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Abstract

To study viral evolutionary processes within patients, mathematical models have been

instrumental. Yet, the need for stochastic simulations of minority mutant dynamics can pose

computational challenges, especially in heterogeneous systems where very large and very

small sub-populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm

to simulate mutant evolution in large viral populations, such as acute HIV-1 infection, and

further include the multiple infection of cells. We demonstrate that the hybrid method can

approximate the fully stochastic dynamics with sufficient accuracy at a fraction of the

computational time, and quantify evolutionary end points that cannot be expressed by deter-

ministic models, such as the mutant distribution or the probability of mutant existence at a

given infected cell population size. We apply this method to study the role of multiple infec-

tion and intracellular interactions among different virus strains (such as complementation

and interference) for mutant evolution. Multiple infection is predicted to increase the number

of mutants at a given infected cell population size, due to a larger number of infection events.

We further find that viral complementation can significantly enhance the spread of disadvan-

tageous mutants, but only in select circumstances: it requires the occurrence of direct cell-

to-cell transmission through virological synapses, as well as a substantial fitness disadvan-

tage of the mutant, most likely corresponding to defective virus particles. This, however,

likely has strong biological consequences because defective viruses can carry genetic

diversity that can be incorporated into functional virus genomes via recombination. Through

this mechanism, synaptic transmission in HIV might promote virus evolvability.

Author summary

The evolution of human immunodeficiency virus within patients is an important part of

the disease process. In particular, the presence of mutants that are resistant against anti-

viral drugs can result in challenges to the long-term control of the infection. To study
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disease progression, computer simulations have been useful. However, in some cases

these simulations can be difficult because of the complexity of the model. Here, we use a

computational complexity reducing algorithm to simulate mutant dynamics in large pop-

ulations, which can approximate the full model at a fraction of the time. The use of this

algorithm allows us to study different transmission methods, viral processes that occur

between virus strains within individual cells, and important quantities such as the mutant

distribution or the probability of mutant existence at a given infected cell population size.

We find that the direct synaptic cell-to-cell transmission of the virus through virological

synapses can have strong biological consequences because it can promote potentially

defective viruses that carry genetic diversity which can be incorporated into functional

virus genomes during infection. Through this process, synaptic transmission in human

immunodeficiency virus might promote virus evolvability.

1 Introduction

The evolution of HIV-1 within patients is an important determinant of the disease process and

of treatment outcomes [1–3]. Evolutionary changes in the virus population over time are

thought to contribute to the progression of the infection from the asymptomatic phase towards

AIDS [1], involving the evolution of immune escape as well as evolution towards faster replica-

tion, increased cytopathicity, and broader cell tropism [1]. The emergence of mutants that are

resistant against anti-viral drugs can result in challenges to the long-term control of the infec-

tion. While viral evolution is important throughout the course of the disease, extensive virus

replication towards relatively high viral loads during the acute phase of the infection presents

ample opportunity for the generation of viral mutants that might influence post-acute setpoint

virus load, the subsequent disease course, and the response to treatment [4].

Mathematical models have played a key role in defining the principles of within-host

dynamics and evolution of HIV [5–13]. During the acute phase of the infection, however, the

number of virus-infected cells can reach very large numbers [14, 15], while some sub-popula-

tions of importance may be very small, which presents computational problems. Mutant evo-

lution can be driven by stochastic effects, because mutant viruses initially exist at low

population sizes, even though the wild-type population can be very large. Stochastic simula-

tions of the viral evolutionary dynamics thus become computationally costly if the overall viral

population size is large. To get around this, models can assume unrealistically low population

sizes of infected cells, together with unrealistically large mutation rates, in the hope that the

effects observed in such models scale up to more realistic population sizes and lower mutation

rates. The accuracy of such explorations, however, is unclear. Alternatively, deterministic

models in the form of ordinary differential equations (ODEs) can be used to approximate the

average number of mutants over time as the virus population grows. The disadvantage of this

approach is that other important evolutionary measures, such as the number of mutants at a

given infected cell population size or the time of mutant generation, are not clearly defined in

ODEs. Furthermore, the distribution of mutants at a given time or at a given infected cell pop-

ulation size cannot be determined with ODEs.

An interesting aspect that can influence the viral evolutionary dynamics, especially at large

population sizes [16], is the multiple infection of cells [17–20]. Multiple infection has been

documented to occur with HIV both in vitro [21, 22] and in vivo from human tissue samples

[23]. Multiple infection is especially promoted by direct cell-to-cell transmission of the virus

through virological synapses [24–27]. In this process multiple viruses are likely transferred
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from the source cell to the target cell (this is in contrast to free virus transmission, where off-

spring virus is released into the extracellular environment, typically leading to the infection of

the target cell with a single virus). The process of synaptic transmission has been well docu-

mented experimentally [24, 25], and experiments with humanized mice indicate the impor-

tance of this process in vivo [23]. As the virus grows to high levels, minority populations of

multiply infected cells, which can be governed by stochastic effects, coexist with a much larger

population of singly infected cells, which is again a computationally challenging situation.

Interesting evolutionary dynamics can occur as a result of multiply infected cells, especially if

different virus strains are present in the same cell. A disadvantageous mutant can gain fitness

through complementation [28], and an advantageous mutant might experience fitness reduc-

tion due to interference by the wild-type virus [29]. Recombination can be another evolution-

ary consequence of multiple infection [16, 17, 30, 31].

In this paper, we present a computational study of the evolutionary dynamics of an in vivo

virus infection model that contains both small and large populations simultaneously, where

stochastic fluctuations of minority mutant populations can determine the end result of the sys-

tem and the evolutionary potential of an infection. In classical fully stochastic algorithms like

Gillespie’s method, the average time step decreases as the population size increases [32], and

therefore in order to calculate different important evolutionary measures, we turn to a hybrid

stochastic-deterministic algorithm that is based on our previous work, applied to a different

system in the field of mathematical oncology [33]. This algorithm was specifically developed to

handle large population dynamic models where very small (e.g. rare mutants) and very large

populations co-exist and interact. This algorithm has the advantage of intuitive transparency

and computational efficiency.

We take advantage of the power of this algorithm to explore questions about evolutionary

dynamics of HIV, especially in the context of multiple viral infection, and the different infec-

tion pathways (free-virus vs synaptic transmission). This includes an analysis of how intracel-

lular interactions among viruses, such as complementation and interference, can influence

evolutionary trajectories. In this context, special emphasis is placed on the direct cell-to-cell

transmission of HIV through virological synapses [24–27], because it has been shown that syn-

aptic transmission not only promotes multiple infection, but can promote the repeated co-

transmission of genetically distinct virus strains from one cell to the next. This in turn can

enhance the potential of complementation and interference to impact mutant spread. In this

paper, we do not focus on recombination processes, which were analyzed in a previous paper

[31].

This paper makes two contributions: (i) We describe a stochastic-deterministic hybrid

method, which allows us to simulate the evolutionary dynamics of viruses at large population

sizes (but in the presence of small subpopulations of evolutionary importance), including the

possibility of multiple infection of cells. (ii) We apply this methodology to investigate the effect

of multiple infection on mutant evolution during acute HIV infection. The paper starts by

describing the basic mathematical model under consideration. This is followed by a descrip-

tion of the stochastic-deterministic hybrid methodology and a comparison of simulation

results to both fully stochastic simulations and ODEs. Finally, we apply the hybrid methodol-

ogy to study viral evolutionary dynamics during acute HIV infection, in the presence and

absence of multiple infection, focusing on the role of viral complementation and interference.

This work has relevance beyond HIV, because multiple infection and intracellular interactions

(such as complementation and interference) can occur in other viruses, such as bacteriophages

[29, 34]. Therefore, beyond parameter combinations that are relevant to HIV, we also explore

wider parameter sets for broader relevance.
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2 Methods

2.1 Mathematical model description: One viral strain

We begin with a deterministic model for HIV-1 infection, which includes both free virus

transmission and synaptic cell-to-cell transmission [7]. We assume that cells are sufficiently

well-mixed, such that relative spatial locations of cells do not play a significant role in the

dynamics. To include the possibility of multiple infection, we let xi(t) represent the number of

cells infected with i copies of the virus at time t, where i ranges from 0 (uninfected cells) to N
(cells infected with N viruses). Descriptions of the model parameters can be found in Table 1.

