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S U M M A R Y

Background: The end plate plays an important role in intervertebral disc degeneration progression. The aim of the
study was to examine the compositional and structural changes of the end plate with age and to investigate the
correlation between end plate and disc degeneration by T1ρ and T2 map magnetic resonance imaging.
Methods: There were 12 young monkeys (6-7 years old), 20 aged monkeys (14-17 years old) and 12 human
participants (30-50 years old) in this study. T1ρ or T2 map values of the nucleus pulposus and end plate cartilage
were analyzed according to Pfirrmann grades and age. Afterwards, micro computed tomography and histological
analysis were used to confirm the end plate changes in monkeys. Pearson’s correlation was performed to
investigate the relationship between end plate and disc degeneration.
Results: In monkeys, T1ρ (r¼-0.794, P<0.001) and T2 map values (r¼-0.8, P<0.001) of the nucleus pulposus were
negatively associated with Pfirrmann grades. Moreover, the T2 map was more suitable than T1ρ for the evaluation
of end plate degeneration. Age was an important influence factor of end plate and disc degeneration, which was
confirmed by microcomputed tomography, Safranin O/fast green staining, and collagen II staining. The T2 map
value of lower end plate degeneration positively correlated with that of the intervertebral discs in monkeys
(R2¼0.3133, P<0.001) and humans (R2¼0.2092, P<0.001).
Conclusion: This study suggests that the compositional and structural changes of the end plate can be quantita-
tively evaluated by T2 map. Furthermore, cartilage end plate degeneration is associated with disc degeneration
during ageing.
The translational potential of this article: A better understanding of how the cartilage end plate affects disc
degeneration is needed, which may propose a new clinical application using T2 map to evaluate end plate
degeneration.
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Table 1
Parameters for MRI of rhesus monkeys and humans.

Parameter T1-
weighted

T2-
weighted

T1 ρ* T2 map

Pulse sequence TSE TSE TSE TSE
Monkey
Repetition time
(ms)

400 2500 800 2000

Echo time (ms) 7.8 100 8 TE**
Field of view (mm) 210 � 210 210 � 210 210 � 210 210 � 210
Pixel bandwidth
(Hz)

242 475 332 234

Voxel size (mm) 0.9 � 1.25 0.9 � 1.25 0.59 � 1.17 0.7 � 0.8
Section thickness
(mm)

3 3 3 3

Section gap (mm) 0 0 0 0
Number of sections 7 7 4 � 7 8 � 7
Turbo factor 4 45 12 8
Acquisition time
(ms)

140 80 451 526

Human
Repetition time
(ms)

448 3228 800 2000

Echo time (ms) 8 100 8 TE**
Field of view (mm) 250 � 250 250 � 250 240 � 240 240 � 240
Pixel bandwidth
(Hz)

320 348 348 234

Voxel size (mm) 0.9 � 1.25 0.9 � 1.25 0.59 � 1.17 0.7 � 0.8
Section thickness
(mm)

3 3 3 3

Section gap (mm) 0 0 0 0
Number of sections 15 15 4 � 16 8 � 16
Turbo factor 4 45 12 8
Acquisition time 208 160 260 526

*Time of spin locking at 2, 15, 30, and 45 ms.
**Time of spin locking at 11, 22, 32, 43, 54, 65, 76, and 85 ms.
MRI ¼magnetic resonance imaging; TSE ¼ turbo spin echo; TE ¼ the echo time.
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Introduction

Low back pain (LBP) is a common clinical and public health problem.
An estimated 149 million workdays are lost every year in the United
States because of LBP [1], with total costs estimated to be $100–200
billion annually [2]. Substantial evidence links LBP to lumbar interver-
tebral disc degeneration (IDD) [3,4]. The aetiology of IDD is multifac-
torial, and there are various aetiological factors including genetics [5],
gender [6], ageing [7], smoking [8], high mechanical stress [9], and
insufficient nutrition [10]. However, a clear understanding of the path-
ogenesis of IDD is limited.

