

Received 26 March 2015 Accepted 23 April 2015

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; zwitterion; hydrate; tape-like motif; hydrogen bonding

CCDC reference: 1061352 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of [2-(triethylammonio)ethyl]-[(2,4,6-triisopropylphenyl)sulfonyl]amide tetrahydrate

CrossMark

C. Golz and C. Strohmann*

Otto-Hahn-Strasse 6, Dortmund, D-44227, Germany. *Correspondence e-mail: carsten.strohmann@tu-dortmund.de

The zwitterionic title compound, $C_{23}H_{42}N_2O_2S.4H_2O$, crystallized as a tetrahydrate from a solution of N-[(2,4,6-triisopropylphenyl)sulfonyl]aziridine in triethylamine, diethyl ether and pentane in the presence of moist air. It is formed by a nucleophillic ring-opening that is assumed to be reversible. The molecular structure shows a major disorder of the triisopropylphenyl group over two equally occupied locations. An interesting feature is the uncommon hydrate structure, exhibiting a tape-like motif which can be classified as a transition of the one-dimensional T4(2)6(2) motif into the two-dimensional L4(6)5(7)6(8)motif.

1. Chemical context

The title compound was isolated as by-product while purifying the corresponding sulfonylaziridine via column chromatography using a solvent mixture containing triethylamine. Interestingly, the zwitterionic title compound was formed by the nucleophilic ring-opening of the aziridine. This is so far undocumented for tertiary amines but well known for primary or secondary amines (Hu, 2003). We assume that this ringopening reaction is reversible, since the aziridine was isolated in the absence of water. Possibly, the zwitterionic structure is stabilized by the water molecules and/or by crystallization, preventing the reverse reaction. Furthermore, the four incorporated solvent water molecules in the crystal structure form a tape-like hydrate structure comparable to some known hydrogen-bonding motifs (Infantes et al., 2003). This is discussed further in the Supramolecular features section.

The asymmetric unit consists of a [2-(triethylammonio)ethyl]-[(2,4,6-triisopropylphenyl)sulfonyl]amide and four water molecules (Fig. 1). The triisopropylphenyl substituent is disordered over two slightly tilted locations with almost equal occupancies. No superlattice could be found and statistical

disorder was assumed. Furthermore, the benzene ring appears to be bent towards the sulfur, which was also observed in the corresponding aziridine compound; for the structure of rac-2phenyl-1-[(2,4,6-triisopropylbenzene)sulfonyl]aziridine,

Golz et al. (2014) and for isopropyl 2,4,6-triisopropylphenyl

2. Structural commentary

OPEN O ACCESS

see

Figure 1

The molecular structure and atom numbering for the title compound with displacement ellipsoids drawn at the 30% probability level. Atoms of the minor disorder component are drawn with grey-coloured C atoms.

sulfone see Sandrock *et al.* (2004). This seems to be typical of the triisoproylphenylsulfonyl group, though that will not be discussed further due to the disorder. The C2–N2 bond involving the cationic N atom is long [1.521 (2) Å], significantly exceeding the sum of the van der Waals radii (1.47 Å), while the C1–N1 bond [1.475 (2) Å], involving the anionic N atom, is close to the sum of the van der Waals radii. In contrast, the S–N1 bond [1.571 (1) Å] is shortened significantly, with the sum of the van der Waals radii being 1.73 Å. Both nitrogen groups are in an almost perfect antiperiplanar conformation [N1–C1–C2–N2 = 179.7 (1)°].

Figure 2

A view of the hydrate structure expanding along (100). H atoms not involved in hydrogen bonds and the isopropyl groups have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x - 2, y, z; (iii) x - 1, y - 2, z - 1; (iv) x - 2, y - 2, z - 1; (v) x - 3, y - 2, z - 1.]

Table 1	
Hydrogen-bond g	eometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O4-H4D\cdots O3$	0.83 (2)	2.04 (2)	2.867 (2)	171 (2)
O3−H3C···O5	0.90(2)	1.83 (2)	2.725 (2)	174 (2)
$O3-H3D\cdots O6^{i}$	0.85 (3)	2.08 (3)	2.912 (2)	169 (2)
$O5-H5C\cdots O2^{ii}$	0.83 (3)	2.09 (3)	2.901 (2)	165 (2)
$O6-H6D\cdots O4$	0.86(2)	1.95 (2)	2.787 (2)	167 (2)
$O6-H6E\cdots O3^{iii}$	0.82(3)	2.03 (3)	2.845 (2)	170 (2)
$O5-H5D\cdots N1$	0.84 (3)	2.05 (3)	2.881 (2)	170 (2)
$O4-H4E\cdots N1^{ii}$	0.92 (3)	2.06 (3)	2.959 (2)	165 (3)

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) -x + 3, -y + 2, -z + 1.

3. Supramolecular features

Intermolecular interactions occur mostly through hydrogen bonding of the water molecules among themselves and with the zwitterionic compound (Table 1). Three of the four water molecules form an infinite tape of interconnected four- and six-membered rings known as the T4(2)6(2) motif. Each ring contains a centre of symmetry and the tape expands in the [100] direction. Interestingly, the border of the tape is lined with the zwitterionic compound and one additional water molecule, thus expanding the tape with five- and sixmembered rings involving the O4-O6-O3-O5-N1 and O4-O3-O5-O2-S1-N1 atoms, respectively (Fig. 2 and Fig. 3). The structure is comparable to the L4(6)5(7)6(8) motif, building up two-dimensional sheets, which are limited here by the zwitterionic amide. In summary, the hydrate structure discussed herein represents a transition between a one-dimensional tape and a two-dimensional sheet.

Some recent structures involving water forming the T4(2)6(2) hydrogen-bonding motif have been published (Li, Li, Su *et al.*, 2006; Li, Chen *et al.*, 2006; Song *et al.*, 2007; Kostakis *et al.*, 2009). There are only a few examples of twodimensional hydrogen-bond networks known, but among these the L4(6)5(7)6(8) motif is the most common. For recent examples, see Born *et al.* (1995) and Gómez-Saiz *et al.* (2002).

4. Database survey

Comparable zwitterionic structures with neighbouring amide and ammonium groups are quite uncommon. Only one related structure was found in the Cambridge Structural database

Figure 3

Hydrate-structure motifs already known (left and right) (Infantes *et al.*, 2003) and the structure reported here (centre).