With only one viral strain, the ODE model (in its simplest formulation) is

_x0 ¼ l � bZx0 � gZx0 � dx0; ð1Þ

_xi ¼ bZðxi� 1 � xiÞ � gZxi � axi; if 0 < i < S; ð2Þ

_xi ¼ bZðxi� 1 � xiÞ þ gZðxi� S � xiÞ � axi; if S � i � N � S; ð3Þ

_xi ¼ bZðxi� 1 � xiÞ þ gZxi� S � axi; if N � S < i < N; ð4Þ

_xN ¼ bZxN� 1 þ gZxN� S � axN ; ð5Þ

where the number of infected cells is defined as

ZðtÞ ¼
XN

i¼1

xiðtÞ: ð6Þ

We assume that N, the maximum multiplicity of infection, is large enough to not result in a

significant amount of cells near the end of the infection cascade. In the above equations, cell

free virus transmission happens at rate β, and synaptic transmission (whereby S viruses are

transmitted from a donor cell to a target cell) at rate γ. Terms containing β represents the rate

at which a cell of type xi (with 0� i< N) can become (super)-infected by means of free-virus

Table 1. Description of model parameters and units (if applicable).

Notation Description Units (if applicable)

λ production rate of uninfected cells days−1

β rate of free virus transmission days−1

γ rate of synaptic cell-to-cell transmission days−1

d death rate of uninfected cells days−1

a death rate of infected cells days−1

x0(t) number of uninfected cells at time t cell numbers

xi(t) number of cells infected with i copies of the virus at time t cell numbers

Z(t) sum of all infected populations at time t, ZðtÞ ¼
PN

i¼1
xiðtÞ cell numbers

Zi(t) sum of fraction of subpopulations infected with ith strain cell numbers

M hybrid algorithm size threshold cell numbers

N maximum infection multiplicity virus numbers

S number of viruses transferred per synapse virus numbers

μ mutation rate NA

Fi fitness of the ith strain NA

https://doi.org/10.1371/journal.pcbi.1009713.t001
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transmission, at a rate proportional to Z, which comprises all subpopulations infected with 1,

2, . . . copies of virus. It is assumed that in quasi-steady state the number of free viruses is pro-

portional to the total population size of infected cells, Z (see Section 1.2 of S1 Text for details).

As a result, a cell of type xi becomes a cell of type xi+1. Mathematically, the process of synaptic

transmission is similar, except that free virus transmission involves the entry of one virus into

the target cells, while multiple viruses (e.g. S viruses) can enter the target cell simultaneously

during synaptic transmission. Therefore, synaptic infection (terms multiplying γ) result in a

cell of type xi becoming a cell of type xi+S; see the next section for for a more general model.

This model has a virus free steady state,

x0 ¼
l

d
; Z ¼ 0; ð7Þ

and an infection steady state,

x0 ¼
a

bþ g
; Z ¼

l

a
�

d
bþ g

: ð8Þ

The stability of these steady states depends on the basic reproductive ratio, R0 ¼
lðbþgÞ

ad . If R0 <

1, the virus free steady state is stable and if R0 > 1 then the infection steady state is stable.

Therefore, when considering the total virus population, the properties of this model are identi-

cal to those in standard virus dynamics models [5, 7].

2.2 Mathematical model with multiple viral strains

This model can be adapted to describe competition among different virus strains, and muta-

tional processes that give rise to mutant viral strains, thus allowing us to study the evolutionary

dynamics of the virus.

For neutral mutants, the rate of virus transmission from a multiply infected cells is propor-

tional to the fraction of the virus strain in the infected cell. For advantageous or disadvanta-

geous mutants, this also applies. Fitness differences are modeled by modifying the probability

of the virus strain that has been chosen for infection to successfully enter the new target cell

(note that the basic formulation (1–5) assumes that viruses are 100% successful in infecting the

target cell). For example, a disadvantageous mutant is assumed to have an increased probabil-

ity that successful infection fails. Hence, fitness differences are expressed at the level of entry

into the new target cells. Mutations are assumed to occur during the infection process, corre-

sponding to mutations that occur during reverse transcription in HIV infection. We refer to

“mutants” as virus strains with a specific characteristic, such as a drug-resistant virus strain, an

immune escape strain, or another specific phenotype. We refer to the virus population that

does not share this characteristic as the non-mutant or wild-type population, even though

RNA virus populations tend to exist as a quasi-species, due to reduced replication fidelity [35].

Next we derive the ODEs describing virus dynamics in the presence of multiple strains.

Assume that we have two strains, the wild-type and mutant. In order to model synaptic

transmission with multiple strains and fitness considerations, we start by considering an

infecting cell that contains n wild-type viruses and m mutant viruses, where 0< n + m� N.

We denote the fitness of the wild-type as F1 and fitness of mutant as F2, where these parameters

have the meaning of the probability of successful infection, i.e. 0� F1, F2� 1. Here F2 could

be smaller (disadvantageous mutant), equal (neutral mutant), or larger (advantageous mutant)

than F1. Let us denote the fraction of wild-type and mutant viruses as

n ¼
n

nþm
; c ¼

m
nþm

;
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respectively. Synaptic transmission is modeled as follows. We fix the number of viruses that

are picked up for a synaptic transmission event, S = 3 (free virus transmission is similar, only

with S = 1) [36]. Then, the following procedure is repeated S times: a virus is selected from the

infecting cell with the probability equal to its abundance in the cell (that is, wild-type viruses

are picked with probability ν and mutants with probability ψ). Each virus that is picked will

proceed to infect the target cell successfully with the probability given by its fitness (that is, F1

for the wild-type and F2 for the mutant). Each “pick” can result in three possibilities:

1. A wild-type virus will go on to be successful in infecting the target cell; this happens with

probability p1 = νF1. We denote that by � below.

2. A mutant virus will go on to be successful in infecting the target cell; this happens with

probability p2 = ψF2. We denote that by X below.

3. An unsuccessful infection event, which happens with probability p3 = ν(1 − F1) + ψ(1 − F2).

We denote that by 0 below.

Therefore, under S = 3, a single synaptic transmission event can result in ten different infec-

tion events. Four of them {� � �, ��X, �XX, XXX} result in an infection of the target cell with

all S = 3 viruses (and these are the only events if F1 = F2 = 1). The other six events {��0, �X0,

XX0, �00, X00, 000} result in an infection event with fewer than S viruses. The probabilities of

these events can be calculated by using multinomial distributions. In particular, given that the

infecting cell is characterized by (n, m), the probability of an event where ŝ1 wild-type viruses

and ŝ2 mutant viruses go on to successfully infect the target cell is given by

Pn;mðŝ1; ŝ2Þ ¼
S!

ŝ1!̂s2!ðS � ŝ1 � ŝ2Þ!
pŝ1

1 p
ŝ2
2 p

S� ŝ1 � ŝ2
3 : ð9Þ

Note the following special cases. If the target cell has n = 0 (that is, it is only infected by the

mutant), then ψ = 1 and p2 = F2. The only event with S successful infections is XXX and it hap-

pens with probability FS
2
. On the other hand, if m = 0, we have event � � � with probability FS

1
.

In other words, fitness properties of viruses are not erased if they are in cells that are not coin-

fected with both virus strains.

Next, we include the process of mutations. We assume that a virus can mutate upon enter-

ing the target cell, such that the process of mutation does not affect the success of infection. As

there are only two strains, denote the probability that a wild-type virus mutates by μ and the

probability that a mutant back-mutates to revert to a wild-type also by μ. Let us suppose that a

synaptic transmission event involves ŝ1 wild-type and ŝ2 mutant viruses, and consider the

probability that upon entering the cell, we have î wild-type and ĵ mutant viruses, where the

change is due to mutations. We denote this probability as Qŝ1 ;̂i ;̂j (note that ŝ1 þ ŝ2 ¼ î þ ĵ).

Suppose â out of ŝ1 wild-type viruses mutate and b̂ out of ŝ2 viruses back-mutate. Then the

number of (wild-type, mutant) viruses is ðŝ1 � â þ b̂; ŝ2 � b̂ þ âÞ ¼ ð̂i; ĵÞ. Setting

â ¼ ŝ1 � î þ b̂, we obtain

Qŝ1;̂i ;̂j ¼
Xŝ2

b̂¼0

ŝ1!

