cancer cells. In the 
first step, antigen-presenting cells (APCs) can effectively 
acquire and process neoantigens from dying cells, includ-
ing targeting antigens for cross-presentation and tumor 
cells. In order to yield T cell immune response against 

tumors, it must be accompanied by distinct cytokine 
release and signal activation such that peripheral toler-
ance to the tumor antigens is induced. Then, DCs present 
tumor-associated antigens (TAAs) to T cells. Subse-
quently, effector T cells are primed and activated to elim-
inate cancer-specific antigens. Under chemokines release, 
the activated effector lymphocytes traffic to and infiltrate 
tumor tissues. Subsequently, cytotoxic T-lymphocytes 
(CTLs) distinctly recognize and combine with malignant 
cells. Finally, cancer cells are killed, and additional anti-
gens are released, thereby tumor immune response in 
succeeding cycles. Given the potential feasibility of can-
cer-immunity cycle oscillation, it is critical to understand 
how the circadian clock modulates immunity (Figs. 1, 2).

Genes and molecular mechanism of the circadian 
clock in mammals
In mammals, the circadian system is an integral regula-
tory system composed of a master clock and peripheral 
clocks. The master clock exists in the suprachiasmatic 
nucleus (SCN) of the brain, whereas the peripheral 
clocks reside in peripheral tissues and organs, including 
the liver, skin, lungs, and kidneys. The fact that the cir-
cadian clock resides in nearly every mammalian cell has 
indicated modulatory complexity. When mammals are 
exposed to light, the retina is activated and transmits 
information to the SCN. The SCN receives, converts, and 
integrates the information from the external environment 
to tissues, which synchronizes the signals to regulate 
its own rhythms and peripheral rhythms and maintain 
robust circadian oscillations in neuronal activity [24]. The 
clocks can also be reset in response to other external sig-
nals, including food intake and hormones, independent 
of the master clock [25, 26]. Conflict between the SCN 
and locally derived signals may lead to the malfunction 
of the circadian clock, and the impairment of temporal 
control of cell-specific programs (Figs. 3, 4).

At the cellular and molecular levels, the circadian 
rhythms that emerge from the master and peripheral 
clocks are almost similar. The core molecular clock 
is comprised of two main autoregulatory interlock-
ing transcription-translation feedback loops (ITTFs), 
which counter-modulate each other to produce a cir-
cadian cycle of gene expression, and exists in the SCN 
and peripheral tissues [27, 28]. At least 14 core and 37 
related circadian clock genes participate in the process 
of circadian clock [29–32]. Note that circadian locomo-
tor output cycles kaput (Clock) and brain and muscle 
Arnt-like protein-1 (Bmal1) are regarded as activators 
of the circadian clock, whereas PERIOD (PER-1; PER-
2; PER-3) and cryptochrome (CRY-1; CRY-2) proteins 
are regarded as inhibitors. In the main loop, BMAL1 
and CLOCK, which can be replaced by its paralog 
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Fig. 1 The master clock and peripheral clocks. Light provides entrainment signals for the master clock, whereas food intake mainly stimulates 
peripheral clocks. The master clock and peripheral clocks coordinate in regulating many biological processes in the human body

Fig. 2 The protein clock BMAL1 heterodimerizes with CLOCK to initiate the transcription of targets genes through E-boxes. PER and CRY proteins 
inhibit the expression of BMAL1 and CLOCK, respectively, whereas RVE-ERBα/β does the opposite by binding to RREs. Additionally, CRY and PER are 
also negatively regulated by CK1ε/δ via phosphorylation
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neuronal PAS domain protein 2 (NPAS2), form a het-
erodimer that bind to enhancer element of E-box [33] 
to activate the transcription of target genes and modu-
latory proteins, including PER-1, PER-2, PER-3, CRY-1, 
and CRY-2 [34, 35], thereby forming a positive feed-
back loop. However, other studies have reported that 
PER-1, PER-2, CRY-1, and CRY-2 play essential roles in 
the regulation of circadian clock, whereas PER-3 does 
not have any circadian phenotype [36–39]; the reason 
for this remains unclear. In the second major loop, the 
translated proteins of PER and CRY families in the 
cytoplasm form hetero-multimeric complexes and are 
transported to the nucleus, which negatively regulates 
the activation of CLOCK/BMAL1 (NPAS2) heterodi-
mers [40]. These positive and negative ITTFs circulate 
with approximately 24-h circadian periodicity. In the 
above process, casein kinase 1 (CK1) ε/δ also restricts 
negative feedback potential of PER and CRY via degen-
eration or phosphorylation [41–43]. Apart from the 

