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Abstract

The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by
daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH
in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the
neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made
with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of
passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats
received intra-DMH microinjections of IBO and activity and body temperature (Tb) rhythms were recorded by telemetry
during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the
middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions
exhibited a lower amplitude and mean level of light-dark entrained activity and Tb rhythms. During the daytime feeding
schedule, all rats exhibited food anticipatory activity and Tb rhythms that persisted during 2 days without food in constant
dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most
intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these
cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or
nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the
expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep.
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Introduction

When food is freely available, daily rhythms of foraging, food

intake and physiology are synchronized to the solar day by

entrainment of a retinorecipient master circadian pacemaker, the

hypothalamic suprachiasmatic nucleus (SCN) [1]. The SCN of

nocturnal rodents confers circadian organization by actively

promoting arousal at night and rest during the day [2,3], and by

coordinating the phase of circadian clocks in peripheral organs via

neural, hormonal and behavioral signals [4]. Under standard

laboratory conditions, the timing of these rhythms relative to the

daily light-dark (LD) cycle is typically stable, but can be markedly

altered if food is restricted to the ‘wrong’ time of day. Nocturnal

rats and mice fed only in the middle of the light period, when sleep

normally predominates, exhibit an inversion of the phase of

circadian clocks in most peripheral organs, and the emergence of a

food-anticipatory activity rhythm, evident in general activity,

wheel running or operant behaviors such as lever pressing and

food-bin approaches [5–7]. During such daytime restricted feeding

schedules, the SCN pacemaker does not invert its phase [8–10].

Moreover, while ablation of the SCN eliminates daily rhythms in

rats with free access to food, it does not affect food anticipatory

behavioral and physiological rhythms, which emerge if food is

temporally restricted, and then persist during total food depriva-

tion tests lasting several days [11–13]. These and other properties

indicate that food anticipatory behavioral rhythms are controlled

by a circadian mechanism outside of the SCN that can override

signals from the SCN that normally suppress daytime activity and

arousal. The mechanism has been conceptualized as a food-

entrainable oscillator or pacemaker, analogous to the light-

entrainable SCN pacemaker [5–7].

Two questions that arise in neurobiological analysis of food

anticipatory rhythms are where in the brain (or body) are the

driving food-entrainable circadian oscillators located, and how do

these overcome sleep promoting signals from the SCN to induce

arousal in the usual sleep phase? Numerous brain regions exhibit

daily rhythms of immediate early gene or clock gene expression

that are shifted or induced by daily feeding schedules [14]. One

structure in which this occurs is the dorsomedial hypothalamus

(DMH) [15–22]. Partial lesions of the DMH created by local

infusion of the excitatory neurotoxin ibotenic acid were reported

to markedly attenuate food anticipatory rhythms of activity, sleep
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wake and body temperature (Tb) rhythms in rats, supporting a

conclusion that the DMH is critical for the expression of these

rhythms [16]. However, efforts to support this conclusion using

electrolytic and radiofrequency lesion techniques have met with

failure, as rats and mice sustaining substantial or complete ablation

of DMH cells and fibers of passage through this area were found to

exhibit near normal food anticipatory rhythms of activity, body

temperature and clock gene rhythms in other brain regions [22–

24]. Subsequent studies ruled out several procedural variables as

possible explanations for the differing results, including cage

configuration, method of feeding and measure of activity [24,25].

Circumstantial evidence suggests that the lesion method might

be important. SCN outputs to sleep-wake regulatory circuits

project in part either directly or indirectly to and through the

DMH area [2,26–28]. The SCN receives or is surrounded by

fibers from hypothalamic structures that process feeding and

metabolism related signals, including the DMH [29–30] and

arcuate nucleus [31]. Expression of the immediate early gene cFos

(a marker of neural activity) or the clock gene per1 in the SCN can

be inhibited by behavioral arousal and some metabolic signals

[31–33]. These observations have been connected in the following

way [22,30,34]. During restricted daytime feeding schedules, SCN

sleep promoting outputs, conveyed in part by direct or indirect

projections through the DMH area, might be directly inhibited by

inputs from nutrient sensitive structures such as the DMH that are

induced to oscillate in phase with a scheduled mealtime. DMH

lesions made by neurotoxins such as ibotenic acid [16] would

eliminate neurons responsible for inhibiting SCN output, and

would spare SCN fibers of passage through the DMH area. These

SCN outputs would then suppress food anticipatory activity

without opposition. By contrast, DMH lesions made by radiofre-

quency current [22–24] would destroy not only DMH neurons

inhibitory to the SCN, but also SCN outputs that project through

and around the DMH area. This would allow food anticipatory

activity to be expressed without opposition from the SCN,

assuming that food-entrainable oscillators that drive these rhythms

are located in whole or in part outside of the DMH.