â!ðŝ1 � âÞ!
mâð1 � mÞ

ŝ1 � â ŝ2!

b̂!ðŝ2 � b̂Þ!
mb̂ð1 � mÞ

ŝ2 � b̂ : ð10Þ
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For the general case when any number of viruses up to general S can be transmitted success-

fully by synaptic transmission, we have that the full model with two virus strains is

_x0;0 ¼ l � bx0;0ðZ1 þ Z2Þ � gx0;0

�
X

îþĵ�S

X

0<nþm�N

Xîþĵ

ŝ1¼0

Pn;mðŝ1; î þ ĵ � ŝ1Þxn;m

�

� dx0;0; ð11Þ

_xi;j ¼ b

�

ðð1 � mÞZ1 þ mZ2Þxi� 1;j þ ðmZ1 þ ð1 � mÞZ2Þxi;j� 1 � ðZ1 þ Z2Þxi;j

�

þ g

�
X

îþĵ�S

X

0<nþm�N

Xîþĵ

ŝ1¼0

Pn;mðŝ1; î þ ĵ � ŝ1ÞQŝ1 ;̂i ;̂j xn;mðxi� î ;j� ĵ � xi;jÞ
�

� axi;j;
ð12Þ

where Z1 ¼ F1

P
0<iþj�N

i
iþj and Z2 ¼ F2

P
0<iþj�N

j
iþj, and with the appropriate adjustments that

any population with a negative index is 0 and cells cannot be infected with more than N total

copies of virus. Note that in the case of only free virus transmission (γ = 0), the fitness parame-

ters can be interpreted as factors that modulate the rate of infection β. A system with more

virus strains can easily be created as a generalization of this.

The number of equations per model where mutation can happen at k independent locations

is 2� kðN þ 1Þ Nþ2k

2k � 1

� �
. To see this, we note that there are 2k virus strains. The number of ways to

distribute j viral copies into the 2k strains is
jþ2k � 1

2k � 1

� �
. Since we allow j 2 0, . . ., N, we have

PN
j¼0

jþ2k � 1

2k � 1

� �
¼ 2� kðN þ 1Þ Nþ2k

2k � 1

� �
¼ Nþ2k

2k

� �
.

If we let x0 denote the number of uninfected cells and Z denote the sum of all infected cell

subpopulations, we have that this generalized model again has a virus free steady state, Eq (7),

and an infection steady state, which instead of Eq (8) is now given by

x0 ¼
a

bF þ gð1 � ð1 � FÞSÞ
; ð13Þ

Z ¼
l

a
�

d
bF þ gð1 � ð1 � FÞSÞ

: ð14Þ

The stability of these steady states depends on the basic reproductive ratio, R0 ¼
lðbFþgð1� ð1� FÞSÞÞ

ad .

Again we have that if R0 < 1 the virus free steady state is stable and if R0 > 1 then the infection

steady state is stable.

In computer simulations, we will concentrate on parameters that are relevant for acute HIV

infection, characterized by a basic reproductive ratio R0 = 8. The assumed model parameters

are based on the literature and explained in S1 Text Section 1.1. Since the model is applicable

to viruses other than HIV, we also vary parameters more broadly to investigate dynamics for

lower values of R0, where we expect to see larger effects of stochasticity.

2.3 Hybrid algorithm

Here, we describe a stochastic-deterministic hybrid algorithm that simulates the dynamics of

small mutant populations and small populations of multiply infected cells stochastically, while

describing the majority populations deterministically. This allows us to run computationally

efficient simulations of viral evolutionary processes at large population sizes, without losing

the effects arising from the stochastic dynamics of minority subpopulations.
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This methodology is based on our previous work in the context of tumor cell evolution

[33], which in turn is related to work in the field of chemical kinetics [37–39]. Recently, and

especially in the field of physical chemistry, many innovative computational algorithms have

been developed to simulate stochastic systems, which can result in significant speed improve-

ments and other advantages compared to the basic Gillespie algorithm [32]. Such methods

include the next reaction method and tau-leaping methods (or adaptive tau-leaping methods,

which features an adaptive step size) [40], which can potentially provide a large computational

advantage over the Gillespie method by taking much larger steps in time while still capturing

important stochastic effects by assessing how many times each stochastic reaction “fires” in the

relevant time interval. However, the existence of both small and large populations of impor-

tance (and/or when the reaction propensities are highly dynamic and change quickly) gener-

ally implies that methods such as tau-leaping will be inefficient [41]. Furthermore, when

different populations and reaction propensities differ over several orders of magnitude, mea-

suring how many times a reaction “fires” in a given interval is somewhat counterintuitive. To

this end, there has also been a focus on the development of novel hybrid stochastic-determin-

istic approaches, including many different multi-scale methods that are designed to simulate

systems that contain different time, size, and spatial scales [41–49].

Much important work has also been done on the mathematical properties and analysis of

stochastic multi-scale models, including in [43, 50–52]. In particular, [50] provides detailed

mathematical justification and motivation for the use of stochastic continuous-time Markov

chains in simulating chemical networks, as well as analytic approaches for model approxima-

tion/reduction techniques for complex systems. Ref. [43] provides a theoretical foundation for

a class of stochastic models, specifically where some populations and/or reaction propensities

vary in size over several orders of magnitude. One such example is the use of a pre-existing

model of a cell’s viral infection to demonstrate the power of model dimensionality reduction

techniques for mathematically analyzing complex networks. Specifically, a combination of

averaging and law of large number arguments is used on the viral dynamics model (which

overall has three populations and six stochastic reactions) to 1) show that the “slow” compo-

nent of the model can be approximated by a deterministic equation, 2) characterize the asymp-

totic distribution of the “fast” components, and 3) derive important quantities such as the

probability a single virus successfully infects a cell and the expected time until the establish-

ment of an infection. These such arguments explicitly provide theoretical justification for the

identification of different scales in multi-scale analysis of stochastic models.

While similar model reduction approaches and algorithms are often used in the field of

physical chemistry, they are less common in the fields of population dynamics and evolution,

as they can rely on theoretical physical concepts such as Langevin’s equation. In this paper, we

choose to implement the hybrid methodology described in [33], which partitions the system

into a large and small component through the use of an explicit size threshold. This is because

our evolutionary system under consideration contains a large overall population size and

number of reactions, random and rare mutation events, and the simultaneous existence of

both large and small populations of importance. The use of the hybrid method allows us to run

computer simulations of the system at a reasonable computational expense.

Our hybrid algorithm is based on the idea that if a cell population is sufficiently large, an

ODE representation can provide a good approximation of most stochastic trajectories of the

population. We can write the ODE system as a single vector equation d V/dt = F(V), where V

is a vector that contains all the cell subpopulations. Let M be a given population size threshold,

that applies to all subpopulations. We classify each cell population xi as small at time t if

xiðtÞ < M, or large otherwise. The classification of small versus large populations is re-

checked at every step in the algorithm. We simulate the small populations stochastically using
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the Gillespie algorithm and use the ODEs for the large populations. Further details of the

hybrid method are given in S1 Text Section 2.

2.3.1 Implementation. The size threshold M is a very important parameter in the hybrid

algorithm. If M ¼ 0, then at each time point every non-zero population is classified as large

and the hybrid algorithm is identical to the deterministic solution of the ODEs. If M is very

large, that is larger than all populations for the duration of the time-span of interest, then the

hybrid algorithm is the same as the completely stochastic Gillespie simulation of the model

and can be extremely computationally inefficient. For intermediate M > 0, the hybrid algo-

rithm is computationally efficient and the averages over many hybrid simulations go from

approximating the deterministic predictions to converging to the stochastic averages as M
increases. Therefore, in order to efficiently approximate the completely stochastic implementa-

tion of the model, we need to choose an intermediate M such that the results are close to the

fully stochastic implementation.

We can achieve this by comparing the hybrid averages over many simulations to completely

stochastic averages over many simulations for simplified models, such as assuming a constant

large number of uninfected cells or using parameter values that result in smaller and more

computationally manageable population sizes. For these models, completely stochastic simula-

tions can be carried out and allow us to determine what size threshold M is reasonable for the

related models. Specifically, since the averages over many hybrid simulations start from the

deterministic prediction (M ¼ 0) and converge to the completely stochastic average, similarly

to [33] we i) set some difference threshold ε> 0, ii) test multiple size thresholds M, and iii)

choose the smallest M such that the hybrid average is within ε of the completely stochastic

average for the relevant mutant strains and/or subpopulations.

Table 2 contains approximate computer simulation run times for the completely determin-

istic ODE system, the hybrid method, and the completely stochastic Gillespie algorithm (for

comparison with the tau-leaping method, see Section 2.4 of S1 Text). Each system is run for

the single mutation, double mutation, and triple mutation models. All simulations include

only free virus transmission with limited multiple infection (N = 3), represent established

infections only (we ignore stochastic simulations in which the infection dies out), and are

stopped once the infected cell population reaches 108 cells. The times for the ODE and hybrid

simulations also depend on the ODE solution method and the step size, h (here h = 10−5 with

Table 2. Approximate average run times for a single simulation for the completely deterministic ODE system

(Euler method with step-size h = 10−5), the hybrid method with different threshold values (M), and the

completely stochastic Gillespie algorithm (rows). Each system is run for the single mutation, double mutation,

and triple mutation models (columns). In each system we assume all strains are neutral (Fi = 1 for all i). The other

parameters are N = 3, μ = 3 × 10−5, λ = 1.59 × 107, β = 3.60 × 10−9, γ = 0, d = 0.016, and a = 0.45.

