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Abstract

Studies of gene expression profiling have been successfully used for the identification of molecules
to be employed as potential prognosticators. In analogy with gene expression profiling, we have
recently proposed a novel method to identify the immunophenotypic signature of B-cell chronic
lymphocytic leukemia subsets with different prognosis, named surface-antigen expression profiling.
According to this approach, surface marker expression data can be analysed by data mining tools
identical to those employed in gene expression profiling studies, including unsupervised and
supervised algorithms, with the aim of identifying the immunophenotypic signature of B-cell chronic
lymphocytic leukemia subsets with different prognosis. Here we provide an overview of the overall
strategy employed for the development of such an "outcome class-predictor” based on surface-
antigen expression signatures. In addition, we will also discuss how to transfer the obtained
information into the routine clinical practice by providing a flow-chart indicating how to select the
most relevant antigens and build-up a prognostic scoring system by weighing each antigen according
to its predictive power. Although referred to B-cell chronic lymphocytic leukemia, the
methodology discussed here can be also useful in the study of diseases other than B-cell chronic
lymphocytic leukemia, when the purpose is to identify novel prognostic determinants.

Background 3]. Both these systems, however, are unable to prospec-
B-cell chronic lymphocytic leukemia (B-CLL) is a hetero-  tively discriminate between the rapidly evolving patients
geneous disease with highly variable clinical courses. Two  from those destined to remain with a stable disease for
major clinical staging systems, mainly based on tumor  decades. Therefore, continuous efforts have been pro-
load, were developed to estimate prognosis in B-CLL [1-  duced to identify additional prognostic factors, which
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may help to better define patient cohorts with different
clinical outcome.

The mutational status of IgV,; genes has recently been
identified as a robust indicator of disease outcome:
patients with a disease characterized by neoplastic cells
bearing a mutated IgV, gene configuration had signifi-
cantly longer survival than those cases affected by B-CLL
expressing unmutated IgV,; genes. Since IgV,; mutation
testing is an expensive and technically difficult assay not
widely applicable for clinical use, subsequent studies were
focused on the identification of alternative markers with
prognostic value similar to that of IgV,; mutations, and
whose expression could easily be investigated, e.g. by flow
cytometry. Several reports identified the over-expression
of CD38 as a marker of poor prognosis for B-CLL patients
[4]. However, the cut-off values of CD38 expression capa-
ble to segregate B-CLL patients into groups with different
survivals varied in some studies [4-6]., and the expression
of CD38 over a given threshold failed to maintain a statis-
tically significant correlation with survivals by multivari-
ate analysis [7]. Moreover, the capability of CD38 to act as
a surrogate of IgV,; mutational status, initially emphasized
[8], was not confirmed by subsequent reports [4-6,9].

Studies of gene expression profiling (GEP) have been suc-
cessfully used for the identification of additional mole-
cules to be employed as potential prognosticators [10-13].
Among them, the gene encoding for the T cell specific
zeta-associated protein 70 (ZAP-70) has been demon-
strated to have both a prognostic relevance and a predic-
tive power as surrogate for IgVy; mutations [10,14-16]. The
detection of the ZAP-70 gene product by flow cytometry,
however, is not easy to be performed, since it requires cell
membrane permeabilization and the simultaneous use of
T cell markers to discriminate the expression of ZAP-70
protein between malignant B-CLL cells and residual T
lymphocytes [14].

In analogy with GEP, we have recently proposed a novel
method to identify the immunophenotypic signature of
B-CLL subsets with different prognosis, named surface-
antigen expression profiling (SEP)[17,18]. In our original
proposal, the expression of a wide panel of surface mark-
ers was analysed in a cohort of 123 B-CLLs with known
survivals, by means of data mining tools identical to those
employed in GEP studies [17,19-21]. By sequentially
applying unsupervised (hierarchical and non-hierarchi-
cal) clustering algorithms, and the nearest shrunken cen-
troid method as class predictor, we were able to identify
the signature of three subsets, one corresponding to good
prognosis B-CLLs, and two identifying subgroups with
shorter survivals [17].