This model leads to two predictions. If SCN outputs are

responsible for attenuation of food-anticipatory rhythms in rats

with ibotenic acid-induced DMH lesions, then food-anticipatory

rhythms in these rats should be restored by 1. SCN ablation, or 2.

scheduling mealtime at night, when the SCN does not inhibit

activity. A recent study has confirmed the first prediction; rats with

attenuated daytime food anticipatory rhythms following DMH

ablation exhibited robust food anticipatory rhythms when the

SCN were subsequently ablated [30]. In the present study, we

followed closely the recording and ablation methods of Gooley et

al [16] and provide evidence consistent with the second prediction;

anticipation of a daytime meal was weak in some rats with ibotenic

acid-induced DMH lesions, and was restored to levels character-

istic of DMH-intact rats when the scheduled mealtime was shifted

to late in the night.

Materials and Methods

Animals and recording apparatus
All animal work was conducted according to guidelines

established by the Canadian Council on Animal Care and was

approved by the University Animal Care Committee at Simon

Fraser University (permit number 732P95). Young adult male

Sprague Dawley rats (N = 29, Charles River, Montreal, Canada)

were housed in group cages under a 12h:12h light-dark (LD) cycle

in a climate controlled vivarium (2261uC). The rats then

underwent surgical procedures to create a neurotoxic or sham

DMH lesion and implant a calibrated radiotelemetry transponder

(ER-4000, Minimitter Inc., OR, USA). After recovery, the rats

were housed individually in standard plastic cages (45624620 cm)

equipped with a food hopper and water bottle holder, as in Gooley

et al [16] and Landry et al [24]. Each cage was placed on top of an

ER-4000 radiotelemetry receiver, housed inside individual sound-

attenuating recording chambers with controlled lighting and an

exhaust fan (Lafayette Instruments, IN, USA). Radiotelemetry

signals were converted by the VitalView data acquisition system

(Minimitter, Inc.) into pulses at a rate proportional to Tb. Changes

in signal strength caused by movement of the rat were converted to

pulses proportional to locomotor activity. Pulses were summed and

stored in 1 minute time bins.

Surgical procedures
Rats were anesthetized for stereotaxic surgery using ketamine

(90 mg/kg), xylazine (9 mg/kg), and isoflurane (0.5% to 2.0%).

Following Gooley et al [16], ibotenic acid (Sigma) was dissolved in

phosphate buffered saline (PBS) at a concentration of 10%, using

6N NaOH, with pH adjusted to ,7.2 using 6N HCl. In pilot tests,

concentrations of 1–2% produced very little DMH damage, while

infusions into the hippocampus caused extensive cell loss,

demonstrating bioactivity of the neurotoxin at these concentra-

tions. At the 10% concentration, bilateral infusions into the DMH

were associated with immediate and severe respiratory depression.

A two-stage lesion procedure was therefor adopted, with ,4 weeks

between unilateral 300 nL (N = 8 rats) or 100 nL (N = 6 rats)

infusions delivered by Hamilton syringe, using the following

stereotaxic coordinates relative to bregma (10% angle): 3.4 mm

posterior, 62.2 mm lateral from midline, 27.7 mm ventral from

dura. Seven additional rats received vehicle injections, and 8 rats

served as unoperated controls. Radiotelemetry transponders were

implanted ,7 days after the second stereotaxic surgery.

Feeding schedules
Continuous recording of activity and Tb in the temporal

isolation chambers began 2 weeks after the transponder implants.

The rats received food (rodent chow pellets, 5001) ad-libitum in LD

12:12 for 15 days, with one day in constant dark (DD; day 10).

Food was removed for 42 h, and then provided for 4 h daily,

beginning 6 h after lights-on (zeitgeber time 6, where ZT0 is

defined as lights-on, by convention). After 20 days, the lights were

turned off for 3 days of DD. Food was provided at the usual time

on the first DD day, and was removed for the final 50 h. Food was

then provided ad-libitum for 19 days, removed for 38 h and then

provided for 4 h each night, beginning 9 h after lights-off (ZT21).

The lights were turned off for 3 days, a last meal was provided at

ZT21, and the rats were then food deprived for the last 60 h of

constant dark. Food was then available ad-libitum for 5 days,

removed for 54 h, and then provided for 4 h each day at ZT6, for

9 days. The rats then received an overdose of pentobarbitol

(Euthanol) and were processed for histological analysis of the

lesions.