The cartilage end plate is connected to the vertebral bone and disc,
and the degeneration or sclerosis of the end plate may induce metabolic
disorder in the disc [11,12]. Cartilaginous end plates resist intervertebral
pressure and allow nutrient diffusion into the avascular disc from
vertebral blood vessels [13,14]. The end plate becomes sclerotic and less
permeable with age, resulting in reduced nutrient transport to the nu-
cleus pulposus (NP) [15,16]. Our prior work has shown that nutrition
disorder is a key factor leading to IDD by sub–end plate injection of
pingyangmycin to produce a “devascular effect” in rhesus monkeys,
which created a disease model mimicking the onset of disc degeneration
in humans [17]. Although nutrition disorder has been proposed to be a
common pathway of IDD [18], the role of end plate degeneration in the
progression of disc degeneration remains largely unknown.

Magnetic resonance imaging (MRI) is the most effective imaging
modality in the diagnosis of IDD. With disc degeneration, a reduction in
signal intensity on T2-weighted images is observed in the NP, with
eventual loss of distinction between the NP and annulus fibrosus [19].
Some newly developed quantitative MRI techniques, such as T1ρ and T2
map, can provide information about biochemical composition and
structural integrity of degenerated discs in a noninvasive manner [20].
T1ρ relaxation time (T1ρ values) is predominantly influenced by pro-
teoglycan [21–23], while T2 map relaxation time (T2 map values) de-
pends on collagen anisotropy and water content [30]. Our previous study
has also demonstrated that T1ρ values of the NP were inversely corre-
lated with Pfirrmann grades in both humans and rhesus monkeys and
suggested that T1ρ MRI technique is potentially a precise and noninva-
sive tool to detect changes of biochemical composition in lumbar IDD.

Despite the potentially important role of the end plate in disc
degeneration, the relationship between the end plate and disc degener-
ation with age has not been well clarified. In addition, disc degeneration
is often assessed using the Pfirrmann grading system, which is only a
semiquantitative method [25]. This study aimed to determine whether
end plate degeneration can be quantitatively evaluated by T1ρ or T2 map
and to investigate its relationship with disc degeneration. To this aim, we
focused on the end plate and disc degeneration in rhesus monkeys and
humans and investigated their correlations using T1ρ or T2 map MRI in
an attempt to understand the natural history and the changes of the end
plate in the degeneration of the intervertebral disc, which may uncover
the function of the end plate in disc degeneration.

Materials and methods

The study protocol was reviewed and approved by the Institutional
Review Board and Ethics Committee of the First Affiliated Hospital of Sun
Yat-sen University in Guangzhou, China (no. 2010-094 and no. 2018-
053). The animal study was approved by the Institutional Review
Board and Animal Care Committee of the First Affiliated Hospital of Sun
Yat-sen University (SYXK-2016-0112) and Guangdong Institute of Bio-
logical Resources, Guangzhou, China (SYXK-2018-0187).

Human participants

From June 2016 to May 2017, 12 of the outpatients (5 women and 7
men; median age: 43 years) with LBP, who consulted with Xu.Z. in the
orthopaedic clinic at the First Affiliated Hospital of Sun Yat-sen
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University, participated in this study. The inclusion criteria specified that
participants must be actively working, be between ages 30 and 50 years,
and have only experienced a single episode of LBP. Exclusion criteria was
as follows: body mass index higher than 35, radicular pain, neurologic
deficits of the lower limbs, previous spine surgery, contraindications for
MRI, known intervertebral disk herniation within the past two years, or
known lumbar scoliosis of more than 15� in coronal MRI.

Rhesus monkeys

Thirty-two rhesus monkeys were used for MRI scanning in this study.
There were 12 young monkeys (6 males and 6 females; median age: 7
years; range: 6–7 years) and 20 aged monkeys (13 males and 7 females;
median age: 16 years; range: 14–17 years [26]). One young and one aged
monkey were sacrificed for histological analysis after MRI scanning.

MRI acquisition

All MRI examinations were performed on human participants and
rhesus monkeys lying in the supine position using a 1.5-T MR scanner
(Philips Achieva, Amsterdam, Netherlands). The monkeys were under
anaesthesia. The imaging protocol for both humans and animals included
multiple sections of two-dimensional sagittal and axial T1- and T2-
weighted fast spin-echo sequences and quantitative MRI acquired with
T1ρ and T2 quantification sequences (Table 1) previously developed in
our laboratory [27]. MRI of the lumbar spine (L1–S1) in monkeys was
performed.