Model single mutation

k = 1

2 strains, 10 equations

double mutation

k = 2

4 strains, 35 equations

triple mutation

k = 3

8 strains, 165 equations

Full ODEs < 1 second 4 seconds 12 minutes

Hybrid, M ¼ 10 < 1 second 4 seconds 13 minutes

Hybrid, M ¼ 103 < 1 second 4 seconds 13 minutes

Hybrid, M ¼ 105 < 1 second 6 seconds 15 minutes

Hybrid, M ¼ 107 1 minute 7 minutes 30 hours

Full Gillespie 12 minutes 100 minutes 1 week

https://doi.org/10.1371/journal.pcbi.1009713.t002
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Euler method). In general, with k possible mutations, the number of strains per model is 2k

and the number of equations (subpopulations) per model is Nþ2k

2k

� �
.

Because the parameters chosen for the simulations in Table 2 correspond to R0 = 8, a rela-

tively small size threshold M gives a good approximation of the fully stochastic simulations.

Simulations with lower R0 require higher values of M and hence take longer to run.

2.3.2 Choosing a size threshold M. We have developed an analytical method for finding

a lower bound on size threshold M, which is based on the notion of R0. This method does not

depend on the number of mutations, infection multiplicity, fitness landscape, etc. The basic

reproductive ratio, R0, is the average number of newly infected cells generated per single

infected cell at the beginning of the infection. Therefore, infections with larger R0 will lead to

quicker and more successful growth of the overall virus population. While in a deterministic

system, infections with R0 > 1 will never go extinct, in the stochastic setting, even if R0 > 1, a

single infected cell can die out before successfully infecting other cells. The rate at which infec-

tions stochastically go extinct is given by 1

R0
[53, 54]; in other words, infection will successfully

spread with probability F1 = 1 − 1/R0. Moreover, one can show that an infection will increase

until size K (before possibly going extinct) with probability

FK ¼

1 �
1

R0

1 �
1

R0

� �K : ð15Þ

Setting the size-threshold to a given value M essentially means that we assume that a popula-

tion that has reached that size will no longer go extinct, because its subsequent dynamics are

described by ODEs. Let δ> 0 be some small difference threshold. We define the lower bound

size threshold, M̂, as the smallest natural number M such that

jFM � F1j < d;

which gives the estimate

M̂ ¼ dln 1þ
R0 � 1

dR0

� �

=ln R0e; ð16Þ

where d.e denotes the ceiling function. Note that M̂ is a lower bound, and the calculation

above is based only on the dynamics of the wild type strain, without taking into account any

information on the mutant parameters. Therefore, depending on the details of the model

(such as the number and type of mutant strains), it is possible that a larger M is needed to get

accurate descriptions of mutant dynamics. In general, we can always confirm that a chosen M
is large enough using the ε test described in the preceding section and in [33].

3 Results

3.1 Comparing and contrasting ODE versus stochastic / hybrid simulations

ODE (deterministic) and stochastic modeling approaches have their advantages and disadvan-

tages. ODE modeling is very intuitive and provides excellent insights into viral dynamics,

including the expected mean trajectories of wild type and mutant population sizes. Stochastic

models are much harder to implement, slow to run (thus we developed our hybrid method),

but they contain more information about evolutionary dynamics. In particular, stochastic

modeling allows studies of distributions (such as mutant number distributions and the
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distribution of generation times). Also, stochastic models can describe the number of mutants

at a given population size, or the time of mutant generation, which are not clearly defined in

the continuous ODEs. In particular, if we determine the number of mutants in ODE simula-

tions once the infected cell population size in the ODE has reached a threshold N (say, at time

tN), we are effectively determining the average number of mutants over different stochastic tra-

jectories, which all correspond to different infected cell population sizes. This is because at

time tN, while the average number of infected cells reaches size N, for some stochastic realiza-

tions, this number at that time will be lower and for others, higher than N.

To underline these points, in this section we compare ODE predictions to outputs from the

stochastic simulations, in the context of the evolution of neutral, advantageous, and disadvan-

tageous mutants. Here we focus on relatively simple scenarios, considering the exponential

growth phase of the virus population and only including free virus transmission; synaptic

transmission and infection peak dynamics are studied in the next section. While parameter

sets explored here are relevant to HIV, we also include broader parameter sets for comparison,

especially those where the basic reproductive ratio is lower. In these regimes, the dynamics are

governed by stochasticity to a larger extent.

3.1.1 The average number of mutants at a given infected cell population size. We start

by determining the average number of neutral mutants once the number of infected cells has

reached a threshold size in the purely stochastic process (we discard simulations in which the

infection goes extinct stochastically before reaching the threshold size). We then compare this

to the number of mutants predicted by the ODE at the time when the average infected cell

population size is the same threshold. To be able to run fully stochastic simulations, we deter-

mine the number of mutants at a relatively low infected cell population size of 104.

Fig 1A shows the results for a neutral mutant, assuming different values for the basic repro-

ductive ratio of the virus, R0. The lower the value of R0, the higher the discrepancy between the

Fig 1. Comparison of the deterministic prediction and stochastic average of the number of cells infected with the mutant with free

virus transmission only. The deterministic predictions are in blue and the stochastic hybrid simulations with M ¼ 104 (infected

populations always treated completely stochastically) are in yellow. Standard error bars are included in the main panel (sometimes too small

to see) and the inserts show standard deviation bars. A Neutral mutant, Fmutant = 0.9. Each yellow dot represents the average taken over at

least 2 × 106 simulations. B Advantageous mutant with 10% advantage, Fmutant = 0.99. Each yellow dot represents the average taken over at

least 1.1 × 103 simulations. C Disadvantageous mutant with 10% disadvantage, Fmutant = 0.81. Each yellow dot represents the average taken

over at least 3.5 × 106 simulations. We have R0 ¼
lðbFþgð1� ð1� FÞSÞÞ

ad , and the parameters are Fwild-type = 0.9, N = 3, μ = 3 × 10−5, λ = 1.59 × 107, β
= 4 × 10−9, γ = 0, and d = 0.016. The infected cell death rate a is adjusted to achieve the required R0.

https://doi.org/10.1371/journal.pcbi.1009713.g001
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average of the stochastic simulations and the ODE results. For R0 = 8, which is characteristic of

HIV infection [55, 56], the discrepancy is minimal. The reason is that for relatively large values

of R0, the variation of the infected cell population size at a given time is reduced. Fig 1B and 1C

show equivalent plots for advantageous and disadvantageous mutants, respectively. Again, the

extent of the discrepancies increases with lower values of R0. Discrepancies tend to be larger

than for neutral mutants, and are apparent even for higher values of R0 (e.g. R0 = 8).

While ODEs cannot accurately describe the average behavior of the stochastic model, the

hybrid method (with a sufficient size threshold) is able to do so, as is demonstrated in S6A Fig.

3.1.2 The timing of mutant emergence. Another important measure is the time at which

the first copy of a given mutant is generated, and the infected cell population size at which this

mutant is generated. The closest measure in the ODE is the the time and infected cell popula-

tion size at which the average number of mutants crosses unity. As shown in S5 Fig, however,

significant discrepancies exist between this ODE measure and the accurate prediction of sto-

chastic simulations, and this discrepancy increases with a larger number of mutation events

required to generate this mutant (i.e. 1-hit, 2-hit. 3-hit mutants etc). The hybrid method, how-

ever, provides an accurate approximation (S6B Fig).

3.1.3 Probability distributions of mutant numbers. The probability distribution of the

number of mutants at a given infected cell population size, or at a given time, is a measure that

has no equivalent in ODEs, yet these measures have strong biological relevance. For example,

it is important to understand the likelihood that certain mutants exist at various stages during

virus growth, such as virus strains resistant against one or more drugs or against one or more

immune cell clones. The hybrid method provides a good approximation of the results from

stochastic simulations, as shown in S3 Fig. This also applies to simulations that assume rela-

tively low values of R0 (S4 Fig), although larger size thresholds M are required for smaller val-

ues of R0.