Histological analysis
The rats were perfused transcardially with 50 ml of 0.1 M

phosphate buffered saline (PBS, pH,7.3) followed by 50 ml of 4%

paraformaldehyde in PBS (PFA, pH,7.3). Brains were removed,

postfixed in PFA, cryoprotected in 20% sucrose overnight, and

then frozen sectioned at 40 mm in a cryostat for histological

confirmation of the lesion site. Sections were mounted on slides

and stained for Nissl with cresyl violet. Brain sections were

evaluated using a Nikon Eclipse 80i light microscope. The extent

of the lesions was assessed based on loss of neurons and presence of

DMH Lesions and Food Anticipation
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gliosis. Templates of the DMH were created based on the Paxinos

and Watson rat brain atlas and published photomicrographs

[29,35]. The DMH area was divided into quadrants, with each

box representing 12.5% of total DMH area per section. The

amount of undamaged DMH tissue in each box was estimated as a

percentage of volume.

Activity and Tb analyses
Activity and Tb data were evaluated in the form of raster plots

displaying all days and waveforms averaged over blocks of days

using Clocklab (Actimetrics, Inc., IL), Circadia (Dr. T. A. Houpt,

Florida State U, USA), and Prism (Graphpad Software, Inc., San

Diego) software. Food anticipation was quantified by expressing

activity during the 3 h prior to mealtime (ZT3-6) as a ratio relative

to total daily activity [16] or to activity from ZT12-ZT3 [24]. The

two methods produced equivalent results, therefore only the latter

is presented here. The amplitude of the day-night rhythm of

activity was expressed as a nocturnality ratio by dividing 12 h

nightime activity by the 24 h daily total. The amplitude of the Tb

rhythm was expressed as a difference between the mean at night

and the mean in the day. Group means of activity and Tb data

were calculated separately for the high IBO dose rats, the low IBO

dose rats, and the DMH intact control groups (unlesioned and

sham operated rats combined). Group differences were evaluated

statistically using 2-way repeated measures ANOVA (Prism 5.0,

Graphpad Software) and planned t-tests.

Results

DMH lesions
The hypothalamus of rats that received IBO infusions presented

with an expanded 3rd ventricle and loss of identifiable DMH tissue

ranging from minor (estimated to be = ,15%, e.g., Fig. 1B) to severe

(estimated to be 100%; e.g., Fig. 1C). In the most severe case

(Fig. 1C), the 3rd ventricle extended laterally to within ,200 mm of

the fornix, dorsally to the mammilothalamic tract, and ventrally to

the arcuate nucleus. The ventromedial hypothalamus was absent on

one side and reduced by 50% contralaterally. The medial 50% of the

arcuate was also destroyed. Tissue surrounding the border of the

lesion was heavily gliosed. The large size of the lesion cavity likely

reflects the extended post-lesion survival time, sufficient to permit

removal of cellular debris. Fibers of passage spared by the neurotoxin

presumably run through intact and gliosed tissue surrounding the

expanded 3rd ventricle. Most of the other rats receiving the 300 nl

volume injections also exhibited extensive damage to the DMH, but

in each case some of the DMH pars compacta could be identified at

least unilaterally in at least 2 sections, and total surviving DMH

volume was estimated to range from 20% to 80% across rats. Rats

receiving the 100 nl volume injections showed much smaller lesions,

characterized by some expansion of the 3rd ventricle, and damage

estimated to be 20% or less.

Activity during ad-lib food access and food deprivation
Based on group differences in lesion size, group means were

calculated separately for rats receiving high-dose and low-dose

IBO lesions. Raster plots and average waveforms of activity data

from 4 rats are illustrated in Figure 2, to represent an intact rat

with a strong food anticipatory activity rhythm (Fig. 2A), and the

rat from each of the three groups that had the lowest magnitude

daytime food anticipatory rhythms, based on food anticipation

ratios (control rat, Fig. 2B; low-dose IBO rat with ,85% DMH

intact, Fig. 2C; high-dose IBO rat with no DMH detectable,

Fig. 2D.). Group average waveforms for each feeding condition

are illustrated in Figure 3.