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{23}H_{42}N_2O_2S \cdot 4H_2O$
$M_{ m r}$	482.71
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	6.6797 (4), 8.7345 (5), 23.3973 (14)
α, β, γ (°)	96.579 (5), 93.734 (5), 95.570 (5)
$V(\text{\AA}^3)$	1345.69 (14)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.16
Crystal size (mm)	$0.34 \times 0.25 \times 0.08$
Data collection	
Diffractometer	Agilent Xcalibur Sapphire3
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2013)
T_{\min}, T_{\max}	0.981, 1.000
No. of measured, independent and	34730, 5881, 4239
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.075
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.049, 0.102, 1.01
No. of reflections	5881
No. of parameters	472
No. of restraints	36
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.24, -0.33

Computer programs: CrysAlis PRO (Oxford Diffraction, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

(Version 5.35, November 2013; Groom & Allen 2014). In the molecule reported here, the N1–C1 bond length [1.475 (2) Å] involving the anionic N atom is normal [sum of van der Waals radii = 1.479 (2) Å], while the C2–N2 bond to the cationic N atom [1.521 (2) Å] is unusually long. This contrasts sharply with the structure of zwitterionic 1-amino-2-nitraminoethane (Vasiliev *et al.*, 2001), where these observations are reversed, with the C–N bond to the anionic N atom reduced to 1.455 (2) Å.

5. Synthesis and crystallization

N-[(2,4,6-Triisopropylphenyl)sulfonyl]aziridine was synthesized from ethanolamine as described in the recent literature (Buckley *et al.*, 2013). Crystals of the title compound were obtained after a test tube containing small amounts of the sulfonylaziridine dissolved in a mixture of diethyl ether, pentane and triethylamine was left to evaporate over a period of 3 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms not involved in hydrogen bonds were positioned geometrically and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(C)$ for terminal and $1.2U_{eq}(C)$ for non-terminal H atoms, with C-H = 0.98 Å. H atoms involved in hydrogen bonds were located in a difference Fourier synthesis map and were freely refined.

The disorder of the triisopropylphenyl group was refined by a free variable to an occupancy ratio of 0.502 (2):0.498 (2). To ensure the stability of the phenyl ring in the refinement, the standard FLAT restraint was applied to atoms C11–C19 and a DELU restraint to atoms C11, C12 and C16, in both of the disorder domains. In addition, atoms C11, C11' and C16' required an additional ISOR restraint with a reduced deviation (s = 0.001 and st = 0.002).

Acknowledgements

We are grateful to the Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie (VCI) for financial support.

References

- Born, M., Mootz, D. & Schaefgen, S. (1995). Z. Naturforsch. Teil B, 50, 101–105.
- Buckley, B. R., Patel, A. P. & Wijayantha, K. G. U. (2013). J. Org. Chem. 78, 1289–1292.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Golz, C., Preut, H. & Strohmann, C. (2014). Acta Cryst. E70, o153.
- Gómez-Saiz, P., García-Tojal, J., Maestro, M. A., Arnaiz, F. J. & Rojo, T. (2002). *Inorg. Chem.* 41, 1345–1347.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hu, X. E. (2003). Tetrahedron, 60, 2701-2743.
- Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486.
- Kostakis, G. E., Abbas, G., Anson, C. E. & Powell, A. K. (2009). CrystEngComm, 11, 82–86.
- Li, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des. 6, 1250–1252.
- Li, F., Li, T.-H., Su, W., Gao, S.-Y. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582–1587.
- Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, 0544–0546.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, X.-Y., Li, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2007). *Cryst. Growth Des.* 7, 1220–1222.
- Vasiliev, A. D., Astachov, A. M., Kekin, Y. V., Kruglyakova, L. A. & Stepanov, R. S. (2001). *Acta Cryst.* C57, 1192–1193.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 564-566 [doi:10.1107/S2056989015008105]

Crystal structure of [2-(triethylammonio)ethyl][(2,4,6-triisopropylphenyl)sulfonyl]amide tetrahydrate

C. Golz and C. Strohmann

Computing details

Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell refinement: CrysAlis PRO (Oxford Diffraction, 2013); data reduction: CrysAlis PRO (Oxford Diffraction, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

[2-(Triethylazaniumyl)ethyl][(2,4,6-triisopropylphenyl)sulfonyl]azanide tetrahydrate

Crystal data	
$C_{23}H_{42}N_2O_2S \cdot 4H_2O$	Z = 2
$M_r = 482.71$	F(000) = 532
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.191 {\rm Mg} {\rm m}^{-3}$
a = 6.6797 (4) Å	Mo $K\alpha$ radiation, $\lambda = 0.710$
b = 8.7345 (5) Å	Cell parameters from 5123
c = 23.3973 (14) Å	$\theta = 2.6 - 28.2^{\circ}$
$\alpha = 96.579 \ (5)^{\circ}$	$\mu = 0.16 \text{ mm}^{-1}$
$\beta = 93.734 \ (5)^{\circ}$	T = 173 K
$\gamma = 95.570 \ (5)^{\circ}$	Plate, clear colourless
$V = 1345.69 (14) \text{ Å}^3$	$0.34 \times 0.25 \times 0.08 \text{ mm}$
Data collection	
Agilent Xcalibur Sapphire3	34730 measured reflection
diffractometer	5881 independent reflectio
Radiation source: Enhance (Mo) X-ray Source	4239 reflections with $I > 2$
Graphite monochromator	$R_{\rm int} = 0.075$
Detector resolution: 16.0560 pixels mm ⁻¹	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(CrysAlis PRO; Oxford Diffraction, 2013)	$l = -29 \rightarrow 29$
$T_{\min} = 0.981, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Primary atom site location
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: mi
$wR(F^2) = 0.102$	H atoms treated by a mixtu
S = 1.01	and constrained refinem

5881 reflections 472 parameters 36 restraints

073 Å reflections

S ns $\sigma(I)$

: structure-invariant ixed ure of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0428P)^2 + 0.1372P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$