http://www.translational-medicine.com/content/4/1/11

We will provide here an overview of the strategy employed
for the development of this sort of "outcome class-predic-
tor" for B-CLL based on surface-antigen expression. In
particular, we will discuss how to compute flow cytometry
data, the rationale for the choice of sequential unsuper-
vised/supervised analyses eventually yielding to the signa-
ture of the identified disease subsets. Finally, we will also
discuss how to transfer the information gained through
the proposed class-predictor into the routine clinical pro-
cedures to refine the identification of B-CLL patients with
different prognosis. In particular, we will summarize a
flow-chart indicating how to select the immunopheno-
typic markers with the most relevant prognostic impact
and how to build-up a prognostic scoring system by giving
different weights to each antigen according to its predic-
tive power. Part of the data extensively discussed in this
section of the present review has been recently reported by
our group [22].

All the comments and analyses reported below, although
referred to B-CLLs, can be useful to transfer a similar
approach into the study of diseases other than B-CLL
when the aim is of identifying novel prognostic determi-
nants.

Generation of flow cytometric data

Expression of surface antigens is usually investigated by
multicolor flow cytometry [23]. In our reports on B-CLL
[17,18]., we investigated the expression of a wide panel of
surface markers by two- or three-color flow cytometry,
combining phycoerithrin (PE)-, fluorescein isothyocy-
anate (FITC)- and allophycocyanin (APC)-conjugated
monoclonal antibodies (mAbs) [3]. Results of antigen
expression were always reported as per cent of CD19+ B-
CLL cells displaying a specific fluorescence intensity
greater than the 98-99% of the same cell population
stained with isotype- and fluorochrome-matched control
immunoglobulins [8,17,24,25]. It is in our opinion that
this choice, although not the optimum in absolute terms,
represents nowadays a relatively good tool with some
undoubted advantages as compared to mean fluorescence
intensity (MFI) or other equivalent absolute measurings
[26]:

- advantages for the subsequent analyses: in our hands the
use of percent of positive cells allowed a better application

of the methods of cluster analyses reported below; this
happens basically for two reasons: i) it facilitates cluster-
ing by decreasing the complexity of the final database (a
marker expressed above the threshold corresponding to
100% of positive cells will be always considered expressed
at the value of 100); ii) it reduces the operational range of
the color scale employed in heat maps (0-100 in all
cases).
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- advantages for the recruitment of cases: an absolute
measuring of flow cytometry data, e.g. by converting MFI

values into molecules equivalent of soluble fluorochrome
(MESF) [26], can be made only through the use of specific
calibration beads run in parallel during each single exper-
iment; this greatly limits, if not forbids, any retrospective
analysis of flow cytometry data (for example data gener-
ated for diagnostic purposes in clinical-oriented laborato-
ries).

- advantages due to the characteristics of the chosen panel:
the use of percent of positive cells as a measure of antigen

expression allows to better compare all the employed
antigens to each other especially when the panel of inter-
est: i) includes mAbs conjugated with fluorochromes with
different relative brightness (FITC, PE, APC); ii) includes a
certain number of unlabeled mAbs, which, by requiring
additional binding with secondary fluorochrome-conju-
gated antibodies, usually yield higher MFI values than
directly fluorochrome-conjugated mAbs; iii) includes
mAbs recognizing phenotypic markers known to have
greatly different cellular density as compared to others
(e.g. CD24, CD52 and CD59) [17,18,27].

Last but not least, this choice of analysis might be prospec-
tively more useful in the field of B-CLL for two additional
reasons: i) compare the expression of some markers of
supposed prognostic significance with that of other well-
established prognosticators, e.g. CD38 or ZAP-70, whose

expression level is usually reported as percent of positive
cells [8,10,14-16,24,28]; ii) as underscored below, since
the final aim is to build-up a scoring system of clinical rel-
evance, the evaluation of the expression level for each
selected marker as per cent of positive cells allows an eas-
ier application of the scoring system in the context of diag-
nostic routine laboratories.

Analyses of flow cytometric data with
unsupervised/supervised data mining tools

If the working hypothesis is to analyse surface antigen
expression data in order to identify disease subsets charac-
terized by a given expression pattern, we need computa-
tional tools capable to simultaneously compare
expression levels of the various antigens among different
cell samples.