Figure 1. Digital images of 40 mm cresyl violet stained coronal brain sections through the hypothalamus at two levels of the
dorsomedial hypothalamic nucleus (DMH). A–C: ,2.9 mm posterior to bregma (Paxinos and Watson, 2009). D–F: ,3.24 mm posterior to
bregma. (A,D). An intact rat. (B,E). A rat sustaining minor (,20%) DMH damage. (E,F). The rat sustaining the largest lesion, with complete ablation of
the DMH, including the DMH pars compacta (PC), and partial damage to the ventromedial hypothalamic nucleus (VMH) and the arcuate nucleus
(ARC).
doi:10.1371/journal.pone.0024187.g001
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Figure 2. Activity and body temperature rhythms in representative intact and DMH-lesion rats. Raster plots of locomotor activity (A–D),
and average waveforms of locomotor activity (E–H) and body temperature (I–L) from an intact control rat with strong daytime food anticipatory
rhythms (A,E,I), an intact rat with the weakest daytime food anticipation (B,F,J; defined by the lowest food anticipation ratio during daytime feeding),
the rat with the lowest daytime food anticipation ratio (C,G,K) from the group that received a low-dose ibotenic acid microinjection causing a small
partial lesion, and the rat with the lowest daytime food anticipation ratio (C,G,K) from among rats receiving a high-dose lesion that induced a
complete DMH lesion (Fig. 1C,F). The raster plots illustrate activity summed in 10 min bins. Each line represents 24 h of recording, with time of day
plotted from left to right (144 time points/day), and consecutive days aligned vertically. Time bins in which activity counts were registered are
represented by a heavy bar, the height of which signifies the amount of activity (1–10 counts, 11–20 counts and .20 counts/10 min). Grey shading
denotes lights-off (hours 12–24 of LD, or all day during constant dark tests). Scheduled mealtime during food restriction are denoted by opaque
columns labeled ‘4-h meal’, with red signifying a daytime meal (hours 6–10 of the light period) and blue signifying a late nighttime meal (hours 21–
01). Small red arrowheads pointing down denote beginning of total food deprivation test, and small green arrowheads pointing up denote the end
of food deprivation. Waveforms of activity (E–H) and temperature (I–L) data were creating by averaging across 5 days of ad-lib food access prior to
food restriction (grey shaded waveforms), the last 5 days of the daytime feeding schedule (light weighted red lines) and the last 5 days of the
nightime feeding schedule (heavy weighted blue lines). 4-h mealtimes are denoted by the translucent columns. The daily lights-on period is denoted

DMH Lesions and Food Anticipation
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Mean daily activity levels were compared during ad-lib food

access (in LD and DD), restricted feeding (the last 5-day block of

daytime and nightime feeding) and total food deprivation (2-day

blocks prior to restricted feeding and after both daytime and

nightime feeding schedules), for a total of 7 feeding conditions.

There was a significant main effect of lesion group (F(2,27) = 8.96,

p = .001) and feeding condition (F(6,162) = 34.21, p,.0001;

Fig. 4A). Relative to control rats, high-dose IBO rats exhibited

significantly lower mean daily activity levels during all of the

feeding conditions (p,.05 for each between-group contrast), with

the exception of the first food deprivation test prior to restricted

feeding. Activity levels in low-dose IBO rats were more variable

by the yellow horizontal bar above the x-axis. To improve the clarity of the waveforms, the data were subjected to a second order smoothing
polynomial averaging across 4 neighbouring data points (Prism 5.0 for Mac OS X). Raw (unsmoothed) data were used for the raster plots and
statistical analyses.
doi:10.1371/journal.pone.0024187.g002

Figure 3. Group mean waveforms of activity data in intact controls rats (black dotted curves with standard error bars above and
below the means), and in rats receiving small partial DMH lesions created by low-dose ibotenic acid (IBO) microinjections (blue
curves with error bars above the means) or larger lesions created by high-dose IBO injections (red curves with error bars below the
means). A. Ad-lib food access in a LD cycle, with the light period (hours 0–12) denoted by the heavy yellow bar above the x-axis. B. Ad-lib food
access during a day in constant dark. C. Average of the last 5-days of daytime restricted feeding, with the daily 4-h mealtime (hours 6–10 of lights-on)
denoted by the translucent column. D. Average of the last 5-day of nightime restricted feeding (hours 21–01). E. Average of days 2–3 of total food
deprivation following the daytime feeding schedule. F. Average of the days 2–3 of total food deprivation following the nightime feeding schedule.
doi:10.1371/journal.pone.0024187.g003
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and did not differ from the intact group, but trended to be higher

than the high-dose IBO group. During the food deprivation tests

and the last 5-day blocks of daytime and nightime restricted

feeding, mean daily activity levels were increased in all groups

relative to ad-lib food access (p,.05 for each within-group

contrast), with the exception of the daytime restricted feeding in

the high-dose IBO rats.

Nocturnality ratios for locomotor activity also differed

significantly by group (F(2,27) = 6.62, p,.005; Fig. 4B) and by

feeding condition (F(6,162) = 86.91, p,.0001), with a significant

interaction (F(12, 162) = 1.88, p = .04). The high-dose and low-

dose IBO groups did not differ, but compared to the control rats,

both groups exhibited a significantly lower nocturnality ratio

(percent of total daily activity occuring during the usual dark

period) during ad-lib food access in LD and DD and during the

42 h food deprivation prior to restricted feeding (p,.05). The

group differences in the other conditions were not significant.