$\Delta \rho_{\text{max}} = 0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.46930 (6)	0.84811 (5)	0.73798 (2)	0.01893 (12)	
01	0.32141 (17)	0.72141 (14)	0.71224 (5)	0.0225 (3)	
O2	0.39889 (18)	1.00090 (14)	0.73798 (6)	0.0295 (3)	
03	1.1266 (2)	1.00237 (18)	0.57740 (7)	0.0300 (3)	
O4	1.5372 (2)	0.93656 (17)	0.59417 (7)	0.0322 (4)	
O5	1.0118 (2)	1.06162 (16)	0.68669 (6)	0.0262 (3)	
O6	1.7836 (2)	0.81480 (17)	0.51262 (7)	0.0312 (4)	
N1	0.6732 (2)	0.85102 (16)	0.70803 (6)	0.0186 (3)	
C1	0.7592 (3)	0.70129 (19)	0.70154 (7)	0.0186 (4)	
H1A	0.7122	0.6373	0.7313	0.022*	
H1B	0.9083	0.7186	0.7062	0.022*	
N2	0.7612 (2)	0.46079 (15)	0.62443 (6)	0.0155 (3)	
C2	0.6901 (2)	0.61873 (18)	0.64150 (7)	0.0164 (4)	
H2A	0.5408	0.6063	0.6379	0.020*	
H2B	0.7347	0.6877	0.6130	0.020*	
C3	0.6882 (3)	0.3436 (2)	0.66417 (8)	0.0216 (4)	
H3A	0.7416	0.2440	0.6522	0.026*	
H3B	0.7462	0.3807	0.7039	0.026*	
C4	0.4624 (3)	0.3141 (2)	0.66513 (9)	0.0320 (5)	
H4A	0.4073	0.4116	0.6774	0.048*	
H4B	0.4298	0.2395	0.6922	0.048*	
H4C	0.4032	0.2722	0.6264	0.048*	
C5	0.9904 (2)	0.4708 (2)	0.62907 (8)	0.0213 (4)	
H5A	1.0404	0.5092	0.6694	0.026*	
H5B	1.0311	0.3652	0.6203	0.026*	
C6	1.0912 (3)	0.5746 (2)	0.58966 (8)	0.0291 (5)	
H6A	1.0489	0.5345	0.5494	0.044*	
H6B	1.2380	0.5770	0.5960	0.044*	
H6C	1.0522	0.6798	0.5980	0.044*	
C7	0.6761 (3)	0.4100 (2)	0.56254 (7)	0.0198 (4)	
H7A	0.5270	0.4016	0.5615	0.024*	
H7B	0.7194	0.4918	0.5386	0.024*	
C8	0.7380(3)	0.2575 (2)	0.53547 (8)	0.0281 (5)	
H8A	0.8850	0.2656	0.5344	0.042*	
H8B	0.6745	0.2333	0.4961	0.042*	
H8C	0.6946	0.1750	0.5584	0.042*	
C11	0.5230 (8)	0.8325 (6)	0.8086 (2)	0.0128 (14)	0.5020 (15)
C12	0.6299 (5)	0.9594 (4)	0.84523 (15)	0.0160(7)	0.5020 (15)

C13	0.6466 (5)	0.9557 (4)	0.90455 (14)	0.0179 (8)	0.5020 (15)
H13	0.7179	1.0416	0.9285	0.021*	0.5020 (15)
C14	0.5630 (5)	0.8313 (4)	0.93024 (14)	0.0171 (8)	0.5020 (15)
C15	0.4656 (9)	0.7066 (5)	0.8933 (3)	0.0181 (11)	0.5020 (15)
H15	0.4075	0.6203	0.9100	0.022*	0.5020 (15)
C16	0.4474 (9)	0.6995 (8)	0.8334 (3)	0.0168 (12)	0.5020 (15)
C17	0.7393 (5)	1.1005 (4)	0.82250 (15)	0.0172 (8)	0.5020 (15)
H17	0.7186	1.0852	0.7794	0.021*	0.5020 (15)
C18	0.3527 (5)	0.5456 (4)	0.80066 (16)	0.0203 (8)	0.5020 (15)
H18	0.3777	0.5485	0.7591	0.024*	0.5020 (15)
C19	0.5849 (5)	0.8221 (4)	0.99530 (15)	0.0218 (8)	0.5020 (15)
H19	0.4485	0.7879	1.0074	0.026*	0.5020 (15)
C20	0.9656 (5)	1 1076 (5)	0.83905(17)	0.0293(10)	0.5020 (15)
H20A	0.9905	1.1284	0.8811	0.044*	0.5020 (15)
H20B	1 0375	1 1906	0.8211	0.044*	0.5020 (15)
H20C	1.0139	1.0083	0.8255	0.044*	0.5020(15)
C21	0.6519.(6)	1 2506 (4)	0.84431(19)	0.0331(10)	0.5020 (15)
H21A	0.5071	1.22008 (1)	0.8328	0.050*	0.5020 (15)
H21R	0.7197	1.2400	0.8276	0.050*	0.5020(15)
H21C	0.6731	1.2693	0.8865	0.050*	0.5020(15)
C22	0.1266 (10)	0.5259 (6)	0.8003	0.036 (14)	0.5020(15)
С22 H22A	0.0962	0.5164	0.8441	0.0230 (14)	0.5020(15)
1122A 1122B	0.0902	0.4322	0.7702	0.038*	0.5020(15)
H22D	0.0084	0.4322	0.7792	0.038*	0.5020(15)
П22C	0.0080	0.0103 0.4075(4)	0.7914 0.82033 (17)	0.038°	0.3020(13)
C25	0.4310(0)	0.4073 (4)	0.82035 (17)	0.0281 (9)	0.3020(13)
п23А 1122D	0.3970	0.4234	0.8172	0.042*	0.3020(13)
H23B	0.3947	0.3125	0.7958	0.042*	0.5020 (15)
H23C	0.4243	0.3980	0.8605	0.042*	0.5020 (15)
C24	0.6614 (6)	0.9742 (4)	1.03185 (16)	0.0297 (9)	0.5020 (15)
H24A	0.6546	0.9616	1.0728	0.045*	0.5020 (15)
H24B	0.5775	1.0549	1.0221	0.045*	0.5020 (15)
H24C	0.8015	1.0042	1.0243	0.045*	0.5020 (15)
C25	0.7232 (11)	0.6981 (7)	1.0074 (3)	0.0307 (14)	0.5020 (15)
H25A	0.8594	0.7299	0.9969	0.046*	0.5020 (15)
H25B	0.6711	0.5996	0.9845	0.046*	0.5020 (15)
H25C	0.7278	0.6854	1.0485	0.046*	0.5020 (15)
C11′	0.5178 (9)	0.8031 (6)	0.8164 (2)	0.0110 (13)	0.4980 (15)
C16′	0.3975 (9)	0.6931 (8)	0.8416 (3)	0.0122 (15)	0.4980 (15)
C12′	0.7007 (5)	0.8740 (4)	0.84657 (14)	0.0149 (7)	0.4980 (15)
C13′	0.7689 (5)	0.8181 (4)	0.89710 (15)	0.0175 (8)	0.4980 (15)
H13′	0.8919	0.8650	0.9171	0.021*	0.4980 (15)
C14′	0.6617 (5)	0.6952 (4)	0.91930 (14)	0.0165 (8)	0.4980 (15)
C15′	0.4741 (8)	0.6404 (5)	0.8922 (2)	0.0129 (10)	0.4980 (15)
H15′	0.3936	0.5636	0.9086	0.015*	0.4980 (15)
C17′	0.8201 (5)	1.0221 (4)	0.83205 (14)	0.0149 (7)	0.4980 (15)
H17′	0.7618	1.0467	0.7941	0.018*	0.4980 (15)
C18′	0.1755 (5)	0.6347 (5)	0.82125 (16)	0.0201 (8)	0.4980 (15)
H18′	0.1335	0.6925	0.7887	0.024*	0.4980 (15)