above ITTFs, the heterodimer CLOCK/BMAL1 drives 
the rhythmic transcription of nuclear receptor subfami-
lies (REV-ERBs), and retinoid-related orphan receptors 
(RORs) by binding to the E-boxes in their promotional 
genes. RVE-ERBα/β and RORα/β can regulate the tran-
scription of Bmal1. RORα/β promotes the expression of 
Bmal1 by binding to ROR respective elements (RRE), 
and thereby forms a positive feedback loop, whereas 
RVE-ERBα/β do the opposite [44, 45]. These two feed-
back loops are the basic building components of the 
cellular clock. However, many more genes are directly 
or indirectly involved in the clock machinery, resulting 
in rhythmic expression of clock-controlled genes via 
E-boxes, D-boxes, and RREs. Mutation in these genes 
results in the malfunction of behavior and physiology, 
and in the alteration in the period, phase, or amplitude 
of circadian rhythms. As a result, these molecular par-
ticipate in various ailments, including cancer [46–48] 
(Fig. 5).

Fig. 3 Initiate anti-cancer immunity: releasing of cancer cell antigen, cancer antigen presentation, and priming and activation. Tumor cell death 
is accompanied by antigen release. Dendritic cells present antigens to naïve T cells. Then, the naïve T cells prime and activate the effector T cells. 
On the other hand, the antigen can also be presented by TAMs. Additionally, TAMs stimulate Th cells to produce cytokines. The circadian clock 
components take part in these processes
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Disruption of the circadian clock contributes 
to cancer
Over the past years, studies have shown that disruption 
of the circadian rhythm contributes to the incidence and 
development of various cancer [49, 50]. Previous studies 
have revealed that shift work is implicated in tumorigen-
esis [51, 52]. Women who work at night instead of days 
exhibit an approximately 10% increased risk of breast 
cancer [53–55]. In another study, intermittent/periodic 
fasting and fasting-mimicking diets, reportedly can cause 
organic fat weakening without body mass change, speed 
up immune system renewal, increase the risk of can-
cer [56]. Of note, the disruption of life cycle oscillation 
causes the increase of spontaneous cancer in chronic jet-
lag mouse model. For example, Minami et  al. discussed 
that chronic jet-lag mice showed the short lifespan, 
splenomegaly, and the accelerated development of liver 
cancer [57]. In addition, the chrono-disruption of the 
circadian clock is crucial in metabolic and immunologic 
changes and is implicated in non-alcoholic fatty liver dis-
ease/nonalcoholic steato-hepatitis/hepatocellular cancer 
[58].

In studies wherein circadian clock gene-mutant ani-
mal models were used the disruption of circadian 
clock components, including BMAL1, PER subfamily, 