Within groups, nocturnality ratios were not altered during the

42 h food deprivation. Nocturnality ratios greatly decreased

during daytime restricted feeding, and during the total food

deprivation test that immediately followed, consistent with the

presence of a persisting rhythm of daytime food anticipatory

activity in all 3 groups.

Food anticipatory activity
All rats exhibited food anticipatory activity during both the

daytime and the nighttime restricted feeding schedules, but

daytime anticipation was weak in some DMH ablated rats (e.g.,

Fig. 2G,H), and more robust at night in all rats. Waveforms of

activity averaged in 5-day blocks showed that during restricted

feeding, all rats exhibited a progressive increase of activity during

the 3 h prior to mealtime, with maximal values reached during the

30 min immediately preceeding mealtime (Figs. 2,3). Turning the

lights off during the last day of scheduled feeding had no effect on

the timing or amount of anticipatory activity.

Food anticipation was quantified by calculating ratios of activity

during the 3 h prior to mealtime relative to activity during the rest

of the day (excluding mealtime to lights-off, ZT6-12, when activity

is partly evoked by delivery and removal of food, rather than

spontaneous). Ratios were averaged in 5-day blocks during ad-

libitum food access and the two 20-day feeding schedules in LD.

Low- and high-dose IBO groups exhibited similar average

waveforms and ratios and were therefor combined to increase

power for statistical contrasts with the intact rats. Repeated

measures ANOVA revealed a significant effect of time block

(F(11,286) = 127.8, p,.0001) and a significant interaction between

time block and group (F(22,286) = 2.45, p = .0004) but no effect of

group alone (F(2,26) = 2.69, p = .09). A series of planned one-tailed

t-tests (statistically liberal) was also conducted to contrast

anticipation ratios between the high-dose IBO and control group

alone, for each of the 4 blocks of daytime and nighttime feeding

schedules, but no group differences were significant at p,.05, even

without bonferroni correction for multiple tests.

Although the group mean anticipation ratios did not differ

during restricted feeding, the 6 rats with the lowest magnitude

ratios during the daytime feeding schedule (expressed as

differences from the ratio calculated for the ad-libitum food access

baseline block) were all among the DMH lesion groups (Fig. 5A).

In each case, when mealtime was shifted to the night, the

magnitude of the anticipation ratio increased to within the range

exhibited by intact rats (Fig. 5B). The improvement from daytime

to nighttime food anticipation is best illustrated by the rat that

sustained the largest DMH lesion (100% complete) following high-

dose IBO (Fig. 2D,H). This rat exhibited the weakest anticipation

of the daytime meal (defined as the lowest anticipation ratio during

the last 5-day block of restricted feeding), but much stronger

anticipation of the nightime meal, at a level comparable to an

intact rat.

The remaining 8 rats with DMH lesions showed daytime food

anticipation ratios within the range exhibited by intact rats, and on

average did not show enhanced anticipation ratios during

nocturnal restricted feeding. All of the DMH lesions in these rats

were partial, and tended to be smaller and less symmetrical than

the lesions in the 6 rats with the lowest anticipation ratios.

However, due to a wide range of lesion size within groups, the

difference was not statistically significant (2568% vs 41626%

complete, t(12) = 1.08, p = 0.29).

Anticipation rhythms evident during the two feeding schedules

persisted during 2 days of total food deprivation tests in DD

(Fig. 3E,F). This was confirmed by inspection of average

waveforms and by anticipation ratios for all individual rats. The

magnitude of persistence appeared weaker following the nighttime

restricted feeding in the high-dose IBO group, but this apparent

difference was not statistically significant compared to the other

groups.

Following the nighttime restricted feeding schedule and a week

of ad-lib food access the rats were subjected to a 2-day food

deprivation and a second and final daytime feeding schedule for 9

Figure 4. Total daily activity and nocturnal activity in intact
and DMH lesion rats. A. Group mean daily activity counts in intact
rats (solid black bars), low-dose ibotenic acid lesion rats (stripped bars)
and high-dose lesion rats (white bars), during adlib food access in LD
and constant dark (DD), during 2 days of total food deprivation (FD)
prior to daytime restricted feeding, during the last 5-day block of the
20-day daytime restricted feeding (RFL-B4), during total food depriva-
tion after daytime restricted feeding (RFL-FD), during the last 5-day
block of nightime restricted feeding (RFD-B4) and during the food
deprivation that immediately following nighttime restricted feeding
(RFD-FD). B. Nocturnality ratios of activity data from each group under
the same 7 food access conditions as in Panel A. Significant differences
(p,.05) relative to the intact group within each condition are denoted
by a star.
doi:10.1371/journal.pone.0024187.g004
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days. Food anticipation ratios during the last 5 days of this

schedule did not differ from ratios during the second 5 day block of

the first daytime feeding schedule, indicating that higher

anticipation ratios during nighttime restricted feeding were not

due a gradual recovery over time.