C19′	0.7393 (6)	0.6336 (5)	0.97372 (18)	0.0202 (8)	0.4980 (15)
H19′	0.6572	0.5330	0.9764	0.024*	0.4980 (15)
C20′	1.0444 (5)	1.0021 (4)	0.82672 (18)	0.0213 (8)	0.4980 (15)
H20D	1.1134	1.0970	0.8155	0.032*	0.4980 (15)
H20E	1.0571	0.9148	0.7974	0.032*	0.4980 (15)
H20F	1.1056	0.9817	0.8639	0.032*	0.4980 (15)
C21′	0.7914 (6)	1.1560 (4)	0.87833 (16)	0.0231 (8)	0.4980 (15)
H21D	0.8426	1.1322	0.9162	0.035*	0.4980 (15)
H21E	0.6476	1.1696	0.8790	0.035*	0.4980 (15)
H21F	0.8657	1.2516	0.8694	0.035*	0.4980 (15)
C22′	0.0387 (5)	0.6696 (5)	0.87050 (16)	0.0266 (9)	0.4980 (15)
H22D	-0.1029	0.6520	0.8552	0.040*	0.4980 (15)
H22E	0.0701	0.7778	0.8875	0.040*	0.4980 (15)
H22F	0.0618	0.6011	0.9001	0.040*	0.4980 (15)
C23′	0.1484 (11)	0.4617 (6)	0.7993 (3)	0.0250 (13)	0.4980 (15)
H23D	0.1894	0.4026	0.8305	0.037*	0.4980 (15)
H23E	0.2321	0.4417	0.7669	0.037*	0.4980 (15)
H23F	0.0064	0.4298	0.7864	0.037*	0.4980 (15)
C24′	0.7064 (13)	0.7460 (9)	1.0273 (3)	0.0349 (15)	0.4980 (15)
H24D	0.7516	0.7031	1.0622	0.052*	0.4980 (15)
H24E	0.5627	0.7599	1.0280	0.052*	0.4980 (15)
H24F	0.7840	0.8463	1.0257	0.052*	0.4980 (15)
C25′	0.9588 (6)	0.6021 (5)	0.97315 (18)	0.0364 (11)	0.4980 (15)
H25D	0.9743	0.5244	0.9405	0.055*	0.4980 (15)
H25E	1.0009	0.5633	1.0092	0.055*	0.4980 (15)
H25F	1.0428	0.6982	0.9694	0.055*	0.4980 (15)
H4D	1.414 (3)	0.946 (2)	0.5910 (9)	0.036 (7)*	
H3C	1.081 (3)	1.025 (3)	0.6124 (11)	0.048 (7)*	
H3D	1.036 (4)	0.937 (3)	0.5591 (12)	0.065 (9)*	
H5C	1.110 (4)	1.033 (3)	0.7046 (10)	0.049 (8)*	
H6D	1.695 (4)	0.853 (3)	0.5332 (10)	0.048 (7)*	
H6E	1.794 (4)	0.866 (3)	0.4853 (11)	0.056 (9)*	
H5D	0.909 (4)	1.010 (3)	0.6956 (11)	0.065 (9)*	
H4E	1.565 (4)	0.923 (3)	0.6322 (14)	0.094 (11)*	
			× ,		

Atomic displacement parameters (A^2)	$s(A^2)$	parameters	displacement	Atomic
--	----------	------------	--------------	--------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0136 (2)	0.0180 (2)	0.0234 (2)	0.00158 (17)	-0.00203 (18)	-0.00337 (18)
O1	0.0173 (6)	0.0259 (7)	0.0210(7)	-0.0049 (5)	-0.0018 (5)	-0.0027 (5)
O2	0.0202 (7)	0.0226 (7)	0.0441 (9)	0.0081 (6)	-0.0053 (6)	-0.0041 (6)
03	0.0257 (8)	0.0411 (9)	0.0229 (8)	0.0026 (7)	0.0028 (7)	0.0030 (7)
O4	0.0290 (9)	0.0445 (9)	0.0259 (8)	0.0138 (7)	0.0042 (7)	0.0067 (7)
O5	0.0211 (7)	0.0311 (8)	0.0278 (8)	0.0013 (6)	0.0031 (6)	0.0106 (6)
06	0.0274 (8)	0.0390 (9)	0.0310 (9)	0.0115 (7)	0.0086 (7)	0.0103 (7)
N1	0.0162 (7)	0.0162 (7)	0.0225 (8)	0.0018 (6)	0.0007 (6)	-0.0012 (6)
C1	0.0165 (9)	0.0195 (9)	0.0196 (9)	0.0031 (7)	0.0001 (7)	0.0010 (7)
N2	0.0138 (7)	0.0157 (7)	0.0168 (8)	0.0030 (6)	0.0000 (6)	0.0008 (6)