Region of interest quantification and Pfirrmann grading

T1ρ values were calculated using Siswin software (version 0.9; Sis-
win, MR Research Centre at Aarhus University Hospital, Denmark). T2



Figure 1. (A) Measuring T1ρ and T2 map values
of the region of interest of the nucleus pulposus in
the end plate and the lumbar intervertebral disc
of rhesus monkeys. (B) Measuring T1ρ and T2
map values of the region of interest of the nucleus
pulposus in the end plate and the lumbar inter-
vertebral disc of humans. The regions of interest
are shown in the T2 weighted image.
A ¼ anterior; F ¼ feet; H ¼ head; LB ¼ lower
back; LF ¼ lower front; LM ¼ lower middle;
NP ¼ nucleus pulposus; P ¼ posterior;
UB ¼ upper back; UF ¼ upper front; UM ¼ upper
middle.
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map values were calculated using Siswin software or Philips DICOM
viewer (R3.0-SP12, Philips Healthcare, Amsterdam, Netherlands). The
regions of interest (ROIs) were chosen in the centre of the NP (1 cm2 on
images of humans, 0.1 cm2 on images of monkeys) and the front, middle
and back, upper, or lower third of the end plate (20 mm2 on images of
humans, 4 mm2 on images of monkeys), as shown in Fig. 1. Three radi-
ologists who were blinded to the study groups measured the values of the
25
ROIs and graded all intervertebral discs using the T2-weighted images as
per the classification scale of Pfirrmann, as described in a previous report
[25,27].

Microcomputed tomography

One young and one agedmonkey were euthanized after MRI scanning
Figure 2. (A) T2-weighted, T1ρ, and T2 map
images of lumbar intervertebral discs (IDD)
related to Pfirrmann grades in rhesus monkeys.
(B) The box plot graph (median and interquartile
range) shows Pfirrmann grade of rhesus monkeys
lumbar IDD and its corresponding T1ρ values. (C)
The box plot graph (median and interquartile
range) shows Pfirrmann grade of rhesus monkeys
lumbar IDD and its corresponding T2 map values.
Bars with different superscript letters (a, b, c, d,
e) are significantly different at P＜0.05.
A ¼ anterior; F ¼ feet; H ¼ head; IDD ¼ inter-
vertebral disc degeneration; NP ¼ nucleus pul-
posus; P ¼ posterior.



Figure 3. (A and B) T1 ρ and T2 map values of the nucleus pulposus of the intervertebral disc by different segments of young and aged rhesus monkeys. (C and D) T1 ρ
and T2 map values of the nucleus pulposus of the intervertebral disc by gender of young and aged rhesus monkeys. Data are shown as mean � SD. Bars with different
superscript letters (a, b) are significantly different at P＜0.05. *p <0.05; **p <0.01. SD ¼ standard deviation.
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and flushed with phosphate-buffered saline for 10 min, followed by 10%
buffered formalin perfusion for 5 min. The lower thoracic and whole
lumbar spine were dissected and fixed in 10% buffered formalin for 48 h.
High-resolution microcomputed tomography (μCT) (Skyscan1172,
Bruker, Kontich, Belgium) was used to examine end plate changes. The
scanner was set at a voltage of 55 kVp, a current of 181 μA, and a reso-
lution of 12.0 μm per pixel. Images were reconstructed and analyzed
using NRecon version 1.6 and CTAn version 1.9 (Skyscan company, San
Jose, CA, USA), respectively.

Histomorphometry and immunohistochemistry

After μCT, the spine samples (T13–L7) were transferred to 0.5 M
EDTA (pH 7.4) for complete decalcification and then embedded in
paraffin. Four-micrometre-thick, sagittal-oriented sections of the spine
were processed for Safranin O and fast green staining and immunohis-
tochemistry staining by using a standard protocol. The sections were
incubated with primary antibodies to rabbit type II collagen (1:100,
ab34712; Abcam, Cambridge, UK) or Bovine Serum Albumin (BSA, 1%,
negative control) overnight at 4 �C. Then, the corresponding secondary
antibodies were added onto the sections for 1 h, followed by the use a
horseradish peroxidase–streptavidin detection system (Dako, Agilent,
Santa Clara, USA) to detect immunoactivity. Slides were then counter-
stained with haematoxylin (Sigma-Aldrich, St. Louis, USA). ImageJ
(National Institutes of Health, Bethesda, USA) software was used for
quantitative analysis, including the thickness and type II collagen–-
positive area of the end plate.