3.2 Impact of multiple infection on mutant evolution

In this section, we apply the above-described hybrid method to explore how multiple infection

can affect virus evolution during an exponential growth phase and near the peak infection,

with particular relevance to the acute phase of HIV infection, during which the infected cell

population grows to large sizes. Multiple infection can influence viral evolution in a variety of

ways. On a basic level, the ability of viruses to enter cells that are already infected increases the

target cell population and allows the virus to undergo more reverse transcription events, thus

increasing the effective rate at which mutations are generated. In addition, viral fitness can be

altered in multiply infected cells through viral complementation or inhibition [28], which

again has the potential to influence the evolutionary dynamics. In the context of HIV infection,

direct cell-to-cell transmission through virological synapses (synaptic transmission) increases

the complexity of these processes. Synaptic transmission typically results in the transfer of

multiple viruses from the source cell to the target cell, thus increasing the level of multiple

infection [24–27]. In addition, synaptic transmission can lead to the repeated co-transmission

of different virus strains [21, 23] which can amplify the effect of viral complementation or inhi-

bition. To explore these dynamics, the hybrid method is important because multiple infection

becomes increasingly prevalent at large population sizes, where both mutant viruses and multi-

ply infected cells exist as relatively small populations compared to the larger populations of

wild-type viruses and singly infected cells. We will focus on basic evolutionary processes that

do not involve recombination.

3.2.1 The effect of multiple infection on the spread of neutral mutants. We start with

the most basic scenario: the effect of multiple infection on the presence of neutral mutants
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during the growth phase of the virus. For simplicity, we concentrate on free virus transmission

only. Because this analysis is done with HIV in mind, we set R0 = 8. S9 Fig as well as Fig 2

show histograms of cells infected with neutral single and double mutants in the presence and

absence of multiple infection. S9 Fig shows that at relatively low virus loads, the average num-

ber of mutants is the same, whether multiple infection is assumed to occur or not. At larger

population sizes that are close to peak virus load, however, we observe a pronounced differ-

ence, Fig 2. In these simulations, we recorded the number of mutants at 6 × 108 infected cells,

as it is close to the peak and almost all stochastic simulations reached this threshold. We can

see that multiple infection results in a 2-fold or larger increase in the average number of

mutants, both for single-hit (Fig 2A) and double-hit mutants (Fig 2B). The reason is that larger

number of infection events occur in the presence of multiple infection, thus raising the num-

ber of mutants that are generated. We further note that multiple infection not only increases

the average number of mutants at high viral loads, but that it also leads to a larger variation in

mutant numbers, shown by a larger standard deviation of mutant numbers in the presence of

multiple infection (Fig 2).

These trends are not particular to neutral mutants because we focus on exponential, or

nearly-exponential, virus growth. Similar trends are observed for advantageous or disadvanta-

geous mutants (see S1 Text Section 4 and S10 Fig).

While computationally more costly, we also examined the prevalence of neutral triple-hit

mutants, because such mutants can be important for simultaneously escaping three immune

Fig 2. Neutral mutant evolution in the absence of synaptic transmission, comparing simulations with single infection only (N = 1,

blue) and in the presence of multiple infection (N = 11, red). The mean values are shown by the vertical lines (blue for single infection

only and red for multiple infection). For both panels, the Kolmogorov-Smirnov test between the two cases gives a p-value less than 10−6. A

Number of cells infected with one of the single mutant strains. The average for single infection is approximately 3.7 × 105 and for multiple

infection is approximately 7.6 × 105. B Number of cells infected with the double mutant strain. The average for single infection is

approximately 271 and for multiple infection is approximately 551. Histograms represent 4 × 103 hybrid simulations with size threshold

M ¼ 50. Simulations in which infections are not established (or in the rare case a simulation does not reach the infected size threshold)

are discarded. Simulations are stopped when the infected cell population is close to peak infection (6 × 108 cells). The other parameters are

similar to Fig 1 (Fwild-type = 1, Fmutant = 1, μ = 3 × 10−5, λ = 1.59 × 107, β = 3.60 × 10−9, γ = 0, a = 0.45, d = 0.016, and R0 = 8).

https://doi.org/10.1371/journal.pcbi.1009713.g002
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response specificities or three drugs. We found that even near peak virus load, the probability

that a triple mutant exists is relatively low (S11 Fig). In other words, such mutants are unlikely

to exist even at the peak of primary HIV infection. Nevertheless, multiple infection results in

an almost 2-fold increase in the probability that neutral triple mutants exist around peak infec-

tion. Such an increase in mutant generation could be important for virus persistence in the

face of mounting immune responses during the acute phase of the infection.

3.2.2 Evolutionary dynamics in more complex settings: Complementation, interference,

and the role of synaptic transmission. Multiple infection becomes especially important for

viral evolutionary dynamics if different virus strains interact with each other inside the same

cell. One type of such interactions is complementation, where a disadvantageous mutant gains

in fitness in a coinfected cell [28]. Another example is interference, where an advantageous

mutant can lose the fitness advantage when together with a wild-type virus in the same cell

[29]. We will use our hybrid methodology to investigate the evolution of disadvantageous and

advantageous mutants, and the effect of complementation and interference, respectively. We

start by examining the dynamics assuming free virus transmission, and then compare results

to simulations that assume virus spread through synaptic transmission. Synaptic transmission

can be especially relevant here because it can promote the repeated co-transmission of geneti-

cally distinct virus strains. For example, if a disadvantageous mutant is repeatedly co-transmit-

ted with a wild-type virus, and if the disadvantageous mutants benefits from

complementation, then synaptic transmission can significantly enhance the spread potential of

the mutant.

As before, the fitness difference is modeled at the level of the infection process. For example,

for a disadvantageous mutant, there is a chance that infection of a new cell is unsuccessful. In

this case, complementation means that the wild-type virus can provide a product that

enhances the infectivity of the mutant. Similarly, for interference, it is assumed that the chance

of infection by an advantageous mutant is reduced if the offspring mutant was generated in a

coinfected cell.

Effect of viral co-transmission on mutant spread (in the absence of mutations). To

assess to what extent the co-transmission of different virus strains influences viral evolution,

we consider computer simulations in the absence of mutant production. Instead, we start with

one infected cell that contains both one wild-type and one mutant virus, and simulate the

spread of the virus population until a threshold number of infected cells is reached. The pur-

pose of excluding mutant production is to fully quantify to what extent synaptic transmission

enhances the spread potential of a mutant.

Complementation: First, consider viral complementation. We study an extreme case where

a mutant has zero fitness by itself, but has an infectivity identical to the wild-type virus if the

mutant offspring virus is produced in a cell coinfected with a wild-type virus. In this parameter

regime, the mutant virus cannot spread at all in the absence of complementation, whether

spread occurs by free virus or synaptic transmission. The occurrence of complementation,

however, allows virus spread due to the elevated viral fitness in coinfected cells. For free virus

transmission, this effect is modest (Fig 3A). A limited amount of mutant spread can occur, but

the average number of mutants at peak infection levels is still less than one, indicating that

mutants largely fail to spread in this setting. In simulations with synaptic transmission, how-

ever, we observe extensive mutant spread in the presence of complementation (Fig 3B).

Around peak infection, the number of cells infected with the mutant is of the order of 105.

This shows that synaptic transmission can play a crucial role at promoting the spread of disad-

vantageous mutants through complementation.

Interference: Next, consider viral interference. Assume an advantageous mutant, which has

a significant fitness advantage by itself (10%), but has an infectivity identical to the wild-type
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virus if the mutant offspring is produced in a cell coinfected with the wild-type. Under free

virus transmission (S13 Fig), coinfection does not play a significant role, and therefore inter-

ference only decreases the expected number of mutants by a small percentage. Interestingly,

for synaptic transmission (S13 Fig), interference only plays a marginally larger role compared

to the dynamics under free-virus transmission. The reason for this relatively mild effect of

interference under purely synaptic transmission is rooted in an inherent reduction of fitness

differences due to repeated infection events in synaptic transmission. We elaborate on this

later on in the context of dynamics with mutations.

Evolutionary dynamics in the presence of mutant production. Here, we repeat this analy-

sis assuming that mutant production occurs. The mutant dynamics are now influenced by two

factors: (i) as before, mutant viral replication and mutant fitness influence spread; (ii) mutation

processes generate mutant viruses from wild-type, which also contributes to the increase of

mutant numbers. We consider both viral complementation and inhibition.

Complementation: We first focus on a mutant that has zero fitness if it is by itself in a cell.

If mutant numbers are measured at relatively low virus loads (Fig 4A and 4B), complementa-

tion makes no difference for simulations that assume free virus transmission only (Fig 4A).