C2	0.0167 (9)	0.0151 (9)	0.0180 (9)	0.0040 (7)	0.0014 (7)	0.0024 (7)
C3	0.0273 (10)	0.0165 (9)	0.0223 (10)	0.0042 (8)	0.0034 (8)	0.0050 (7)
C4	0.0281 (11)	0.0324 (11)	0.0382 (12)	0.0005 (9)	0.0113 (9)	0.0125 (9)
C5	0.0133 (9)	0.0240 (10)	0.0257 (10)	0.0055 (7)	-0.0027 (8)	-0.0011 (8)
C6	0.0157 (9)	0.0426 (12)	0.0270 (11)	-0.0029 (9)	-0.0011 (8)	0.0025 (9)
C7	0.0153 (9)	0.0247 (10)	0.0173 (9)	-0.0005 (7)	-0.0009(7)	-0.0028 (7)
C8	0.0256 (10)	0.0279 (10)	0.0281 (11)	0.0022 (8)	0.0035 (9)	-0.0080(9)
C11	0.0123 (16)	0.0136 (16)	0.0127 (16)	0.0009 (9)	0.0033 (9)	0.0017 (9)
C12	0.0134 (17)	0.0168 (19)	0.0178 (19)	0.0013 (15)	0.0003 (14)	0.0027 (15)
C13	0.0161 (17)	0.0200 (18)	0.0156 (18)	0.0007 (14)	-0.0019 (14)	-0.0033 (14)
C14	0.0153 (17)	0.0248 (19)	0.0129 (17)	0.0077 (14)	0.0028 (14)	0.0037 (15)
C15	0.020 (2)	0.011 (2)	0.025 (2)	0.000 (2)	0.0075 (17)	0.008 (3)
C16	0.013 (3)	0.020 (3)	0.018 (3)	0.003 (2)	0.002 (2)	-0.0006 (19)
C17	0.0174 (19)	0.0157 (19)	0.0170 (19)	-0.0038 (15)	0.0005 (15)	0.0003 (15)
C18	0.0231 (19)	0.0165 (18)	0.0203 (19)	-0.0058 (15)	-0.0003 (15)	0.0057 (15)
C19	0.0206 (19)	0.030 (2)	0.0155 (18)	0.0016 (16)	0.0041 (15)	0.0043 (16)
C20	0.019 (2)	0.038 (2)	0.031 (2)	-0.0049 (19)	-0.0003 (17)	0.0127 (19)
C21	0.036 (2)	0.019 (2)	0.046 (3)	0.0010 (17)	0.013 (2)	0.0055 (18)
C22	0.023 (3)	0.018 (4)	0.035 (3)	-0.003 (3)	-0.009 (2)	0.009 (3)
C23	0.038 (2)	0.0172 (19)	0.028 (2)	0.0010 (17)	0.0011 (18)	0.0013 (16)
C24	0.039 (2)	0.035 (2)	0.0153 (19)	0.0106 (19)	-0.0028 (17)	-0.0014 (17)
C25	0.045 (3)	0.026 (4)	0.022 (4)	0.008 (3)	-0.006 (3)	0.008 (3)
C11′	0.0113 (15)	0.0120 (16)	0.0097 (15)	0.0002 (9)	0.0018 (9)	0.0016 (9)
C16′	0.0128 (18)	0.0110 (16)	0.0132 (17)	0.0016 (10)	0.0013 (10)	0.0022 (9)
C12′	0.0190 (18)	0.0113 (18)	0.0152 (18)	0.0029 (15)	0.0066 (14)	0.0008 (14)
C13′	0.0144 (17)	0.0195 (18)	0.0176 (18)	-0.0010 (14)	-0.0005 (14)	0.0013 (14)
C14′	0.0174 (18)	0.0186 (18)	0.0136 (17)	0.0035 (14)	0.0013 (14)	0.0007 (14)
C15′	0.013 (2)	0.011 (2)	0.014 (2)	-0.003 (2)	0.0009 (15)	0.005 (2)
C17′	0.0159 (18)	0.0177 (19)	0.0104 (17)	-0.0023 (16)	-0.0014 (14)	0.0040 (15)
C18′	0.0189 (19)	0.023 (2)	0.0183 (19)	-0.0041 (16)	0.0020 (15)	0.0064 (17)
C19′	0.023 (2)	0.021 (2)	0.017 (2)	0.0015 (16)	-0.0015 (17)	0.0060 (17)
C20′	0.0162 (18)	0.023 (2)	0.024 (2)	-0.0024 (16)	0.0063 (16)	0.0035 (16)
C21′	0.026 (2)	0.0180 (18)	0.025 (2)	-0.0012 (15)	0.0074 (16)	0.0033 (16)
C22′	0.0156 (18)	0.037 (2)	0.028 (2)	0.0002 (16)	0.0021 (16)	0.0072 (18)
C23′	0.026 (3)	0.022 (3)	0.026 (3)	-0.004 (3)	0.0007 (19)	0.002 (3)
C24′	0.045 (3)	0.049 (5)	0.014 (3)	0.016 (3)	0.006 (3)	0.005 (3)
C25′	0.034 (2)	0.054 (3)	0.027 (2)	0.022 (2)	0.0028 (19)	0.018 (2)

Geometric parameters (Å, °)

<u>81—01</u>	1.4563 (12)	C19—C24	1.520 (5)	
S1—O2	1.4574 (13)	C19—C25	1.529 (7)	
S1—N1	1.5708 (14)	C20—H20A	0.9800	
S1—C11	1.692 (6)	C20—H20B	0.9800	
S1—C11′	1.934 (6)	C20—H20C	0.9800	
O3—H3C	0.90 (2)	C21—H21A	0.9800	
O3—H3D	0.85 (3)	C21—H21B	0.9800	
O4—H4D	0.83 (2)	C21—H21C	0.9800	