Statistical analysis

Statistical analysis was performed using SPSS 23.0 software (SPSS,
Chicago, USA). One-way analysis of variance (ANOVA) and multiple
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comparisons were used to compare three or more groups of T1ρ or T2
map values of the end plate or the NP by Pfirrmann grades. Two-way
ANOVA was used to analyze T1ρ or T2 map values of the NP to eval-
uate the effect of age, gender, and spinal level in degenerated discs. The
difference between the young and aged groups of T1ρ or T2map values of
the end plate or the NP was probed using the Student t test. Pearson's
correlation analysis was performed to investigate the relationship be-
tween the end plate and the NP in the T1ρ or T2 map values for both the
humans and the monkeys. Spearman's rank correlation was used to
investigate the relationship between the Pfirrmann classification system
and the T1ρ or T2 map values for monkeys. The difference of the thick-
ness and type II collagen–positive area in the end plate of two groups was
analyzed using the Student t test. A difference between groups was
considered statistically significant if the P value was less than 0.05.

Results

T1ρ and T2 map values of the NP were negatively correlated with
Pfirrmann grades in rhesus monkeys

A total of 256 intervertebral discs from rhesus monkeys were scanned
and evaluated based on typical MRI scans, including T2-weighted im-
ages, T1ρ values, and T2 maps (Fig. 2A). These discs were classified into
Grade I (n ¼ 37), Grade II (n ¼ 115), Grade III (n ¼ 35), Grade Ⅳ
(n ¼ 35), and Grade Ⅴ (n ¼ 34) as per the Pfirrmann grading system.

As our previous study in humans, T1ρ values were also significantly
correlated with Pfirrmann grades in rhesus monkeys (r ¼ �0.794,
P< 0.0001). The mean and standard deviation of T1ρ values of the NP by
Pfirrmann grades were as follows: 98.47 � 14.25 (grade I),
81.92 � 14.38 (grade II), 64.62 � 14.51 (grade III), 37.37 � 8.80 (grade
Ⅳ), and 35.60� 9.07 (gradeⅤ) (Fig. 2B). Moreover, the T2map values of
the NP were also significantly associated with Pfirrmann grades
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(r ¼ �0.8, P < 0.0001). The mean T2 map values by Pfirrmann grades
were as follows: 143.7 � 31.51 (grade I), 105.8 � 27.17 (grade II),
74.57 � 26.39 (grade III), 36.88 � 9.90 (grade Ⅳ), and 30.95 � 7.249
(grade Ⅴ) (Fig. 2C).

There were also significant differences between Pfirrmann Grades
I–Ⅳ in both T1ρ and T2 map values of the NP (P < 0.0001). However,
there were significant differences between Pfirrmann GradeⅣ and Grade
Ⅴ only in T2 map values (P ¼ 0.045), but not in T1ρ values (P ¼ 0.49)
(Fig. 2B and C). This indicated that T2 map is more sensitive than T1ρ for
identifying the differences between the two most advanced Pfirrmann
grades (Ⅳ and Ⅴ). Collectively, these findings suggested that both T1ρ
and T2 map were good ways to quantitatively evaluate the degeneration
of the NP in rhesus monkeys, but T2 map may be more sensitive in the
late stage of IDD than T1ρ.