In our B-CLL studies [17,18]., flow cytometric data, gener-
ated as reported above, have been analysed by taking
advantage of the unsupervised/supervised algorithms
publicly available with the PAM (prediction analysis for
microarray) statistical package [19,20,29] and through the
open source versions of the Cluster and TreeView pro-
grams [30,31].

The chosen statistical and computational tools of pattern
recognition/classification are those normally employed in
GEP studies [19,20]. So far, a similar approach to analyse
flow cytometry data has been only sporadically utilized,
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e.g. to investigate antigen expression profiles of myeloid
cell subsets in myelodysplastic syndromes [32] or of blast
cells in childhood lymphoblastic leukemias [26], as well
as by us in preliminary studies of immunophenotypic
clustering of B-CLL cells [33]. On the other hand, cluster
analysis and dendrograms have been historically
employed in the context of "International Workshops of
Leukocyte Typing" to define the reactivity of specific mon-
oclonal antibodies and identify whether they recognize
the same or closely related molecules, thus defining novel
"clusters of differentiation" (CDs) [34]. In all these
reports, however, antigen expression profiles were exclu-
sively analysed by means of unsupervised methods, such
as hierarchical clustering [32-34] or principal component
analysis [26,32]., by definition not taking into account
any additional external factors, such as survivals or other
clinical signs. If the aim is of defining the immunopheno-
typic signatures of disease subsets with specific clinical
features, e.g. a different prognosis, it is mandatory to per-
form a so-called "supervised" analysis, that, conversely,
does take into account specific, pre-defined, external fac-
tors [21,35].

In our original proposal on B-CLL [17], we have
employed, along with unsupervised clustering algorithms,
the supervised method of the "nearest shrunken centro-
ids" as class predictor to discover the antigen expression
patterns associated with a given prognosis (see below). In
preliminary analyses, by taking advantage of survival data,
we tried to directly apply a supervised learning procedure
to distinguish stable from progressive/fatal diseases, basi-
cally as described for diffuse large B cell lymphomas using
c¢DNA microarray [21]. This approach, however, failed to
define a reliable surface antigen-expression signature
capable to distinguish B-CLLs with different clinical
courses, e.g. stable vs. progressive diseases [17]. Therefore,
we decided for a strategy, summarized in Fig. 1, in which,
the application of unsupervised (hierarchical and non-
hierarchical) clustering methods, was utilized to identify
the minimum number of phenotypic clusters associated
with differences in a specific clinical feature (in our case
survival); these subsets were then characterized for the
antigens differentially expressed by taking advantage of
supervised algorithms, as detailed below.

Unsupervised analyses of immunophenotypic
data: from the identification of the smallest
number of subsets with different prognosis to
their surface-antigen expression profiling (SEP)
Operationally, in our original report [17], we analysed a
complete database containing the expression values of 36
surface antigens in 123 B-CLL samples (4428 theoretical
values) by an unsupervised hierarchical clustering choos-
ing a complete-linkage method and the euclidean dis-
tances as measures of similar/dissimilar behaviour [17-

http://www.translational-medicine.com/content/4/1/11

19]. Survivals of the resulting B-CLL clusters were tested
using Kaplan-Meier analysis and log-rank test [36]. As
shown in [17], hierarchical clustering allowed the discov-
ery of at least three different B-CLL subsets, one of them
with strikingly better prognosis as compared to the others
(Fig. 1). Subsequently, we re-analysed expression data by
applying a k-means clustering, i.e. a non-hierarchical
unsupervised method which allows partitioning of data
into predetermined (k) groups [37-39]. In agreement with
the results of hierarchical clustering, we applied a k-means
clustering algorithm by requiring a separation of all B-CLL
cases into three subgroups (k = 3) (Fig. 1) [17].