O4—H4E	0.92 (3)	C22—H22A	0.9800
O5—H5C	0.83 (3)	C22—H22B	0.9800
O5—H5D	0.84 (3)	C22—H22C	0.9800
O6—H6D	0.86 (2)	С23—Н23А	0.9800
O6—H6E	0.82 (3)	С23—Н23В	0.9800
N1—C1	1.475 (2)	C23—H23C	0.9800
C1—H1A	0.9900	C24—H24A	0.9800
C1—H1B	0.9900	C24—H24B	0.9800
C1-C2	1 525 (2)	C_{24} H24D	0.9800
$N_2 - C_2$	1.525(2) 1.521(2)	C_{25} H25A	0.9800
N2_C3	1.527(2)	C25_H25B	0.9800
N2 C5	1.527(2) 1.521(2)	C25 H25C	0.9800
N2 C7	1.521(2)		1 200 (8)
$N_2 = C_1$	1.321(2)	C11' - C10'	1.399(0) 1.410(7)
C2—H2A	0.9900	C11 - C12	1.419(7) 1.402(0)
	0.9900	C10 - C13	1.405(9)
C3—H3A	0.9900		1.546 (7)
C3—H3B	0.9900	C12' - C13'	1.396 (5)
C3—C4	1.508 (2)		1.536 (5)
C4—H4A	0.9800	C13'—H13'	0.9500
C4—H4B	0.9800	C13'—C14'	1.401 (5)
C4—H4C	0.9800	C14'—C15'	1.383 (7)
С5—Н5А	0.9900	C14'—C19'	1.518 (5)
С5—Н5В	0.9900	С15'—Н15'	0.9500
C5—C6	1.510 (3)	C17'—H17'	1.0000
С6—Н6А	0.9800	C17'—C20'	1.536 (5)
С6—Н6В	0.9800	C17'—C21'	1.535 (5)
С6—Н6С	0.9800	C18'—H18'	1.0000
С7—Н7А	0.9900	C18′—C22′	1.538 (5)
С7—Н7В	0.9900	C18′—C23′	1.529 (5)
С7—С8	1.514 (2)	С19′—Н19′	1.0000
C8—H8A	0.9800	C19′—C24′	1.542 (6)
C8—H8B	0.9800	C19′—C25′	1.518 (5)
C8—H8C	0.9800	C20′—H20D	0.9800
C11—C12	1.422 (6)	C20′—H20E	0.9800
C11—C16	1.420 (8)	C20′—H20F	0.9800
C12—C13	1.390 (5)	C21′—H21D	0.9800
C12—C17	1.537 (5)	C21′—H21E	0.9800
C13—H13	0.9500	C21′—H21F	0 9800
C13 - C14	1 389 (5)	C22'—H22D	0.9800
C14-C15	1 390 (6)	C22′—H22E	0.9800
C14-C19	1 532 (5)	C22′—H22F	0.9800
C15—H15	0.9500	C_{23} H23D	0.9800
C15-C16	1 392 (9)	C23'—H23E	0.9800
C16_C18	1.572 (7)	C23'_H23E	0.9800
C17_H17	1.0000	$C_{23} = H_{23}$	0.9800
C_{17} C_{20}	1.5000	$C_{24} = 112 + D$	0.2000
C17 - C20	1.529 (5)	$C_{24} = 112 + 12$ $C_{24} = 112 + 12$	0.9800
$C_{1} = C_{2}$	1,0000	$C_{24} = 11241$	0.9000
U10-1110	1.0000	025-11250	0.7000

C18—C22	1.512 (7)	С25′—Н25Е	0.9800
C18—C23	1.530 (5)	C25′—H25F	0.9800
С19—Н19	1.0000		
01—S1—02	113.94 (7)	C17—C20—H20C	109.5
O1—S1—N1	112.66 (7)	H20A—C20—H20B	109.5
O1—S1—C11	110.2 (2)	H20A—C20—H20C	109.5
O1—S1—C11′	103.48 (18)	H20B—C20—H20C	109.5
O2—S1—N1	107.70 (8)	C17—C21—H21A	109.5
O2—S1—C11	104.22 (18)	C17—C21—H21B	109.5
O2—S1—C11′	109.94 (16)	C17—C21—H21C	109.5
N1—S1—C11	107.6 (2)	H21A—C21—H21B	109.5
N1—S1—C11′	108.99 (18)	H21A—C21—H21C	109.5
H3C—O3—H3D	105 (2)	H21B-C21-H21C	109.5
H4D—O4—H4E	105 (2)	C18—C22—H22A	109.5
H5C—O5—H5D	107 (2)	C18—C22—H22B	109.5
H6D—O6—H6E	107 (2)	C18—C22—H22C	109.5
C1—N1—S1	114.54 (11)	H22A—C22—H22B	109.5
N1—C1—H1A	110.1	H22A—C22—H22C	109.5
N1—C1—H1B	110.1	H22B—C22—H22C	109.5
N1—C1—C2	108.09 (14)	C18—C23—H23A	109.5
H1A—C1—H1B	108.4	C18—C23—H23B	109.5
C2—C1—H1A	110.1	C18—C23—H23C	109.5
C2—C1—H1B	110.1	H23A—C23—H23B	109.5
C2—N2—C3	111.46 (12)	H23A—C23—H23C	109.5
C2—N2—C7	106.21 (12)	H23B—C23—H23C	109.5
C5—N2—C2	110.78 (13)	C19—C24—H24A	109.5
C5—N2—C3	106.66 (13)	C19—C24—H24B	109.5
C5—N2—C7	110.95 (12)	C19—C24—H24C	109.5
C7—N2—C3	110.85 (13)	H24A—C24—H24B	109.5
C1—C2—H2A	107.8	H24A—C24—H24C	109.5
C1—C2—H2B	107.8	H24B—C24—H24C	109.5
N2—C2—C1	117.89 (14)	C19—C25—H25A	109.5
N2—C2—H2A	107.8	C19—C25—H25B	109.5
N2—C2—H2B	107.8	C19—C25—H25C	109.5
H2A—C2—H2B	107.2	H25A—C25—H25B	109.5
N2—C3—H3A	108.5	H25A—C25—H25C	109.5
N2—C3—H3B	108.5	H25B—C25—H25C	109.5
НЗА—СЗ—НЗВ	107.5	C16'—C11'—S1	123.9 (5)
C4—C3—N2	115.21 (15)	C16'—C11'—C12'	119.4 (5)
С4—С3—НЗА	108.5	C12′—C11′—S1	116.3 (4)
C4—C3—H3B	108.5	C11′—C16′—C15′	118.7 (6)
C3—C4—H4A	109.5	C11'—C16'—C18'	124.9 (6)
C3—C4—H4B	109.5	C15'—C16'—C18'	116.1 (5)
C3—C4—H4C	109.5	C11'—C12'—C17'	124.8 (4)
H4A—C4—H4B	109.5	C13'-C12'-C11'	118.9 (4)
H4A—C4—H4C	109.5	C13'—C12'—C17'	115.8 (3)
H4B—C4—H4C	109.5	C12'—C13'—H13'	118.9
			1101/