CRY-1, CRY-2, and so on, implicate enhanced oncogen-
esis. Compared to adjacent and benign tissues, tumor 
tissues from pancreatic ductal adenocarcinoma patients 
expressed significantly lower levels of circadian clock, 
including PER-1, PER-2, PER-3, CRY-2, and CK1ε, which 
are related to poor prognosis [59]. Bmal1 is a key com-
ponent in hematologic malignancies, and the inactiva-
tion of BMAL1 promotes the progression of hematologic 
malignancies by disrupting the cellular circadian rhythm 
and impairing the characteristic circadian clock expres-
sion pattern of genes, including C-MYC, catalase, and 
p300 [60]. Additionally, altered circadian rhythms 
have been reported to be correlated with the progno-
sis of breast cancer [61].The exist circadian rhythm and 
the core circadian gene Bmal1, persist in malignancy 
breast cancer cells [61]. Tumor hypoxia-induced acido-
sis decreases the transcription activation and protein 
stability of BMAL1 to promote breast cancer metasta-
sis in  vitro [62]. Moreover, members of PER subfamily, 
including PER-1, PER-2, and PER-3, have been reported 
to be lowly expressed and play significant role in NSCLC 
patients [63]. Furthermore, the low expression of PER-2 
is reportedly negatively linked to poor differentiation, big 
tumor sizes, high TNM stage, and lymph node metastasis 
in NSCLC patients; the overexpression of PER-2 inhibits 

Fig. 4 The processes of lymphocyte trafficking and infiltration in cancer. The chemokines, including CXCR4, CCL20, Cx3r1, modulates the 
lymphocytes trafficking and infiltration into the TME
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the migration and invasion of NSCLC cell lines [63, 64]. 
In an analysis of the differential expression of the circa-
dian genes in hepatocellular carcinoma and paired non-
cancerous tissues, the expression levels of some circadian 
genes, including PER-1, PER-2, PER-3, CRY-2, and TIM, 
were decreased; this was reportedly a result of promoter 
methylation, the overexpression of EZH2, or of other fac-
tors rather than of genetic mutations [50]. These studies 
indicate that the circadian clock gene can regulate the 
occurrence and development of tumors.

Oscillation parameters of immunity
The number of circulating lymphocytes and cytokines 
in the blood is the key parameter for the status of the 
immune system of the human body. Lymphocytes in the 
TME possess intrinsic clocks and have been linked to 
antitumor response and poor patient’s outcomes [65, 66]. 
Generally, the count of hematopoietic stem progenitor 
cells (HSPCs), and most mature leukocytes are displayed 
regularly in numerous frequencies [67]. According to the 
activity-rest phase of species, the immune system shows 
high-amplitude circadian rhythms in both count and 
function measures, including NK cells, monocytes, DCs, 

B cells, and T cells in mammals [68–70]. For example, the 
number of undifferentiated T cells and NK cells exhibits 
the expected pronounced circadian rhythm with an acro-
phase during sleep phase and nadir during activity phase 
in human blood [71, 72]. Further analysis indicated that 
the number of naive CD8+ and CD4+ T cells peaks dur-
ing the rest phase, and the effector CD8+ T cells during 
the active phase [71]. In addition to lymphocytes, anti-
inflammatory cytokines, including interleukin-10 (IL-10) 
and IL-4, are also present in an oscillating manner, and 
are induced during the onset of the active phase in the 
human body [73]. In contrast, the basal plasma levels of 
pro-inflammatory cytokines in human, including, tumor 
necrosis factor-α (TNF-α) and IL-1β, are generally high 
during the rest phase [74]. Possibly, these observations 
may be associated with the brain’s major stress-hormone 
systems, that is, by release of glucocorticoids and cat-
echolamines [71].

However, compared with those of healthy subjects, 
some parameters of biologic rhythms in the immune 
system are disordered in cancer patients. Gianluigi et al. 
reported that the lymphocyte subsets, including total T 
cells and total B cells exhibit a circadian oscillation with 