The sequential use of hierarchical clustering and k-means
to eventually define the SEP of a given number of disease
subsets (in our example three B-CLL subsets) has its
rationale in the specific mathematical algorithms underly-
ing these two unsupervised methods. In particular, hierar-
chical clustering is wusually utilized in preliminary
screening, when no further information is available; in
our example, hierarchical clustering of B-CLLs, if associ-
ated with Kaplan-Meier analysis [36], was able to give us
the information that: (i) there is correlation between sur-
vival and immunophenotypic profile; (ii) at least three
clusters can be associated with a different prognosis (Fig.
1) [17]. Once obtained this information, k-means is
applied as an additional unsupervised algorithm capable
to split a given data-set into a certain number of clusters
fixed a priori (the assumed k clusters). Obviously, this
method can be applied only when there is a supported
hypothesis suggesting the number of clusters in which a
given data-set has to be split. As opposed to hierarchical
clustering, that defines the "distances" among the various
clusters, the algorithm of k-means, by emphasizing analo-
gies instead of differences, is optimal for the purpose to
subdivide a data set into few pre-established subsets.

The three B-CLL clusters identified by the sequential
application of hierarchical and k-means analyses (named
group I, I and III in [17]) were prognostically character-
ized by different survivals: longer for group I patients (51
cases all alive but one case, with a maximal follow-up of
about 250 months), shorter for groups II and III patients
(overall accounting for 72 cases, median survivals of
about 100 months for both groups); although displaying
similar survivals, B-CLL cells from patients belonging to
these two latter groups had different immunophenotypes
[17]. The complex immophenotypic profiles characteriz-
ing each group have been reported in extenso elsewhere
[17]. Here we solely mention that specific sets of antigens
appeared overexpressed or downregulated in the context
of the various subgroups; the subsequent supervised anal-
yses (see below) allowed the identification of the few
markers really representing the "signature" of each prog-
nostic group.
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Supervised analysis of immunophenotypic data
by shrunken centroids: from the surface-antigen
expression profiling (SEP) of subsets with
different prognosis to their immunophenotypic
signature

In our original studies, the combination of unsupervised
analyses (hierarchical and k-means) and Kaplan-Meier
survival curves, allowed the identification of three pheno-
typic clusters in B-CLLs, one corresponding to a good
prognosis B-CLL subset, the remaining two clusters char-
acterized by shorter median survivals, although with dif-
ferent immunophenotypic profiles [17].

The next logical step is the identification of the pheno-
typic signature, i.e. the minimal number of surface mark-
ers succinctly characterizing each B-CLL prognostic group.
For this purpose, we chose to apply the "nearest shrunken
centroid" algorithm, as proposed by Tibshirani et al
[17,20]., utilized by taking advantage of the publicly
available PAM software package [19,20]. This method
basically derives from the "nearest centroid" classifica-
tion. Briefly, the "nearest centroid" method computes a
standardized centroid for the expression values of a given
antigen in a given subgroup. A "centroid" has to be
intended as a measure of the average expression of a given
antigen in a given set/subset of samples. The "nearest cen-
troid" classification method takes the antigen expression
level of a new sample and compares it to each of these
centroids. The subgroup whose centroid is closest to, is
the predicted subgroup for that new sample.

The "nearest shrunken centroid" classification makes one
important modification to standard "nearest centroid"
classification. For a given antigen, it shrinks each centroid
corresponding to each subgroup toward the overall cen-
troid (i.e. the centroid computed by considering all the
subgroups) by a fixed amount, called "threshold". This
shrinkage consists of moving the centroid towards zero by
a value corresponding to the threshold, setting it equal to
zero if it hits zero. After shrinking the centroids, the new
sample is classified by the usual nearest centroid rule, but
using the shrunken centroids. This shrinkage has the oper-
ational advantages (i) to make the classifier more accurate
by reducing the effect of noisy antigens, and (ii) to do an
automatic selection of the antigens. In particular, if a
given antigen is shrunk to zero for all the subgroups, then
it is eliminated from the prediction rule. Alternatively, it
may be set to zero for all subgroups except one; in this lat-
ter case, we learn that above- or below-average expression
for that antigen characterizes that subgroup.

In the "nearest shrunken centroid" method, the user
decides on the value for threshold to be employed. Typi-
cally, different choices are examined, and to guide the user
to this choice, PAM performs k-fold (where k is usually set

http://www.translational-medicine.com/content/4/1/11

at the value of 10) cross-validation (CV) for a range of
threshold values. Basically, a model is fitted on 90% of the
sample and the class of the remaining 10% is predicted;
this procedure is repeated 10 times, with each sample
being part of the 10% utilized as tester at least once. The
overall error is obtained by summing the errors of all the
10 parts added together. This procedure is done for a
series of threshold values, and the number of CV misclas-
sification errors for each threshold level allows the user to
choose the value giving the minimum cross-validated
misclassification error rate.