Body temperature
During ad-libitum food access in LD, Tb was higher at night than

during the day in all rats (Fig. 2I–L; Fig. 6A). The day-night Tb

difference was significantly greater in the intact rats by contrast

with the low-dose and high-dose IBO rats combined (0.67u6.04uC
vs 0.51u6.04uC, respectively; p,.05; Fig. 7A), although not by

contrast with the two lesion groups separately. Similar daily

rhythms and group difference was also evident in DD (0.68u6.06u
vs. 0.53u6.04uC, respectively; p,.05; Fig. 6B, 7A).

The Tb daily waveforms were markedly altered by the feeding

schedules. During daytime restricted feeding, all three groups

exhibited a relative hypothermia during the first 3–4 h of the light

period, with mean Tb declining into the 36.0–36.4u range, or

about 0.4–0.8uC below normal values for that time of day

(Fig. 6C,E). During the 3 h prior to the daily meal at ZT6, group

mean Tb increased monotonically in all 3 groups. Within the first

30 min of meal onset, Tb increased rapidly by another ,0.7uC,

before briefly settling by ,0.2uC. This was followed by a gradual

increase of ,0.3–0.5uC over the remaining 2.5 h of food access.

All rats in all groups exhibited this pattern, including the rat with

the largest DMH lesion (Fig. 2L).

During the 2 days of total food deprivation, the Tb daily

waveforms were virtually identical to the waveforms during

scheduled feeding, except for the absence of the initial rapid rise

of Tb that occurred during the first 30 min of food access. Tb

declined abruptly at the end of the mealtime, during restricted

feeding and during the total food deprivation days. During the

nighttime restricted feeding schedule, Tb again exhibited a

monotonic increase prior to mealtime in all intact and DMH

ablated rats, and this pattern persisted during 2 days of total food

deprivation. Daytime hypothermia was absent during the

nocturnal feeding schedule.

Although there were no group differences in the effects of

scheduled feeding on the waveforms of the Tb rhythms, ANOVA

revealed a significant effect of both group (F(2,156) = 9.20,

p = .0002) and feeding condition (F(5,156) = 14.43, p,.0001) on

average daily Tb (Fig. 7B). During ad-lib food access in LD and

DD, mean daily Tb was significantly lower in the two IBO lesion

groups relative to the control group (p,.05). Group differences

were not significant during restricted feeding (Fig. 6, 7B). Across

feeding conditions, mean daily Tb in each group were significantly

lower during the food deprivation tests relative to ad-lib food

access. There was also a trend for lower mean daily Tb during

daytime scheduled feeding relative to nighttime scheduled feeding

(Fig. 7B).

Discussion

The landmark discovery of a retinorecipient, light-entrainable

master circadian pacemaker in the SCN suggested by analogy that

SCN-independent food-entrainable oscillators hypothesized to

drive food anticipatory circadian rhythms might be similarly

located in the hypothalamus, possibly in a single structure

containing neurons responsive to nutrients or other feeding-related

signals. Lesion studies of medial and lateral hypothalamic

structures failed to identify a critical locus [6,36] until a report

that neurotoxic (axon sparing) lesions in the DMH strongly

attenuated food-anticipatory behavioral and Tb rhythms in rats

[16]. All of the lesions in that study were partial, and all of the

ablated rats showed at least some anticipatory activity, but a

significant correlation between the amount of DMH damage and

the food anticipation ratios supported an inference that complete

lesions would have eliminated anticipatory rhythms altogether.

This was the basis for the conclusion that the DMH is ‘critical’ for

food anticipatory rhythms. A prediction from this conclusion is

that complete removal of the DMH using electrolytic or

radiofrequency lesion methods, which kill all cells and fibers of

passage, would eliminate anticipatory rhythms. The results of two

studies failed to confirm that prediction, and showed instead

robust food anticipatory rhythms in rats with very large lesions

that unambiguously removed the entire DMH, based on the

absence of medial hypothalamic tissue bilaterally between the

fornix and the 3rd ventricle, from the top of the 3rd ventricle

extending ventrally to the middle of the ventromedial hypothal-

amus [23,24]. The presence of clear neuroanatomical landmarks,

including the fornix, mammilothalamic tract and ventromedial

hypothalamus, eliminated any doubt that the DMH was entirely

removed. Differences in cage design, recording method, and

feeding procedures were ruled out as relevant [24,25]. That left

the seeming paradox that partial DMH lesions created with a

neurotoxin can markedly attenuate food anticipatory rhythms,

while total DMH removal by radiofrequency current does not.