Fig. 5 The processes of recognition of cancer cell, killing of cancer cell, and releasing of cancer cell antigens. T cells recognize tumor cells through 
surface receptors; the activation of NK cells in tumor sites directly destroys malignant cells without prior sensitization. The circadian clock, including 
RORγ, PER1, CRY2, and BMAL1 negatively regulate the expression of PD-1 in effector T cell. BMAL1 also negatively regulates the expression of CTLA4 
and PD-L1 in effect T cells. PER1 and BMAL1 can increase the secretion of IFN-γ, granzyme B, and perforin in NK cells. When cancer cells are killed, 
cancer cell antigens and necrotic bodies are released in blood
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nocturnal acrophase, whereas T cytotoxic cells exhibit 
circadian oscillation with diurnal acrophase in heathy 
participants [75, 76]. However, in patients with lung can-
cer, except for T helper (Th) cells, all lymphocyte subsets 
reportedly loss circadian oscillation [75, 76]. Abnormal 
proportions and nocturnal variations of different lym-
phocyte subpopulations may alter the immune func-
tion of patients with NSCLC and destroy the interaction 
between accessory cells and lymphocyte subsets [77]. 
These observations may have implications if increasing 
the effect of tumor immunotherapy by enhancing the 
rhythmicity of tumor cell parameters is feasible.

Circadian clock regulates tumor immunity cycle
The circadian clock functions as a gate that controls 
many aspects of immune functions in relation to cancer, 
including cancer cell antigen release and presentation, 
priming and activation of effector immunity cells, traf-
ficking, and infiltration of immunity to tumors, and elim-
ination of cancer cells [78].

Circadian clock components initiate antigen presentation 
and T cell priming and activation
Tumor cells usually contain TAAs and tumor-specific 
antigens (TSAs). These antigens are released to the 
plasma during tumor cell death and are then captured 
by DCs and macrophages [16]. DCs, macrophages, and 
B cells are potent antigen-presenting cells (APCs) in the 
human body. When stimulated by antigens or inflamma-
tory cytokines, including IL-1β, TNF-α, TGF-β, imma-
ture DCs can differentiate into mature DCs and express 
MHC II molecules on their surface. Simultaneously, the 
expression levels of costimulatory molecules and adhe-
sion molecules are also significantly increased on their 
surface. Then, antigens are extracted from peripheral tis-
sues to prime and activate T cells. In addition, DCs can 
secrete IL-12, which makes T cells in TMEs differentiate 
into T helper (Th) cells to promote the elimination and 
growth inhibition of tumor cells [79].

Functional molecular clocks in DCs such as CLOCK, 
PER, and BMAL-1 show daily oscillations and indi-
cate that the host DCs are under circadian regulation 
[80]. Moreover, the expression of pro-inflammatory 
cytokines, co-stimulatory molecules, and MHC II in DCs 
are increased in Rev-Erbα- and Rev-Erbβ-deficient mice 
[81]. This indicates that Rev-Erbs negatively modulate 
development and activation of DCs and are important in 
antigen presentation [81]. These studies provide us with 
clues that, to some extent, clock genes can regulate the 
function of DCs; however, the extent of their impact and 
related mechanisms need to be further explored.

Macrophages, also known as TAMs, are one of the 
most abundant components of the TME. TAMs display 