In the case of our original B-CLL studies, we randomly
divided immunophenotypic data (123 cases) into train-
ing data (90 cases) and test data (33 cases) [17]; data from
the 90 training samples were employed to train a classifier
by means of 10-fold CV, while test samples were utilized
as validation of the found procedures [17,20]. In particu-
lar, we selected three increasing values of threshold (0.66,
1.32 and 2.0), all corresponding to acceptable misclassifi-
cation errors on cross-validated data. By increasing the
threshold level, the minimum number of antigens cor-
rectly classifying a given B-CLL case shrank in parallel. At
the highest acceptable threshold level (2.0), close to the
point at which CV error started to rise [17], as low as 12
phenotypic markers were selected [20]. As reported [17],
the estimated probabilities to classify B-CLL training and
test samples within a given group (i.e. I, Il or III) by using
the threshold value of 2.0 were fairly good for training
samples, less for test samples (e.g. 10-fold CV errors = 6/
90; test error = 6/33). The accuracy of sample classification
increased by lowering the threshold, although, in these
cases, the number of essential phenotypic markers
increased up to 18 (threshold = 1.32) and 23 (threshold =
0.66) antigens, always including the 12 markers selected
by setting the threshold at the highest acceptable value
(2.0) [17].

A list of the 12 selected markers overall representing the
immunophenotypic signature of the three B-CLL subsets
with different prognosis are reported in Fig. 3. Briefly, the
good prognosis B-CLL group 1 was characterized by the
specific above-average expression of CDG62L, CD54,
CD49c and CD25. Among B-CLL cases with shorter sur-
vival (groups II and III), two clearly recognizable immu-
nophenotypic patterns were identified: the first one, with
above-average expression of CD38, CD49d, CD29 and
CD49e, was specific for group II B-CLLs, whereas group III
was characterized by the expression below-average of all
the above reported markers in the presence of a relative
overexpression of some common antigens, such as CD23,
CD20, Smlg and CD79b (Fig. 3) [17].

Even though information regarding correlations with

IgV,; mutations and ZAP-70 expression as well as the bio-
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logical implication underlying differential expression of
critical molecules in the newly identified B-CLL subsets
have been extensively discussed elsewhere [17], we briefly
report herein the most relevant concepts about this mat-
ter.

IgV, mutational status and ZAP-70 expression in
the three immunophenotypic groups

IgVy; mutations and ZAP-70 expression have been
reported to be among the most important prognosticators
for B-CLL [5,8,14-16,28,40-42]; in this regard IgV,; muta-
tions below the established cut-off of 2% and expression
of ZAP-70 in more than 20% of neoplastic cells had a neg-
ative impact on survivals also in our series [17]. Consist-
ently, patients whose neoplastic component displayed a
mutated IgV,, gene configuration or expressed ZAP-70 in
less than 20% of cells frequently belonged to the immu-
nophenotypic group characterized by the best prognosis
(group I); conversely, patients characterized by B-CLL
cells lacking IgVy; mutations or with high ZAP-70 expres-
sion levels belonged more frequently to the immunophe-
notypic groups associated with worse prognosis (groups II
and III) [17].

Biological meaning of the different
immunophenotypic profiles

According to the presented results, overexpression of
CD62L, CD54, CD49c and CD25 in the absence of CD38
represented the immunophenotypic signature of good
prognosis B-CLL. Noteworthy CDG62L, together with
CD54 and CD25 are all surface structures somewhat
involved in the cross-talk between B lymphocytes with
neighbouring endothelial and/or T cells within the lymph
node microenvironment [43-47]. Interestingly, B-CLL
cases expressing the CD62L+CD54+CD25* phenotype
more frequently displayed high number of IgVy muta-
tions [5,8,28,40-42], as well as an IgV,; mutational status
consistent with antigen-driven selection [25,48,49]. These
data are in keeping with the immunophenotypic profile
of these cells, since IgV,; mutations usually occur as the
result of T cell-dependent interactions during GC matura-
tion of B cells [50].