N2—C5—H5A	108.6	C12'—C13'—C14'	122.1 (3)
N2—C5—H5B	108.6	C14′—C13′—H13′	118.9
H5A—C5—H5B	107.6	C13'—C14'—C19'	121.6 (3)
C6—C5—N2	114.60 (14)	C15'—C14'—C13'	117.1 (3)
С6—С5—Н5А	108.6	C15'—C14'—C19'	121.1 (3)
С6—С5—Н5В	108.6	C16'—C15'—H15'	118.5
С5—С6—Н6А	109.5	C14′—C15′—C16′	122.9 (5)
С5—С6—Н6В	109.5	C14′—C15′—H15′	118.5
С5—С6—Н6С	109.5	C12'—C17'—H17'	108.2
H6A—C6—H6B	109.5	C12'—C17'—C20'	112.1 (3)
H6A—C6—H6C	109.5	C20′—C17′—H17′	108.2
H6B—C6—H6C	109.5	C21′—C17′—C12′	108.5 (3)
N2—C7—H7A	108.5	C21'-C17'-H17'	108.2
N2-C7-H7B	108.5	$C_{21}'-C_{17}'-C_{20}'$	111.6 (3)
H7A - C7 - H7B	107.5	C16'-C18'-H18'	108.1
C8-C7-N2	115 17 (15)	$C_{22'}$ — $C_{18'}$ — $C_{16'}$	110 1 (4)
C8-C7-H7A	108 5	$C_{22}' = C_{18}' = H_{18}'$	108.1
C8—C7—H7B	108.5	$C_{23}' - C_{18}' - C_{16}'$	1121(5)
C7-C8-H8A	109.5	$C_{23}' - C_{18}' - H_{18}'$	108.1
C7 - C8 - H8B	109.5	$C_{23}' - C_{18}' - C_{22}'$	110.3(4)
C7 - C8 - H8C	109.5	C14' - C19' - H19'	107.6
H8A - C8 - H8B	109.5	C14'-C19'-C24'	107.0 110.1(4)
H8A - C8 - H8C	109.5	C14' - C19' - C25'	110.1(4) 113.0(3)
	109.5	$C_{24'}$ $C_{19'}$ $H_{19'}$	107.6
C12— $C11$ — $S1$	119.8 (4)	$C_{24} = C_{19} = H_{19}$	107.6
$C_{12} = C_{11} = S_{1}$	1210(4)	$C_{25} = C_{19} = C_{24}$	110.8 (5)
C_{16} C_{11} C_{12}	121.0(4) 1189(5)	$C_{23} = C_{13} = C_{24}$ $C_{17} = C_{20} = H_{20}$	100.5
C_{11} C_{12} C_{17}	110.9(3) 123.3(4)	C17' = C20' = H20E	109.5
C13 - C12 - C17	125.5(4) 1197(4)	C17' = C20' = H20E	109.5
$C_{13} = C_{12} = C_{11}$	115.7 (4)	$H_{20D} = C_{20} = H_{20F}$	109.5
$C_{12} = C_{12} = C_{17}$	110.9 (3)	$H_{20D} = C_{20} = H_{20E}$	109.5
$C_{12} = C_{13} = C_{13}$	122 5 (3)	$H_{20E} = C_{20} = H_{20E}$	109.5
C14 - C13 - C12 C14 - C13 - H13	118 7	$C_{12} = C_{20} = H_{20}$	109.5
C_{13} C_{14} C_{15} C_{15}	116.7	C17' - C21' - H21E	109.5
C_{13} C_{14} C_{19}	123 6 (3)	C17' - C21' - H21E	109.5
$C_{15} - C_{14} - C_{19}$	119.8 (4)	H_{21D} C_{21} H_{21E}	109.5
C_{14} C_{15} H_{15}	117.8 (4)	H_{21D} C_{21} H_{21E}	109.5
C_{14} C_{15} C_{16}	124.5 (5)	$H_{21E} = C_{21} - H_{21E}$	109.5
$C_{14} = C_{15} = C_{10}$	124.5 (5)	11212 - 221 - 11211 C18' - C22' - H22D	109.5
$C_{10} - C_{13} - M_{13}$	117.0	C18 - C22 - H22D	109.5
$C_{11} = C_{10} = C_{18}$	120.4(5)	C18 - C22 - H22E	109.5
$C_{15} = C_{16} = C_{18}$	117.0(5)	$C_{10} - C_{22} - H_{22F}$	109.5
$C_{12} = C_{10} = C_{18}$	113.9 (3)	$\begin{array}{c} \mathbf{H}_{22}\mathbf{D} \\ \mathbf{H}_{22}\mathbf{D} \\ \mathbf{H}_{22}\mathbf{D} \\ \mathbf{H}_{22}\mathbf{D} \\ \mathbf{H}_{22}\mathbf{E} \end{array}$	109.5
$C_{12} - C_{17} - C_{12}$	100.0	$\frac{1122D}{C22} - \frac{1122F}{C22}$	109.5
$C_{20} = C_{17} = U_{17}$	109.2 (3)	$\Pi 22 \mathcal{L} \longrightarrow \mathbb{C} 22 \longrightarrow \mathbb{C} 22 \mathbb{C} 2$	109.3
$C_{20} = C_{17} = C_{21}$	100.0	$C_{10} - C_{23} - H_{23}D$	109.5
$C_{20} - C_{17} - C_{21}$	112.3(3) 111.2(3)	$C_{10} - C_{23} - H_{23E}$	109.5
$C_{21} = C_{17} = C_{12}$	111.3 (3)	$\begin{array}{c} 10 - 0.23 - 0.23 \end{array}$	109.3
$U_{21} - U_{1} - \Pi_{1}$	100.0	π_{2} μ_{1} μ_{2} μ_{2} μ_{2} μ_{3} μ_{2} μ_{3} μ_{3	109.3