a broad spectrum of activation states with distinctive 
phenotypes and functions [82]. In this broad spectrum 
of activation states, TAMs are categorized as two polar-
ized extremes, namely, the M1-like TAMs (or classically 
activated, pro-inflammatory/anti-tumoral) macrophages 
and the M2-like TAMs (or alternatively activated, anti-
inflammatory/pro-tumoral) [83]. M1-like TAMs, as 
central regulators of the complex TME, exert integrated 
effects to promote the recruitment and activation of T 
helper (Th) cells via the secretion a variety of cytokines 
[84, 85]. Furthermore, M1-like TAMs are involved in 
pathogen-associated molecular patterns (PAMPA), 
induce the maturation of APCs, and directly phagocytose 
cancer cells [86]. Macrophages have functional molecu-
lar clocks, as evidenced by the daily circadian oscillations 
in clock gene expression [80]. In a study, an M1-like pro-
inflammatory phenotype was observed in macrophages 
isolated from mice with relatively disrupted Per1 and 
Per2 clock genes [87]. Moreover, the complete deletion of 
Bmal1 in macrophage cells has been reported to directly 
result in a decrease production of the master antioxidant 
transcription factor NRF2, which diurnally modulates 
ROS in myeloid cells and decrease the production of the 
proinflammatory cytokine IL-1β [88]. This was due to 
the fact that Bmal1 modulates the expression levels of 
enhancer RNA to regulate time-dependent inflammatory 
responses following Toll-like receptor 4 (TLR4) expres-
sion [89]. The NF-κB family has a profound influence 
on immunity and inflammation in cancer and promotes 
oncogenesis. Furthermore, the clock gene CRY has been 
reported to directly influence inflammatory pathways 
by activating adenylyl cyclase [90]. Additionally, Rev-
Erbα, which is another circadian clock gene, enhances 
the mRNA levels of Cx3cr1 and MMP9 in mouse mac-
rophage by inhibiting the functions of distal enhancers, 
thereby establishing a macrophage-specific program of 
repression [91]. Thus, the activation state and modulation 
of cytokines, chemokines, ROS, miRNAs, and eRNAs in 
macrophages are directly or indirectly targeted by circa-
dian components. The global or T cell-specific deficiency 
in BMAL1 does not markedly impact the overall or sub-
set-specific oscillation of T cells [92, 93]. In contrast, 
mice with a dominant-negative expression of CLOCK, 
REV-ERBα, or RORα, reportedly have decreased num-
ber of Th17 cells in mice [94, 95]. RORγt is essential in 
the generation, differentiation, and survival of effector 
subsets of T cells, which possess antitumor properties 
through the production of the cytokines IL-17A, IL-
17F, GM-CSF, and IL-22 and the chemokine CCL20 in 
mammals [96–99]. Given the importance of Th17 cells 
in tumor immunity, the circadian clock components in 
Th17 cells may be promising targets against tumor cells. 
Although there is increasing research on how circadian 
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clock components affect antigen presentation and T cell 
priming and activation in tumor immunity, many other 
aspects need to be explored for further elucidation.

Circadian clock affects lymphocyte trafficking 
and infiltration in cancer
The trafficking and homing of lymphocytes play an 
anti-tumor role under the participation of adhesion 
chemokines and costimulatory molecules. Except for 
skin tissue, rhythmic oscillations in the expression of 
adhesion molecules in other peripheral tissues, includ-
ing intercellular adhesion molecule (ICAM) 1 (ICAM1) 
and 2 (ICAM2), and vascular cell adhesion molecule 1 
(VCAM1) have been observed. Interestingly, the homing 
and engraftment of leukemic cells in the leukemia cancer 
model is strongly time-of-day dependent in mice [100]. 
Further analysis indicated that the circadian clock gene 
Bmal1 regulates the expression of ICAM1 and VCAM1 
in endothelial cells or leukocyte subsets, respectively 
[100]. David et al., reported that the migration of T and 
B cells strongly exhibited oscillations in a non-continu-
ous manner in lymph nodes, rather than in the thymus 
and the bone marrow [101]. This phenomenon has been 
closely linked to the expression of CXCR4, CCL20, and 
Cx3cr1 and controlled by glucocorticoids, catechola-
mines, and hypoxia inducible factor 1α (HIF1α) signal-
ing pathway [102, 103]. As observed in mice with deleted 
Bmal1, T cells and B cells ablated oscillations, indicating 
that cell-autonomous clocks are pivotal for lymphocyte 
egress and are the critical factors of T and B cell migra-
tion [101]. CCL20, which is another cytokine, regu-
lates the homeostatic trafficking of Th17 cells, and are 
expressed in the small.

intestine according to the time of the day in wild-
type mice; the phenomenon was not observed in Clock-
mutated mice [104]. Chen et  al., reported that the core 
circadian gene Clock plays a critical role in the regula-
tion of tumor immunity through the transcriptional 
upregulation of OLFML3 in glioblastoma, which recruits 
immune-suppressive microglia into the tumor microen-
vironment [105]. Collectively, these studies suggest that 
the subset of lymphocyte trafficking is strongly under 
the control of cell-intrinsic circadian clock components. 
Therefore, it is vital to optimize the application of tumor 
immunotherapy.