One of the two immunophenotypic profiles characterized
by worse prognosis (group II) was distinguished by the
above-average expression of CD38, CD49d, CD29 and
CD49e. This finding is in keeping with recent reports in
which high levels of CD49d mRNA and protein were
found to be part of the signature distinguishing CD38+
from CD38 B-CLL cells [51,52]. The above-average
expression of CD49d in B-CLL cases with a poorer prog-
nosis is also consistent with the demonstration of higher
expression levels of this molecule in B-CLL cells from
advanced stage patients [53], as well as with the notion
that engagement of a4p1, as expressed by B-CLL cells, trig-

http://www.translational-medicine.com/content/4/1/11

gers a signalling cascade eventually preventing apoptosis
[54-56]. Along with CD49d and CD38, other negative
prognosticators, including ZAP-70 and a low IgV,; muta-
tion load [8,14-16,28,40], were more frequently found in
group II B-CLLs.

A third immunophenotypic profile (group III), associated
with poor prognosis and succinctly characterized by the
below-average expression of all the markers reported
above as over-expressed in group I (CD62L, CD54, CD25
and CD49c) or group II (CD38, CD49d, CD29 and
CD49e) B-CLLs, was revealed by supervised analysis [17].
The identification of this B-CLL subgroup is somewhat
surprising, since these cases represent a poor prognosis
subset essentially lacking CD38 expression and without
an excess of cases with low IgV,, percent mutations and/or
lack of antigen-driven selection [28,48,49]; this group
might, therefore, represent a separate entity, allegedly
characterized by a distinct pathway of oncogenesis
[6,57])), that deserves to be further investigated. If con-
firmed in larger cohorts of patients, the identification of
this group as a genuine biological subset of B-CLLs may
contribute to explain some discrepancies found in the
recent literature, such as the definition of the optimal cut-
offs for CD38 expression and percent IgV,; mutations
capable to split B-CLL patients into subgroups with differ-
ent survivals [5,42].

From the signature of subsets with different
prognosis to the identification of novel
determinants with prognostic value

As summarized in Fig. 3, the coordinated above- and/or
below-average expression of 12 surface antigens character-
izes the immunophenotypic signature of three B-CLL
groups with different prognosis.

In the present paragraph, we discussed the overall strategy
allowing the selection, among the markers identifying
each subset, of those with the most relevant prognostic
impact to be eventually used for prognostic purposes in
clinically-oriented laboratories. Such a strategy included
at least two initial steps aimed (i) at reducing the number
of prognosticators by keeping only the most relevant of
them, and (ii) at finding the optimal cut-off points to be
employed to discriminate cases expressing or not a given
marker. In the case of B-CLLs, we operated as follows:

i) Identification of the antigens with the highest
statistically significant independent predictive power

This first point was addressed by applying the Cox propor-
tional hazards regression model on expression data for
the 12 antigens with overall survival as dependent varia-
ble [58]. The notion that all the investigated markers
derived from a previous clustering, made their expression
levels, at least to a certain extent, each other interrelated;
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From the signature of subsets with different prognosis to the definition of a comprehensive prognostic scoring
system and the division of patients into prognostic groups. See text for details.

therefore, a multivariate analysis, that, by definition, can
compare only variables with an independent behaviour
[59,60]., was not suitable for correlating antigen expres-
sion values and survivals in our series. We therefore chose
to perform, instead of a multivariate analysis, an univari-
ate analysis.

The Cox proportional hazards regression model computes
a coefficient (z score) for each predictor marker that indi-
cates the direction and degree of flexing that the predictor
has on the survival curve. Zero means that a given marker
has no effect on the curve, i.e. it is not a predictor at all; a
positive z score indicates that larger values of the marker
are associated with greater mortality, while a negative z
score indicates that larger values of the variable are associ-
ated with lesser mortality.