For simulations assuming synaptic transmission only, however, a larger difference between

mutant numbers with and without complementation is observed (approximately 2-fold, Fig

4B), resulting from the frequent co-transmission of different virus strains, which occurs even

at lower virus loads. Even more striking is the difference in the distribution of mutant numbers

with and without complementation, under synaptic transmission (Fig 4B). The long

Fig 3. Zero fitness mutants, comparing the effect of complementation for free virus and synaptic transmission. All simulations start

with a single infected cell coinfected with a single copy of both the wild-type and mutant, and mutation is turned off (μ = 0). A Only free

virus transmission (β = 3.60 × 10−9, γ = 0, N = 11) with complementation. The average number (standard deviation) of cells infected with

the mutant is 0.71 (1.73). B Only synaptic transmission (β = 0, γ = 3.60 × 10−9, N = 25, see Section 1.3 of S1 Text for justification) with

complementation. The average number (standard deviation) of cells infected with the mutant is 3.1 × 105 (2.2 × 105). Histograms

represent 5 × 103 hybrid simulations with size threshold M ¼ 50. Simulations in which infections are not established (or in the rare case

a simulation does not reach the infected size threshold) are discarded; simulations are stopped when the infected cell population is close to

peak infection (5 × 108 cells). The fitness of the wild-type is fixed at Fwild-type = 0.9 and Fmutant = 0. The other parameters are as in Fig 1 (λ
= 1.59 × 107, a = 0.45, and d = 0.016).

https://doi.org/10.1371/journal.pcbi.1009713.g003
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Fig 4. Mutant evolution under different scenarios with 100% free virus transmission (left panels: β = 3.6 × 10−9, γ = 0, N = 11) or 100%

synaptic transmission (right panels: β = 0, γ = 3.6 × 10−9, S = 3, N = 25). Panels A and B record the number of cells infected with the

mutant at 104 infected cells, for all other panels it is 5 × 108 infected cells. For all panels, the blue bars represents simulations without

complementation/interference and the red bars represents simulations with complementation/interference. The mean values are presented

in each panel. For panels B-H, p< 10−6 by the Kolmogorov-Smirnov test. A-D Zero fitness mutant (Fmutant = 0). E-F Disadvantageous

mutant (Fmutant = 0.81). G-H Advantageous mutant (Fmutant = 0.99). For all simulations, we fix M ¼ 50; Fwild� type ¼ 0:9 and the other

parameters are as in Fig 1 (μ = 3 × 10−5, λ = 1.59 × 107, a = 0.45, and d = 0.016).

https://doi.org/10.1371/journal.pcbi.1009713.g004

PLOS COMPUTATIONAL BIOLOGY A stochastic-deterministic approach to multiple infection and evolution in HIV

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009713 December 22, 2021 16 / 26

https://doi.org/10.1371/journal.pcbi.1009713.g004
https://doi.org/10.1371/journal.pcbi.1009713


distribution tail in the presence of complementation is a result of early mutation events, which

are extremely rare, but give rise to unusually high numbers of mutants at the threshold size.

These events are similar to the so-called “jack-pot” event that have recently attracted attention

in the context of mutant evolution in expanding cell populations [57, 58].

If the number of mutants is measured at higher virus loads, near peak, we find that comple-

mentation makes a modest difference if only free virus transmission is assumed (Fig 4C). This

occurs because mutants that are generated at high virus loads will have a substantial chance to

enter a cell that also contains a wild-type virus, leading to enhanced mutant spread at high

virus loads. If we assume that the virus spreads only through synaptic transmission (Fig 4D),

complementation makes a larger difference, but the effect of complementation is only slightly

larger than that at low virus loads (Fig 4B). The reason is that the probability for wild-type and

mutant viruses to be co-transmitted does not depend strongly on virus load.

We note that in the models with mutant generation, the effect of complementation on

mutant numbers is much less pronounced than in simulations without mutation processes,

even if the virus is assumed to only spread through virological synapses. The reason is that in

the absence of mutational processes, the initially present mutant virus cannot spread without

complementation, whereas it can do so in the presence of complementation. In the presence of

mutational processes, however, even zero-fitness mutant numbers can rise over time without

complementation, due to mutant production by wild-type viruses. Because the population size

at peak virus load is large relative to the inverse of the mutation rate, mutant generation is a

significant force that drives mutant numbers over time, limiting the difference that mutant

replication in coinfected cells can make on the mutant population size.

Next, we assume that the mutant is no longer a zero-fitness type, but can be transmitted

independently of the wild-type virus, although with a 10% fitness cost. In other words, if an

infection event is attempted, it succeeds with a probability that is 10% smaller than that for the

wild-type virus: Fmutant = 0.9Fwild-type. If the mutant virus is in the same cell as the wild-type,

however, this fitness cost is assumed to disappear and the mutant is neutral with respect to the

wild-type virus. We focus on mutant numbers at high virus loads. We find that the number of

mutants is only increased by a small amount, both if we assume that the virus spreads only by

free virus transmission (Fig 4E) or only by synaptic transmission (Fig 4F); the difference is

slightly larger for simulations that assume synaptic virus transmission, approximately 1.4 fold

in Fig 4F).

The relatively small increase in mutant numbers brought about by complementation is sur-

prising in the context of synaptic transmission. Intuitively, even though the disadvantageous

mutant virus in Fig 4F can spread alone, the assumed 10% fitness cost, which is overcome by

complementation, is still substantial. The reason for the limited impact of complementation is

that in the presence of synaptic transmission, the actual fitness disadvantage of the mutant is

reduced. The fitness cost is implemented by assuming that upon transfer to the new target cell,

each virus has an increased probability to fail successful completion of infection. With synaptic

transmission, it is assumed that there are S infection attempts (in our simulation S = 3). This

increases the likelihood that the cell will become infected (i.e. that at least one of the attempts

is successful). Through this process, the effective fitness disadvantage of the mutant ends up

being less than the 10% cost assumed per virus, which explains the modest effect of comple-

mentation on mutant numbers. The notion that the simultaneous transfer of multiple viruses

per synapse reduces the effective relative fitness cost of a mutant has important implications

that go beyond the scope of the current paper, and is explored in detail in a separate study.

This analysis indicates that viral complementation might only make a substantial impact on

the number of disadvantageous mutants if the disadvantage is very large. Therefore,
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biologically, complementation might be most relevant to defective virus particles, and this

effect is more pronounced under synaptic compared to free virus transmission.

Interference: Here we consider an advantageous mutant that loses fitness advantages in

cells that contain both the mutant and the wild-type virus. This is implemented similarly to the

simulations with disadvantageous mutants. To model the advantage, we assume that a mutant

virus, upon transfer, succeeds in infecting the target cell with the probability that is 10% larger

than that of the wild-type virus: Fmutant = 1.1Fwild-type. As with complementation, Fig 4G and

4H shows that interference has a modest impact on the number of advantageous mutants at

the size threshold (close to peak infection levels). Interference lowers the number of advanta-

geous mutants to a slightly stronger degree if we assume synaptic (Fig 4H) rather than free

virus transmission (Fig 4G), although the difference is relatively small in both cases, which is

reminiscent of a similarly small effect of interference under synaptic transmission, observed in

the absence of mutations, S13 Fig). The small effect for free virus transmission is explained by

the absence of significant co-transmission of mutant and wild-type viruses, which limits the

occurrence of the intracellular interactions among the two viral strains. For the simulations

with synaptic transmission, the small effect is again explained by a reduction in the effective fit-

ness difference between mutant and wild-type strains as a result of multiple, simultaneous

infection events during synaptic transmission. Therefore, these results suggest that interfer-

ence is unlikely to have a major impact on the dynamics of advantageous mutants, unless the

advantage is very large, which would be biologically unrealistic (the simulations shown in Fig

4G and 4H already assume a 10% fitness advantage of the mutant).

4 Discussion

In this paper, we described a hybrid stochastic-deterministic algorithm to simulate viral evolu-

tionary dynamics at large population sizes, including the occurrence of multiple infection of

cells. The coevolution of relatively small populations (mutants and multiply infected cells)

with larger populations (wild-type and singly infected cells) renders stochastic computer simu-

lations computationally costly and not feasible when the virus population rises to higher levels.

Ordinary differential equations can predict the average number of mutants over time, but can

run into problems when describing the number of mutants at a given infected cell population

size, the mutant number distributions, or the timing of mutant generation. The hybrid method

described here, however, provides an accurate approximation of the true stochastic dynamics

across all parameter ranges, at a fraction of the computational cost. This method therefore can

serve as a practical tool to simulate complex viral evolutionary processes at large population

sizes.

At the same time, however, the hybrid method can also run into computational limitations,

depending the assumptions underlying the exact model formulation. While the hybrid method

is capable of handling a large number of subpopulations, the number of “reactions” included

in the stochastic part of the algorithm increases with (i) the number of different virus strains,

(ii) the maximum multiplicity N, and (iii) the number of viruses transferred per synapse S. If

these parameters are too large, the number of reactions for the Gillespie algorithm can become

too high to be computationally feasible (even if only small populations are handled stochasti-

cally). In general, the number of strains per model is 2k and the number of differential equa-

tions (subpopulations) per model is
N þ 2k

2k

 !