Age is an important aetiological factor of disc degeneration in rhesus
monkeys

To examine if disc degeneration was accompanied by age, we calcu-
lated T1ρ and T2 map values of the disc segments in aged and young
rhesus monkeys from T12 to L7. We then analyzed the relationship be-
tween age and spinal levels in disc degeneration using two-way ANOVA.
The results showed that both age (P < 0.0001) and spinal level
(P< 0.0001) were the main effects. The T1ρ values (Fig. 3A) and T2 map
values (Fig. 3B) of the NP were significantly higher in all segments of the
young group than in those of the aged group (both P < 0.0001), indi-
cating the development of disc degeneration with age. For T1ρ values, the
values of T12–T13 discs were significantly lower than those of the other
segments, but not L2–3 or T13–L1. The same trend was also found in T2
map values, which indicated that the thoracolumbar segments were more
susceptible to degeneration with age in monkeys. Next, we measured the
T1ρ and T2 map values between male and female groups. For T1ρ values,
there was no significant difference in gender (P ¼ 0.6796) or the inter-
action between age and gender (P ¼ 0.3509) (Fig. 3C). However, the
significant differences in gender were found in T2 map values
(P ¼ 0.0326) (Fig. 3D), which indicated that females may be more
vulnerable to disc degeneration during ageing than males. Furthermore,
the results also suggested that T2 map might be superior to T1ρ in the
assessment of the middle and late stage of IDD.

End plate degeneration with age can be quantitatively and precisely
evaluated by T2 map

The ROIs of end plates were analyzed and are shown in Fig. 1. In
comparison with the young group, the T1ρ values of the whole end plate
significantly decreased in the aged group (Table 2). Moreover, after
comparing T1ρ values of the end plates among the three groups (mild,
>80 ms; moderate, 40–80 ms; severe, 10–40 ms) based on T1ρ values of
the NP, only the upper and lower back end plates had significant dif-
ferences (Table 2, left). In addition, T2 map values of the upper middle
and lower front, middle, and back end plates in the aged group were
lower than those of the young group. This indicates that there are dif-
ferences in age-related dehydration and sclerosis among different parts of
the end plate. Interestingly, comparing T2 map values among the three
groups (mild, >100 ms; moderate, 40–100 ms; severe, 10–40 ms) based
on T2map values of the NP, significant differences were also found in the
same sites of the end plate (Table 2, right). Taken together, these findings
suggested that end plate degeneration can be quantitatively evaluated by
T1ρ and T2 map, but it may be more precisely evaluated by T2 map.

Compositional and structural changes of the end plate with age

Site-matched μCT and histologic examinations were used to confirm
compositional and structural changes of the end plate in young and aged
monkeys. μCT showed that the end plate became more sclerotic in the
segments with low T2 map values of the NP (Fig. 4A). Similar results
27



Figure 4. (A) End plate changes including μCT and Safranin O and fast green staining in the young and aged monkeys with high or low T2 map values of the
intervertebral disc. (B) The sclerotic end plate occurred in the front one-third of the end plate (1 and 3); the cartilage in the middle one-third of the end plate of the
aged group (4) was thinner than that in the young group (2). (C) And the immunohistology staining of type II collagen showed that type II collagen–positive area
(brown) was lower expression in the aged group than that in the young group. (D) The thickness of middle end plate had been calculated, and there were statistically
significant differences in the two groups. μCT ¼ microcomputed tomography.
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were also observed with Safranin O/fast green staining (Fig. 4B). Inter-
estingly, the lower front and middle end plates also became sclerotic,
where a lot of cartilage was replaced with new bone formation, not only
in the aged but also in the young group. The cartilage of the middle end
plate in the aged group was significantly thinner than that in the young
group (Fig. 4B and D). Immunostaining also showed less type II collagen
in the middle end plate in the aged monkeys (Fig. 4C) but that in the
negative control was blank (data not shown in the figure). Given these
findings, these data confirmed that the compositional and structural
changes of the end plate with age were reflected by T2 map values, again
Figure 5. Correlation between the T2 map values of the nucleus pulposus (NP) and t
analyzed. The T2 map values of the NP and the T2 map values of the lower end pla
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suggesting that end plate degeneration can be precisely evaluated by T2
map.

Positive correlations between T2 map values of the end plate and NP in
rhesus monkeys

Linear regression between the T2 map values of the end plate and the
NP (Fig. 5) showed that the whole lower end plate (R2 ¼ 0.3133,
P < 0.0001), especially the lower middle (R2 ¼ 0.2845, P< 0.0001), had
a significant positive correlation with the NP. Although there were
he lower end plate or lower middle (LM) end plate in rhesus monkeys had been
te or lower middle end plate were significantly positively correlated.