A list of the actual z scores, as found by us in a series of
137 B-CLLs [22] are reported in Fig. 3. According to this
analysis, we were able to select six antigens displaying a z
score with an absolute value of 2.0 or greater (p < 0.05).
These markers were CD62L, CD54, CD49¢, associated
with a negative z score, therefore identified as positive
prognosticators, and CD49d, CD38, CD79b, associated
with a positive z score, hence recognized as negative prog-
nosticators (Fig. 3).

ii) Estimation of antigen expression levels yielding the best
separation of two subsets with different survival
probabilities

Once identified the phenotypic markers with greater prog-
nostic impact, we operated to find, for each of them, the
optimal cut-off value yielding the best separation between
two subgroups with different survival probabilities.

In general it can be assumed that any given prognosticator
(in our case, expression values for a given antigen) allows
for a classification of patients into groups with different
risk with respect to a response variable (e.g. death, pro-
gression of disease etc.). The functional relationship
between the putative prognosticator and the response var-
iable is unknown. Any given cut-off point for the expres-
sion level of an antigen determines two groups of patients,
i.e. a group with all the patients in which the variable is
less or equal to a given cut-off point, and a group of
patients in which the variable is greater than the same cut-
off point. The determination of the optimal cut-off point
for each antigen yielding the best separation between two
subgroups with different survival probabilities was
achieved by applying the maximally selected log-rank sta-
tistics [61], available as open source program at the
reported website [62].

As reported in Figs. 2 and 3, the application of this statis-

tical algorithm allowed to find different optimal cut-off
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Immunophenotypic signature

Association of antigen expression
with prognosis
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) Cutoff
and score assignement

Level of expression Expression associated with Z Cutoff Score if expressed
Good Bad scores values above below
Group | Group I Group lll prognosis prognosis cutoff cutoff
coe2L | P = J Y N -3.40 30% 2 0
CD54 <\ = J Y N -2.13 50% 1 0
CD49%c | P = J Y N -2.08 40% 1 0
CD25 t = J N N -1.45 - - -
CD38 J <\ J N Y 3.30 30% 0 2
cb4od | = ™ J N Y 4.24 30% 0 2
CD29 = <\ J N N 0.54 - - -
CD4%e | = <\ J N N 1.34 - - -
CcD23 = = N N N 1.08 - - -
CD20 J = ™ N N 0.43 - - -
Smig J = ™ N N -0.65 - - -
cD79b | = ™ N Y 2.16 50% 0 1
Figure 3

Surface antigens identified by the nearest shrunken centroid algorithm and their role as putative prognostica-
tors for B-CLLs. For each antigen identified as part of the immunophenotypic signature, are here reported: i) its expression
levels in the three immunophenotypic groups as identified by nearest shrunken centroids (T or 4 indicate above- or below-
average expression, respectively; = indicates average expression level) [17]; ii) its association (Y) or lack of association (N) with
good or bad prognosis and the relative z scores as resulted by Cox proportional hazard regression analysis [22]; iii) the cutoff
values, as resulted by Maximally selected log-rank statistics analysis, and the score values assigned when its expression was
found to be above or below the established cutoff [22]. Data and values of the antigens selected for the final prognostic score

are reported in red.

values for each of the six antigens previously selected by
univariate analysis [22]. This approach, although not yet
widely applied, has been found useful by us and others in
the identification of the most suitable cut-off points for
CD38 and IgV,; mutations in studies aimed at testing the
strength of these markers as prognosticators [5,63,64].

Comprehensive prognostic score and division of
patients into prognostic groups

Taken together, univariate Cox proportional hazard
regression and maximally selected log-rank statistics pro-
vide useful information on the prognostic value of each
single antigen, when considered alone. As a next step, we
tried to improve the prognostic assessment of B-CLL by
combining the expression values of the six antigens into a
comprehensive prognostic score. To do this, we operated
as follows (Figs. 2 and 3):

i) Assignment of a different statistical weight to each
selected antigen

Scores of "0", "1" and "2" were assigned to each prognos-
ticator according to the z score found for each antigen and
the expression above or below the established cut-off
value. In particular, for positive prognosticators (CD62L,
CD49c and CD54) a score "0" was assigned when the
expression was below the cut-off values, while for negative
prognosticators (CD49d, CD38 and CD79b) a score "0"
was assigned when the expression was above the estab-
lished cut-offs. Scores "1" were assigned to the positive
prognosticators CD49c and CD54 when the expression
was above the established cut-offs, and to the negative
prognosticator CD79b when the expression was below
the established cut-off. These markers were characterized
by z scores comprised between the absolute values of 2
and 3 (Fig. 3). Scores "2" were assigned to the positive
prognosticator CD62L when the expression was above the
established cut-off, and to negative prognosticators
CD49d and CD38 when their expression was below the
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CcD62L
CD49c
CD54
CD49d
CD38
CD79%
0 20 40 60 80 100
% of positive cells
0
= -
K
Figure 4