As for the infiltration of lymphocytes in the TME, 
the circadian clock genes in kidney renal clear cell car-
cinoma, including Clock, Bmal1, and Cry1 have been 
positively correlated with a variety of immune cell infil-
trates, such as neutrophil cells, DCs, and CD4+ T cells, 
respectively [106]. A similar phenomenon was also 
observed in patients with thoracic cancer. CLOCK and 
BMAL1 have been closely associated with the infiltration 

level of CD8+ T cells [107]. Evidence indicates that com-
pared with the expression of BMAL1 in patients with 
healthy skin, the expression of BMAL1 in patients with 
melanoma is remarkably disrupted, which represents a 
dysfunctional circadian clock, and has been positively 
correlated with the infiltration/activation of T cells [108]. 
Existing literature indicated that approximately 15% of 
CD4+ T cells express RORγ in tumor-infiltrating lym-
phocytes [109]; however, these studies focus on the tran-
scriptional level of clock genes and therefore does not 
reflect integral changes. The mechanism by which circa-
dian clock modulates tumor immune infiltration remains 
to be explored.

Circadian clock components regulate the recognition 
and elimination of cancer cells
Circadian clock components can modulate cancer anti-
gen-specific T cells and NK cells to kill cancer cells. 
Immune escape is generally a negative prognostic factor 
and a predictor of immune checkpoint blockade response 
in various cancers. Effective immunotherapeutic strate-
gies have been employed this knowledge to treat cancers 
[110]. Recent researches have expanded our knowledge 
of the association between the circadian clock and 
immune escape. In metastatic melanomas, the expression 
of BMAL1 is responsible for T-cell activation/differen-
tiation markers, and T-cell exhaustion markers, CTLA4, 
PD-1, and PD-L1 [108]. Further analysis of the functional 
impact of circadian clock genes indicated that the cir-
cadian clock-enriched pathways are enriched in many 
immune-related pathways, including PD-L1 expression 
and PD-1 checkpoint pathway in cancer, T cell recep-
tor signaling pathway, and TNF signaling pathway; this 
corroborates that the circadian clock widely regulates 
the immunity of tumors [111]. Per1 and Cry2 which are 
two core circadian clock genes, have been linked to the 
expression of CD4+ T cells, and the expression of PD-1 
exhibited a robust circadian rhythm in normal lung tis-
sues [107]. Furthermore, when Rorγ is knocked down, 
the percentage of PD-1+ Type 17 cells, along with the lev-
els of PD-1 on individual cells is decreased [109]. These 
studies suggest that circadian clock genes are potential 
targets for tumor immunotherapy.

NK cells control the growth and metastasis of tumor 
cells via an array of activating or inhibitory surface 
receptors that recognize signs of stressed/pre-malig-
nant cells, including natural killer group 2, member 
D (NKG2D) and the natural cytotoxicity receptors 
(NCRs) [112, 113]. Unlike the T cells of adaptive immu-
nity, the activation of NK cells at tumor sites directly 
destroys malignant cells without prior sensitization. 
NK cells can secrete a number of cytokines and growth 
factors, including interferon-γ (IFN-γ), TNF-α, and 
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granulocyte–macrophage colony-stimulating factor 
(GM-CSF) to kill cancer cells. In rats, chronic shift-lag 
promotes the growth of lung cancer in rats mainly by 
altering the circadian rhythm of NK cells, along with 
cytokines, cytolytic factors, and cytotoxic factors [114]. 
In a study, when Per2 or Bmal1 was knocked down, the 
secretion of IFN-γ, granzyme B, and perforin in NK cells 
was significantly decreased [115].