Figure 5. Food anticipatory activity (FAA) ratios for each DMH lesioned (A) and intact (B) rat, averaged over the last 5 days of
daytime restricted feeding (ZT6-10 meal) and nightime restricted feeding (ZT21-1 mealtime). Ratios are calculated by dividing total
activity during the 3-h immediately preceding mealtime by total activity during the 12-h night plus the first 3-h of the light period, and are expressed
as difference scores from the same ratios calculated for the ad-lib food access condition. Data points from individual rats are conncected by lines. The
upper and lower red dotted lines denotes the lowest anticipation ratios in the intact rats and the lesion rats, respectively.
doi:10.1371/journal.pone.0024187.g005
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The neurotoxin ibotenic acid kills only a subpopulation of

neurons and spares fibers of passage, while radiofrequency lesions

destroy all neurons, glia and fibers of passage indiscriminately.

Taken together, the results indicate that the DMH cannot be the

exclusive site of food-entrainable oscillators sufficient to produce

robust food anticipatory rhythms, and suggest that fibers of

passage through this area may play some role in the expression of

these rhythms. This led to a working hypothesis that fibers of

passage damaged by very large radiofrequency DMH lesions

might include direct or polysynaptic projections from the SCN

pacemaker that are responsible for inhibiting activity and arousal

during the daily sleep period (lights-on) in nocturnal rats. If DMH

neurons played a role inhibiting SCN output, then selective

removal of DMH neurons by neurotoxin would attenuate food

anticipatory activity, while removal of DMH neurons and SCN

outputs concurrently by large radiofrequency lesions would leave

food anticipatory rhythms largely spared. According to this model,

food anticipatory rhythms in rats with neurotoxic DMH lesions

should be restored by removing the SCN or by scheduling food at

night, when the SCN does not oppose the expression of activity.

The present study therefore had two objectives. The first

objective was to duplicate the recording (radiotelemetry), feeding

and lesion methods used by Gooley et al [16] to determine if the

results of that study could be replicated. The results do confirm

Figure 6. Group mean waveforms of body temperature (Tb) data in intact controls rats (black dotted curves with standard error
bars above and below the means), and in rats receiving small partial DMH lesions created by low-dose ibotenic acid (IBO)
microinjections (blue curves with error bars above the means) or larger lesions created by high-dose IBO injections (red curves
with error bars below the means). A. Ad-lib food access in a LD cycle, with the light period (hours 0–12) denoted by the heavy yellow bar above
the x-axis. B. Ad-lib food access during a day in constant dark. C. Average of the last 5-days of daytime restricted feeding, with the daily 4-h mealtime
(hours 6–10 of lights-on) denoted by the translucent column. D. Average of the last 5-day of nightime restricted feeding (hours 21–01). E. Average of
days 2–3 of total food deprivation following the daytime feeding schedule. F. Average of the days 2–3 of total food deprivation following the
nightime feeding schedule.
doi:10.1371/journal.pone.0024187.g006
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that DMH lesions can attenuate daytime food anticipatory

activity, but do not confirm a loss of food anticipatory increases

in Tb. The second objective was to test the prediction that

attenuation of food anticipatory activity to daytime meals in DMH

lesioned rats could be corrected by shifting mealtime to the night.

The results are consistent with that prediction, although group

mean differences between lesion and intact rats in the magnitude

of food anticipatory rhythms in the day and the night were not

great.

Using two different volumes of 10% ibotenic acid, we were able

to create DMH lesions varying in size from 10–100% complete.

These lesions had modest but significant effects on activity and Tb

relative to intact rats. When food was available ad-libitum, total

daily locomotor activity was lower in high-dose IBO rats, and

nocturnality was lower in both IBO lesion groups. Average daily

Tb was also significantly lower in the lesion groups, as was the day-

night Tb difference. These effects on activity and Tb are consistent

with those reported in previous DMH lesion studies using

radiofrequency [24] or ibotenic acid lesion methods [35]. Group

differences in average daily activity were also evident during the

restricted feeding schedules, while Tb differences between groups

were minimal.