Translation of the prognostic values for the identified
six antigens into a scoring system. Each of the six anti-
gens previously identified as the most powerful prognostica-
tors [17,22] was associated with a score of 0, | or 2
according to its predictive power (z score) and the expres-
sion above or below the established cut-off values. Each of
the reported bar, corresponding to the theoretical expres-
sion values (reported as % of positive cells) for each antigen,
is depicted in grey (score "0" zone), azure (score "|" zone)
or blue (score "2" zone). See text for detailed discussion of
score assignment and cut-off values.

established cut-offs. These markers were characterized by
z scores exceeding the absolute value of 3 (Fig. 3).

A similar approach, in which the expression and/or the
presence of specific markers are evaluated with different
statistical weights according to given established parame-
ters, has been already employed to define similar diagnos-
tic/prognostic scoring systems in onco-hematology
[47,65,66]. Fig. 3 summarizes the score values associated
with each single prognosticator.

ii) Computation of a total score and division of patients
into prognostic groups

The final step is the sum of the values found for each prog-
nosticator by considering the assigned scores (0,1 or 2), as
defined above. In a series of 115 B-CLL patients we
obtained total score values ranging from "0" (complete
absence of phenotypic conditions associated with good

http://www.translational-medicine.com/content/4/1/11

prognosis) up to "9" (all the phenotypic conditions asso-
ciated with good prognosis fulfilled). Overall, the 115 B-
CLL patients showed a median survival time of 157
months with 95% confidence intervals ranging from 120
months to "not reached" [22]. The same B-CLL patients,
when ranked according to their total score, could be
divided into three, roughly quantitatively homogeneous,
groups: score 0-3 (32 cases); score 4-6 (41 cases), and
score 7-9 (42 cases) [22]. According to Kaplan-Meier sur-
vival probabilities, there was significant difference among
the three groups (p = 4.78 x 10-!1by the log-rank test). We
therefore labeled the identified three prognostic groups as
high-, intermediate- and low- risk groups, respectively.

Fig. 4 represents an operational scheme for rapidly apply-
ing the prognostic scoring system proposed by us in a clin-
ical setting. Briefly, the six selected prognosticators are
indicated by bars corresponding to the theoretical expres-
sion values reported as per cent of positive cells; each bar
is depicted in different colors according to the score "0",
"1"or "2" zones (Fig. 4).

Conclusion

By summarizing some recent studies by our group
[17,18,22], we discussed here a general strategy for the
application of data mining tools usually employed in GEP
to analyse flow cytometry data in the field of B-CLL. By
sequentially applying unsupervised algorithms (hierarchi-
cal clustering and k-means) and the nearest shrunken cen-
troid method as class-predictor, we have been able to
identify a number of surface antigens characterizing spe-
cific immunophenotypic subsets, each of them associated
with different survivals. We also discussed a stepwise
approach for selecting few immunophenotypic prognosti-
cators and integrating them in a specific scoring system
capable to provide a more refined prognostic assessment
than that relying on the evaluation of the presence/
absence of any single prognosticator. As an example, if we
had solely considered the distribution of the negative
prognosticators CD38 or ZAP-70 [8,11,14-16,24,28,67-
71] in the three B-CLL risk groups identified by applying
this novel scoring system [17,22]., almost one/third of
patients would have been misclassified regarding their
prognosis. Similar discrepancies have been recently
underscored by us and others in reports demonstrating
that the predictive power associated with the combined
detection of CD38 and ZAP-70 [72], or of CD38 and
CD49d [52] was more precise than that associated with
the single factors.

The approach proposed and discussed in the present
review, although referred to B-CLL, may have a more gen-
eral interest, being easily applicable to diseases other than
B-CLL with the aim of identifying novel prognostic deter-
minants.
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