C16—C18—H18	107.1	H23D—C23'—H23F	109.5
C16—C18—C23	112.2 (4)	H23E—C23′—H23F	109.5
C22—C18—C16	111.4 (4)	C19'—C24'—H24D	109.5
C22—C18—H18	107.1	C19'—C24'—H24E	109.5
C22—C18—C23	111.6 (3)	C19'—C24'—H24F	109.5
C^{23} C^{18} H^{18}	107.1	H^24D — C^24' — H^24F	109.5
C14 - C19 - H19	107.6	H24D— $C24'$ — $H24F$	109.5
C_{24} C_{19} C_{14}	1147(3)	H24F $C24'$ $H24F$	109.5
C_{24} C_{19} H_{19}	107.6	C19'-C25'-H25D	109.5
C_{24} C_{19} C_{25}	109.8 (4)	C19'-C25'-H25E	109.5
C_{25} C_{19} C_{25} C_{19} C_{14}	109.3(3)	C19' - C25' - H25E	109.5
C_{25} C_{19} H_{19}	107.6	H25D_C25'_H25E	109.5
C_{17} C_{20} H_{20A}	109.5	$H_{25D} = C_{25}^{-1125E}$	109.5
C17 = C20 = H20R	109.5	$H_{25D} = C_{25}^{-11251}$	109.5
C17—C20—II20D	109.5	1125E—C25—11251	109.5
1 - 1 - 2	94,86 (14)	C13—C12—C17—C20	60.6 (4)
S1-C11-C12-C13	170.0 (3)	C_{13} C_{12} C_{17} C_{21}	-639(4)
S1-C11-C12-C17	-130(6)	C13 - C14 - C15 - C16	00(7)
$S_1 - C_{11} - C_{16} - C_{15}$	-1683(4)	C_{13} C_{14} C_{19} C_{24}	140(5)
$S_1 - C_{11} - C_{16} - C_{18}$	13.7(8)	C_{13} C_{14} C_{19} C_{25}	-109.8(4)
$S_1 = C_{11'} = C_{16'} = C_{15'}$	163 2 (4)	C_{14} C_{15} C_{16} C_{11}	-39(9)
$S_1 = C_{11'} = C_{16'} = C_{18'}$	-229(8)	C_{14} C_{15} C_{16} C_{18}	174.2(4)
$S_1 = C_{11'} = C_{10'} = C_{10'}$	-1644(3)	$C_{12} = C_{13} = C_{10} = C_{13}$	-1701(4)
$S_1 = C_{11'} = C_{12'} = C_{13'}$	104.4(5)	$C_{15} = C_{14} = C_{19} = C_{24}$	66 1 (5)
01 - S1 - N1 - C1	-50.19(14)	C15-C16-C18-C22	75 9 (6)
01 - 51 - 01 - 01	-166.8(3)	$C_{15} = C_{16} = C_{18} = C_{22}$	-500(6)
01 - 51 - 011 - 012	7 5 (5)	$C_{15} - C_{10} - C_{13} - C_{23}$	-4.3(6)
$02 \ S1 \ N1 \ C1$	-176.60(12)	$C_{10} = C_{11} = C_{12} = C_{13}$	4.3(0)
02 - 31 - N1 - C1	-44.1(4)	$C_{10} - C_{11} - C_{12} - C_{17}$	-176.8(3)
02 - 51 - 011 - 012	++.1(+)	C10 C14 C15 C16	-176.3(5)
$N_1 = S_1 = C_{11} = C_{12}$	70.0(4)	C_{11}^{-11} C_{11}^{-11} C_{11}^{-11} C_{11}^{-11} C_{11}^{-11}	1/0.5(3)
N1 = S1 = C11 = C12	-115.7(5)	C11 - S1 - N1 - C1	17(8)
N1 = C1 = C10	113.7(3) 170.67(12)	C11' - C16' - C13' - C14'	-120.2(6)
N1 - C1 - C2 - N2	(1)	C11 - C10 - C18 - C22	120.5(0)
$C_2 = N_2 = C_3 = C_4$	-62.17(18)	C11' - C10' - C13' - C14'	-0.6(5)
$C_2 = N_2 = C_3 = C_0$	-02.17(10) 176.02(14)	C11' - C12' - C13' - C14'	-0.0(3) -1207(4)
$C_2 = N_2 = C_1 = C_8$	170.93(14)	C11' - C12' - C17' - C20'	-129.7(4) 106.5(4)
$C_3 = N_2 = C_2 = C_1$	01.08(19) 176.27(15)	C11 - C12 - C17 - C21	100.3 (4) 8 1 (6)
$C_{3} = N_{2} = C_{3} = C_{6}$	1/0.3/(13)	C10 - C11 - C12 - C13	0.1(0)
$C_{3} = N_{2} = C_{1} = C_{8}$	-61.84(18)	C10 - C11 - C12 - C17	-104.2(4)
$C_{2} = C_{2} = C_{1}$	-57.52(18)	C12 - C11 - C16 - C13	-8.7(8)
$C_{5} N_{2} C_{5} C_{4}$	-1/8.96(15)	$C12^{}C11^{}C16^{}C18^{-}$	165.2(5)
$C_{3} = N_{2} = C_{1} = C_{8}$	56.47 (19) 178.00 (14)	$C12^{}C13^{}C14^{}C15^{}C16^$	-6.2(5)
C/=N2=C2=C1	-1/8.09 (14)	C12' - C13' - C14' - C19'	1/8.9 (3)
U = N2 = U3 = U4	-58.08 (19)	C13' - C12' - C17' - C20'	5/./(4)
C / - N2 - C5 - C6	55.54 (19)	$C13^{-}-C12^{-}-C17^{-}-C21^{-}$	-66.0(4)
CII—SI—NI—CI	/1.5 (2)	C13' - C14' - C15' - C16'	5.6 (7)
C11—C12—C13—C14	0.3 (5)	C13'-C14'-C19'-C24'	/5./ (5)
C11—C12—C17—C20	-116.4 (4)	C13'—C14'—C19'—C25'	-48.8 (5)

supporting information

C11—C12—C17—C21 C11—C16—C18—C22	119.1 (4) -106.2 (6)	C15'—C16'—C18'—C22' C15'—C16'—C18'—C23'	53.7 (6) -69.5 (6)
C11—C16—C18—C23	127.9 (6)	C15'—C14'—C19'—C24'	-99.0 (5)
C12—C11—C16—C15	6.0 (8)	C15'—C14'—C19'—C25'	136.5 (4)
C12-C11-C16-C18	-172.0 (4)	C17'—C12'—C13'—C14'	172.4 (3)
C12—C13—C14—C15	1.9 (5)	C18'—C16'—C15'—C14'	-172.7 (4)
C12—C13—C14—C19	178.0 (3)	C19'—C14'—C15'—C16'	-179.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
04—H4 <i>D</i> ···O3	0.83 (2)	2.04 (2)	2.867 (2)	171 (2)
O3—H3 <i>C</i> ···O5	0.90 (2)	1.83 (2)	2.725 (2)	174 (2)
O3—H3 <i>D</i> ···O6 ⁱ	0.85 (3)	2.08 (3)	2.912 (2)	169 (2)
O5—H5 <i>C</i> ···O2 ⁱⁱ	0.83 (3)	2.09 (3)	2.901 (2)	165 (2)
O6—H6 <i>D</i> …O4	0.86 (2)	1.95 (2)	2.787 (2)	167 (2)
O6—H6 <i>E</i> ···O3 ⁱⁱⁱ	0.82 (3)	2.03 (3)	2.845 (2)	170 (2)
O5—H5 <i>D</i> …N1	0.84 (3)	2.05 (3)	2.881 (2)	170 (2)
O4—H4 <i>E</i> ····N1 ⁱⁱ	0.92 (3)	2.06 (3)	2.959 (2)	165 (3)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) -*x*+3, -*y*+2, -*z*+1.