Despite the group differences evident in the mean levels of

activity and Tb during ad-libitum food access, group differences in

food anticipatory activity (anticipation ratios) or in the premeal rise

of Tb during daytime or nightime restricted feeding schedules were

not statistically significant. Nonetheless, a subset of 6 rats with

DMH lesions exhibited low anticipation ratios relative to baseline

during the daytime feeding schedule, and in all cases the

magnitude of these ratios improved during nightime feeding

schedules to within the range exhibited by intact rats. These results

are as predicted if the DMH participates in the expression of food

anticipatory activity by exerting a time-of-day (circadian phase) -

dependent inhibitory effect on sleep-promoting outputs from the

light-entrained SCN pacemaker. The other 8 rats with DMH

lesions exhibited anticipation ratios during restricted daytime

feeding that were within the range exhibited by intact rats. This

presumably reflects sparing of a sufficient population of DMH

neurons.

An instructive individual case is that of the rat with the largest

lesion, in which the DMH was completely destroyed (Fig. 1C, 2D).

This rat exhibited the lowest food anticipation ratio during

daytime feeding, and marked improvement of the ratio relative to

baseline during the nighttime feeding schedule. While this result

supports the hypothesis that the DMH may play a modulatory role

in the expression of food anticipation, it does not support a

conclusion that the integrity of the DMH is critical either for food

anticipatory behavior or a premeal rise of Tb. Food anticipation

ratios for this rat, although lower than for other rats, were

significantly different from ad-libitum baseline days by the second 5-

day block of daytime restricted feeding. Furthermore, the

anticipation rhythm persisted in DD when meals were omitted

for 2 consecutive days. Although the raster style plots for this rat

(and even for some intact rats, e.g., Fig. 2B) suggest low amplitude

food anticipatory rhythmicity at best, average waveforms and

anticipation ratios reveal a persisting ability to coordinate behavior

and physiology (Tb) with predictable daily mealtimes. Whatever

role the DMH might play in this function, it is not essential.

Another notable detail in the data from this rat is that during

the last 5-day block of daytime food restriction, Tb rose by ,1uC
from ZT2 (2 h after lights-on) to ZT6 (meal delivery time), as it did

in the intact rats. However, within this 4 h time block, Tb

decreased slightly from ZT4-5 (Fig. 2L). If only the 2–3 h

immediately before mealtime are used to describe Tb, without

presenting full 24 h waveforms from both the food restriction and

the ad-libitum food access conditions, the results may be misleading.

Inspection of full 24 h waveforms for this rat, and for the group

data, clearly shows that across hours 2–6 of the light period, Tb

does rise steeply when DMH lesion rats are fed at ZT6, by contrast

with the Tb waveform during ad-lib food access.

The lack of effect of even complete DMH ablation on the early

daytime hypothermia and the subsequent premeal rise of Tb prior

to a daily feeding at ZT6 is consistent with the results of other

studies showing that the DMH does not participate critically in

metabolic and peripheral clock adaptations to restricted feeding

schedules. A lower average Tb during caloric restriction is adaptive

by minimizing energy expenditure, and evidently this response is

not dependent on the DMH. Another study has shown that

resetting of circadian oscillators in peripheral organs is not affected

by very large DMH lesions that included significant damage to the

ventromedial hypothalamus and arcuate nucleus [37].

The results of this study confirm that the DMH does not contain

circadian oscillators critical for driving food anticipatory rhythms

of activity or Tb, but might facilitate expression of food entrainable

Figure 7. Group mean body temperatures in intact rats (black
bars), low-dose DMH lesion rats (stripped bars) and high-dose
lesion rats (white bars), expressed as A. dark-light differences
during ad-lib food access in LD and DD, and as B. 24-h daily means
during each of 7 feeding conditions. Abbreviations: RFL, last 5 days of
restricted feeding in the light period; RFD, last 5 days of restricted
feeding in the dark period; FD, 3-days of total food deprivation
immediately following RFL or RFD.
doi:10.1371/journal.pone.0024187.g007
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oscillators located elsewhere in the brain by actively inhibiting

outputs from the SCN pacemaker that normally promote sleep

and inhibit activity in the day. These conclusions are consonant

with the results and conclusions of another study that demon-

strated a neural basis for inhibition of the SCN by the DMH, and

that provided evidence for recovery of attenuated food anticipa-

tory rhythms in DMH lesioned rats by subsequent removal of the

SCN [30]. Although some DMH neurons express daily rhythms of

circadian clock gene expression in nocturnal rats and mice on

daytime restricted feeding schedules, clock genes in this area can

be induced by food deprivation alone, and by randomized feeding

schedules that do not generate food anticipatory rhythms

[17,38,39]. These observations are consistent with a role for

DMH neurons as sensors of caloric restriction that modulate SCN

output during the day, to enable hungry animals to exploit the

daytime temporal niche when nutritional needs are not being met

by foraging at night. These results underscore the potential

importance of employing both daytime and nightime restricted

feeding schedules to thoroughly phenotype food anticipatory

rhythms in rats with neural or genetic deficiencies.
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