Clock drugs for the immunotherapy of cancer
The rapid and complementary growth of research on the 
interaction between the circadian clock and the immu-
nity of cancers is raising new hope for the prevention and 
treatment of cancer. At present, the application of circa-
dian clock in tumor immunotherapy mainly includes two 
aspects: drug development for biological clock targets 
and chrono-immunotherapy.

LYC-53772 and LYC-54143, as potent RORγ synthetic 
agonists, can boost the differentiation of Th17 cells, block 
immunosuppression driven by Tregs and significantly 
elevate the level of secreted cytokines, including IL-17A, 
IL-17F, and GM-CSF, and IL-22, such that an anti-tumor 
activity is implicated [116]. In addition, when treated 
with RORγ agonists, T cells are reportedly resistant to 
PD-L1 inhibition, which is critical in suppressing anti-
tumor immunity [109]. Moreover, when added during 
ex  vivo expansion, RORγ agonists augment the tumor-
eliminating activity of cytotoxic Th17 cells and CAR-T 
cells, and the cytotoxic activity of human T cells, which 
can enable the regression of tumors in tumor-bearing 
mice [109]. Compared with the functions of RORγ ago-
nists-untreated cells, the function of CAR Type 17 cells 
was elevated when reactivated against a series of tumor 
cell lines expressing mesothelin and secreted more 
cytokines, including IL17A and IFNγ [117]. Conssist-
ent with a previous report, when co-infused TRP-1 Th17 
and pmel-1 Tc17 cells generated in vitro in the presence 
of the RORγ agonist, mice with melanoma tumors were 
protected for more than two months after tumor chal-
lenges of over three times, indicating that RORγ agonist-
primed cells possessed a stem-like memory phenotype 
and provided a long-term protection against tumor chal-
lenges [117]. Furthermore, the RORα synthetic agonist 
SR1078 was reported to remarkably increase CD8+ T 
cell effector responses to anticancer immunity role [118]. 
Doxorubicin, which is developed from a metabolite of 
the bacterium Streptomyces peucetius var. Caesius, is 
one of the commonly employed chemotherapeutic drugs 
for solid tumors [119]. In a recent study, when mice with 
Lewis lung carcinoma were treated with doxorubicin, 
they exhibited a significant alteration in the expression of 
F4/80 and CD11c in tumor tissues, and in the expression 
of circadian genes, including Bmal1, Clock, Rev-Erbα, and 

Per2 and NF-kB and IL-6 in intraperitoneal macrophages 
[120].

Experimental immunotherapies indicated that some 
anticancer treatments are expected to reduce drug toxic-
ity, improve tumor response rate and the duration of the 
response. As reported, interferon-β (IFN-β), pleiotropic 
cytokines significant for immune system regulation, 
exhibited more valid antitumor effect in early light phase 
of tumor-bearing mice than in early dark phase [121]. In 
a phase I_II clinical study, IL-2 chronotherapy that was 
employed to treat metastatic renal cell carcinoma showed 
moderate toxicity, feasibility in a standard care unit, and 
activity [122]. These results would be beneficial in apply-
ing carefully rationalized medical interventions for the 
modulation of the circadian clock components, which 
may be altered in tumors. However, chrono-immuno-
therapies are still at its initial stage of practice and further 
investigations of the mechanisms need to be exerted to 
improve the current anticancer.

Conclusion
The circadian clock and immunity modulate major pro-
cess in mammalian physiology and have been heav-
ily studies. Increasing evidence indicates that they can 
interact with each other through various process in both 
healthy and pathological states. Tumors and their sur-
rounding can be considered highly complex organs such 
as, immune cells play an important role in the recogni-
tion, death, or maintenance of tumors. Thus, a better 
understanding of the crosstalk between the circadian 
clock and cancer-immunity cycle would help in the 
development of effective immunotherapies for cancer.
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