. If we model only free virus transmission, the

number of infection events is the number of strains multiplied by the number of subpopula-

tions eligible to be infected, but when synaptic transmission is included, there are many more

infection events, which is correlated with the number of ways to partition S into 2k non-
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negative integers that sum to 1, 2, . . ., S. When the number of reactions is on the order of 104,

each simulation becomes very computationally expensive, which happens, for example, if we

consider triple mutants in the presence of synaptic transmission.

We used the hybrid stochastic-deterministic method to study how multiple infection and

intracellular interactions among virus strains influence the evolutionary dynamics of mutants

in the acute phase of HIV infection, during which the number of infected cells can rise to high

levels, of the order of 108 infected cells across the lymphoid tissues [14]. We showed that these

processes can shape mutant evolution, but also found that this effect is restricted to select cir-

cumstances. On a basic level, the models confirmed the intuitive idea that multiple infection

accelerates mutant evolution due to the larger number of mutation events during reverse tran-

scription, when already infected cells become super-infected.

The model predictions about the ability of viral complementation to enhance the spread of

disadvantageous mutants was more complex. According to the model, synaptic transmission

is required to enhance disadvantageous mutant spread through complementation because it

allows the repeated co-transmission of different virus strains; at the same time, however, this

effect of complementation is only sizable if the selective disadvantage of the mutant is substan-

tial, which most likely corresponds to a defective virus. The reason is that in the model studied

here, synaptic transmission reduces the effective fitness difference between mutant and wild-

type virus. This is because during a synaptic transmission event, multiple viruses are assumed

to attempt infection of the target cells, thus increasing the chance that the cell will become

infected with at least one of them. Even though we assumed a 10% lower probability of success-

ful infection per mutant virus, in the context of our assumption that three viruses attempt

infection per synapse, the overall chance that the cell becomes infected with a mutant is only

0.01% lower than the chance that it will become infected with a wild-type virus (the effective

fitness difference). With a reduced effective fitness difference, complementation can only

accelerate mutant growth by a modest amount.

Even if the effect of complementation is only pronounced for defective viruses, this still has

strong biological significance. The maintenance of virus variants with zero or very low fitness

during viral spread could be important for the evolvability of HIV in patients. The low fitness

virus variants can potentially carry other mutations in their genomes, such as drug resistance

or immune escape mutations. If these low fitness variants are repeatedly present in the same

cell as wild-type viruses, recombination can transfer the mutation in question onto the wild-

type genome, thus accelerating the rate of virus evolution. If the low fitness variants are not

maintained, due to lack of complementation, however, this effect would not occur and could

lead to a slower rate of virus evolution. Hence, maintenance of defective virus variants through

complementation, and the consequent enhanced evolvability of the virus, could be one mecha-

nism underlying the evolution of synaptic transmission in HIV infection. Recombination can

be built into the models presented here to explore these dynamics in the future.

Another intracellular interaction that we considered was viral interference, where we track

an advantageous mutant that loses fitness when together with a wild-type virus in an infected

cell. As with complementation, for the fitness loss to be a driving event, the repeated co-trans-

mission of wild-type and mutant virus is required through virological synapses. For the same

reason as explained above, however, the multiple virus transfer events that occur during synap-

tic transmission reduce the fitness difference between the two virus strains, thus reducing the

impact of interference on mutant numbers. To see a more significant effect would require a

very substantial fitness advantage of the mutant, which is biologically unrealistic. According to

our results, we therefore expect that viral interference is unlikely to significantly reduce the

number of advantageous mutants.
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According to the model studied here, viral complementation is not expected to play a sig-

nificant role for mutant evolution in the absence of a transmission mechanism that involves

the simultaneous transfer of multiple viruses from the infected cell to the target cell. It is

important to remember, however, that the model presented here assumes well mixed virus and

cell populations. If, in contrast, viruses spread in spatially structured cell populations with lim-

ited mixing, the spatial restriction could force the repeated co-transmission of different virus

strains from one cell to another, even in the context of free virus transmission (simply because

only a limited number of target cells are located in the immediate neighborhood of an infected

cell). Therefore, spatial restriction during free virus transmission could have a similar effect as

synaptic transmission during HIV infection. Indeed, computational modeling work has

shown that similar to synaptic transmission, spatially restricted virus growth can lead to higher

infection multiplicities, even at lower virus loads [59]. The correspondence between the prop-

erties of synaptic transmission in HIV infection and spatially restricted free virus spread

remains to be established in more detail, and has relevance for a range of viral infections,

importantly bacteriophage infections.

In addition, synaptic transmission of HIV might be characterized by spatial restrictions

because an infected cell is most likely to form virological synapses with a neighboring target

cell. We have previously investigated properties of spatially restricted synaptic virus transmis-

sion in a different context [31], and these models could be adapted to study the complementa-

tion and interference dynamics considered here. While synaptic transmission in HIV

infection likely involves neighboring cells, however, CD4 T cells in the lymphoid tissue have

been shown to move with a relatively fast rate [60], and the importance of spatial restrictions

for the in vivo dynamics remains to be better understood.

Supporting information

S1 Text. Supplementary text and figures in support of the manuscript.

(PDF)

S1 Code. Hybrid program code written in C++.

(CPP)

S1 Fig. A comparison of the ODE prediction in Fig 1A in the main text to the correspond-

ing system including explicit free virus equations; numerical values are also included in

Table A in S1 Text. The blue dots represent the deterministic prediction for the number of

cells infected with the mutant strain when the total number of infected cells has reached 104

(and are the same as the blue dots in Fig 1A in the main text), in the absence of the explicit free

virus equations. The red stars represent the same quantity in the presence of the free virus

equations. The parameters are Fwild-type = 0.9, N = 3, μ = 3 × 10−5, λ = 1.59 × 107, β = 4 × 10−9,

γ = 0, k = 2.25 × 104, u = 500, and d = 0.016. The infected cell death rate a is adjusted to achieve

the required R0.

(PDF)

S2 Fig. Histograms of the multiplicity of infection near peak infection. The horizontal axis

represents the average number of cells infected with the given number of viral copies, A for

only free virus transmission, B for only synaptic transmission. S8 Fig also shows histograms

for the average number of cells infected with the given number of viral copies for half free

virus transmission and half synaptic transmission. The vertical axis is the average number of

cells that are infected with different numbers of viral copies near peak infection. Infected with

zero copies corresponds to the uninfected cells. Histograms were averaged over 102 hybrid

simulations with size threshold M ¼ 50. Simulations are stopped when the infected cell
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population is near peak infection (5 × 108 cells). Parameters are β + γ = c = 3.6 × 10−9, μ =

3 × 10−5, λ = 1.59 × 107, a = 0.45, and d = 0.016, and maximum multiplicity of infection N is

set to be large enough such that no cells reach this threshold.

(PNG)

S3 Fig. Histograms of the number of cells infected with the neutral single and double

mutant strain of the virus (double mutant model, F = 1 for all strains) when the infected

cell population reaches 106 cells for hybrid simulations with size threshold M ¼ 50 and

M ¼ 500. Simulations include only free virus transmission. For each size threshold 1.5 × 105

simulations were performed. A Number of cells infected with one of the single mutant strains.

B Number of cells infected with the double mutant strain. The number of cells infected with

the double mutant is not statistically different for M ¼ 50 and M ¼ 500 (p> 0.1 by Kolmo-

gorov-Smirnov test). The parameters are N = 3, μ = 3 × 10−5, λ = 1.59 × 107, β = 3.60 × 10−9,

γ = 0, a = 0.45, d = 0.016, and R0 = 8.

(PNG)

S4 Fig. Histograms of the number of cells infected with the neutral single mutant strain of

the virus (single mutant model, Fwild-type = Fmutant = 1) when the infected cell population

reaches 106 cells for hybrid simulations with only free virus transmission. Histograms for

each size threshold represent 104 simulations. The p-value from Kolmogorov-Smirnov test is

shown for each comparison. A Size threshold M ¼ 10 and M ¼ 500. B Size threshold M ¼

50 and M ¼ 500. C Size threshold M ¼ 100 and M ¼ 500. D Size threshold M ¼ 200 and

M ¼ 500. Here N = 1 and the other parameters are μ = 3 × 10−5, λ = 1.59 × 107, β =

3.60 × 10−9, γ = 0, d = 0.016, and R0 = 1.5.

(PNG)

S5 Fig. Histograms of generation time of first single/double mutant virus in the double

mutation model in the context of only free virus transmission (with all strains neutral).

Simulations in which infections are not established are discarded when calculating the aver-

ages. The deterministic prediction is denoted with the black vertical line and the hybrid aver-

age is denoted with the yellow vertical line. Histograms represent 105 hybrid simulations with

size threshold M ¼ 50. A Time until either single mutant generation. The deterministic pre-

diction that the first single mutant virus (of both strains) will be generated is around 2.6 days,

whereas in the stochastic case it is around 3 days. B Number of infected cells at first single

mutant generation. The deterministic prediction is that the number of infected cells is around

3.5 × 103, whereas in the stochastic case it is around 1.4 × 104. C Time until double mutant

generation. The deterministic prediction that the first double mutant virus will be generated is

around 4.8 days, whereas in the stochastic case it is around 5.6 days. D Number of infected

cells at first double mutant generation. The deterministic prediction is that the number of

infected cells is around 3.5 × 106, whereas in the stochastic case it is around 4.3 × 107. The

parameters are N = 3, μ = 3 × 10−5, λ = 1.59 × 107, β = 3.60 × 10−9, γ = 0, a = 0.45, d = 0.016,

and R0 = 8.

(PNG)

S6 Fig. Comparing hybrid simulations with M ¼ 50 (red) with simulations in which the

infected subpopulations are always treated stochastically (blue). Simulations in which infec-

tions are not established are discarded when calculating the averages. Histograms represent

2 × 104 simulations. A The number of cells infected with the mutant at infected population

size 104. B The time at first mutant generation. The parameters are Fwild-type = Fmutant = 1,

N = 3, μ = 3 × 10−5, λ = 1.59 × 107, β = 3.60 × 10−9, γ = 0, a = 0.45, d = 0.016, and R0 = 8.

(PNG)
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S7 Fig. Deterministic time series evolution of an infection with a neutral mutant strain

with only free virus (dashed lines, γ = 0) or only synaptic transmission (solid lines, β = 0).

Parameters are N = 25, β + γ = c = 3.6 × 10−9, μ = 3 × 10−5, λ = 1.59 × 107, a = 0.45, and

d = 0.016. The multiplicity of infection is shown with the red lines, the number of cells infected

with only the wild-type virus are shown with the yellow lines, the number of cells infected with

only the mutant are shown with the purple lines, and the number of cells coinfected with both

the wild-type and mutant are shown with the green lines.

(PNG)

S8 Fig. Histograms of the multiplicity of infection near peak infection. A Histograms for

the average number of cells infected with the given number of viral copies for only free virus

transmission. B Histograms for the average number of cells infected with the given number of

viral copies for half free virus transmission and half synaptic transmission. The horizontal axis

is the number of virus copies and the vertical axis is the average number of cells that are

infected with that number of viral copies near peak infection. Infected with zero copies corre-

sponds to the uninfected cells. Histograms were averaged over 5 × 102 hybrid simulations with

size threshold M ¼ 50. Simulations are stopped when the infected cell population is close to

peak infection (6 × 108 cells). Parameters are β + γ = c = 3.6 × 10−9, μ = 3 × 10−5, λ = 1.59 × 107,

a = 0.45, and d = 0.016, and maximum multiplicity of infection N is set to be large enough

such that no cells reach this threshold.

(PNG)

S9 Fig. Neutral mutant evolution in the absence of synaptic transmission, comparing sim-

ulations with single infection only (N = 1, blue) and in the presence of multiple infection

(N = 5, red). For both panels, the Kolmogorov-Smirnov test between the two distributions

suggests that they are not statistically different. A Number of cells infected with one of the sin-

gle mutant strains. B Number of cells infected with the double mutant strain. Distributions

represent 4.5 × 104 hybrid simulations with size threshold M ¼ 50. Simulations are stopped

at a low viral load (105 cells). The other parameters are as in main text Fig 2 (Fwild-type = 1, Fmu-

tant = 1, μ = 3 × 10−5, λ = 1.59 × 107, β = 3.60 × 10−9, γ = 0, a = 0.45, and d = 0.016).

(PNG)

S10 Fig. Non-neutral (disadvantageous and advantageous) mutant evolution in the

absence of synaptic transmission, comparing simulations with single infection only (N = 1,

blue) and in the presence of multiple infection (N = 11, red). The mean values are shown by

black the vertical lines (blue for single infection only and red for multiple infection). For both

panels, the Kolmogorov-Smirnov test between the two distributions gives a p-value less than

10−6. A Disadvantageous mutant; here Fmutant = 0.81. The average under single infection only

is approximately 1.6 × 105 and for multiple infection is approximately 3.2 × 105. B Advanta-

geous mutant with interference; here Fmutant = 0.99. The average for single infection is approxi-

mately 1.2 × 106 and for multiple infection is approximately 2.3 × 106. Histograms represent

2 × 104 hybrid simulations with size threshold M ¼ 50. Simulations are stopped when the

infected cell population is close to peak infection (6 × 108 cells). The other parameters are

Fwild-type = 0.9, μ = 3 × 10−5, λ = 1.59 × 107, β = 4 × 10−9, γ = 0, a = 0.45, and d = 0.016.

(PNG)

S11 Fig. Presence of the triple mutant strain in the absence of synaptic transmission, com-

paring simulations with single infection only (N = 1, blue) and in the presence of multiple

infection (N = 3, red). The probability to have at least one cell infected by a triple-mutant is

3.3% under multiple infection, which is about 1.7 times higher than that under single infection
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(1.9%). This result is significant with p = 2.5 × 10−3 by the Z-test, with 2.7 × 104 runs under sin-

gle infection and 1.9 × 103 runs under multiple infection. Histograms represent 103 hybrid

simulations with size threshold M ¼ 50. Simulations are stopped when the infected cell popu-

lation is close to peak infection (6 × 108 cells). All strains are neutral (F = 1) and all other

parameters are μ = 3 × 10−5, λ = 1.59 × 107, β = 3.60 × 10−9, γ = 0, a = 0.45, and d = 0.016.

(PNG)

S12 Fig. Neutral mutant evolution in the presence of synaptic transmission, comparing

simulations with different combinations of free virus and synaptic transmission (single

mutation only). A Number of cells infected with the mutant strain under different transmis-

sion strategies. The horizontal axis is the percent contribution of free virus transmission. Stan-

dard error bars are shown in the main figure, and standard deviation bars are shown in the

inset. B Histograms for the number of cells infected with a single mutant for the different strat-

egies, representing 104 hybrid simulations with size threshold M ¼ 50. Simulations are

stopped when the infected cell population is close to peak infection (6 × 108 cells) and simula-

tions where no infection is established are thrown out. Here Fwild-type = 1, Fmutant = 1, S = 3,

N = 25, β + γ = c = 3.6 × 10−9, and the other parameters are μ = 3 × 10−5, λ = 1.59 × 107,

a = 0.45, and d = 0.016.

(PNG)

S13 Fig. 10% advantageous mutant (Fwild-type = 0.9, Fmutant = 0.99), comparing the effect of

interference and free virus versus synaptic transmission near peak infection, in the absence

of mutations (μ = 0). All simulations start with a single infected cell coinfected with a single

copy of both the wild-type and mutant. Panels A and B represent only free virus transmission

(β = 3.60 × 10−9, γ = 0, N = 11), whereas panels C and D represent only synaptic transmission

(β = 0, γ = 3.60 × 10−9, N = 25). The Kolmogorov-Smirnov test between panels A and B and

panels C and D gives a p-value less than 10−6. A Only free virus transmission without interfer-

ence. The average number of cells infected with the mutant is 3.8 × 108. B Only free virus trans-

mission with interference. The average number of cells infected with the mutant is 3.6 × 108. C

Only synaptic transmission without interference. The average number of cells infected with

the mutant is 3.4 × 108. D Only synaptic transmission with interference. The average number

of cells infected with the mutant is 3.1 × 108. Histograms represent 6 × 103 hybrid simulations

with size threshold M ¼ 50. Simulations in which infections are not established (or in the

rare case a simulation does not reach the infected size threshold) are discarded; simulations

are stopped when the infected cell population is close to peak infection (5 × 108 cells). The

other parameters are λ = 1.59 × 107, a = 0.45, and d = 0.016.

(PNG)
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24. Hübner W, McNerney GP, Chen P, Dale BM, Gordon RE, Chuang FY, et al. Quantitative 3D video

microscopy of HIV transfer across T cell virological synapses. Science. 2009; 323(5922):1743–1747.

https://doi.org/10.1126/science.1167525 PMID: 19325119
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