Figure 6. Correlation between the T2 map values of the nucleus pulposus (NP) and the lower end plate or lower middle (LM) end plate of 12 outpatients had been
analyzed. There was significant positive correlation between the T2 map values of the NP and the T2 map values of the lower end plate, especially between the lower
middle end plate and the NP.
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significant correlations between T2 map values of other ROIs and the NP,
the correlation coefficients were lower than 0.3. The exceptions were the
whole upper (r¼ 0.33, P< 0.0001) and upper middle end plate (r¼ 0.38,
P < 0.0001), but they were lower than 0.5 (Supplementary Table 1A).
Thus, these data suggested lower end plate degeneration was associated
with disc degeneration in rhesus monkeys, especially in the lower middle
end plate.
Positive correlations between T2 map values of the end plate and the NP in
humans

At the same time, MRI and analysis of T1ρ and T2 maps were also
performed in voluntary outpatients (Supplementary Table 1B). Even with
limited human participants, linear regression between the T2 map values
of the end plate and the NP showed that average T2 map values of the
lower whole end plate (R2 ¼ 0.2092, P ¼ 0.0002), especially the lower
middle end plate (R2 ¼ 0.3176, P < 0.0001), had a significant positive
correlation with those of the NP (Fig. 6), which confirmed the results of
rhesus monkeys.

Discussion

To the best of our knowledge, this study is the first investigation of
end plate degeneration and its relationship with IDD in nonhuman pri-
mates using quantitative MRI. In the present study, we found that T1ρ
and T2 map values of the NP had significant negative correlations with
Pfirrmann grades in the disc of rhesus monkeys. Moreover, the end plate
structure could be easily distinguished with the T1ρ and T2 map image.
End plate degeneration can be quantified by T1ρ and T2 map, while T2
map may be more sensitive to mid- to late-stage changes. Furthermore,
regression analysis demonstrated that T2 map values of the end plate,
especially in the lower middle region, were closely associated with T2
map values of the NP, which had lower thickness and type II collagen in
the aged group, as shown by histologic examination. What is more, the
data from human participants confirmed the correlation, suggesting that
lower middle end plate degeneration is highly associated with disc
degeneration in both aged rhesus monkeys and humans.

Early biochemical changes of IDD include a decrease in proteoglycan
levels and hydration [28]. Morphological changes including NP dehy-
dration, collagen disarrangement, end plate sclerosis, and disc height loss
occur in advanced IDD. The findings from Johannessen et al. [29] indi-
cated that T1ρ was correlated with sulphated glycosaminoglycan content
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in the human NP. Our previous study has demonstrated that there was a
significant negative correlation between T1ρ values of the NP and
Pfirrmann grades in humans and rhesus monkeys [27]. Decreased T2
map values were caused by collagen disarrangement and hydration in the
intervertebral disc [30]. In the present study, we found that both T1ρ and
T2 map values of the NP had significant inverse correlations with Pfirr-
mann grades in rhesus monkeys. Moreover, T2 map can distinguish the
differences between Pfirrmann Grades IV and V in the female and male
group of aged monkeys, which indicates that T2 map might be more
sensitive for evaluating and quantifying the middle and late stage of IDD.

End plate degeneration on MRI was first described by Modic et al.
[47] and classified into three types according to the signal changes of the
bone marrow. T1ρ and T2 map were mainly used to evaluate cartilage
degeneration in osteoarthritis or disc degeneration in orthopaedic
research, although they were also used to evaluate bone quality by
reflecting the water content in cortical bone [31–33], and bone marrow
oedema-like lesions [34,35]. In our study, end plate degeneration was
quantified and manifested by reduced values of T1ρ and T2 map, which
reflected biochemical composition and structural changes of the end
plate with age. Moreover, these compositional and structural changes of
the end plate cartilage during ageing can be precisely evaluated by T2
map in young and aged monkeys, which were confirmed by site-matched
μCT and histological examination. Furthermore, we found that there was
a close correlation between the T2 map value of the end plate, especially
the lower middle region, and NP degeneration in rhesus monkeys. This
observation was also confirmed by data from human participants.

The avascular disc depends on diffusion and convection through the
end plate cartilage for nutrient supply and metabolite removal. With
degeneration, the end plate becomes sclerotic and less permeable, and
consequently, nutrient transport to the NP across the end plate reduces
[12]. Given the results of the present study, our data suggest that insuf-
ficient nutrition caused by compositional and structural changes of the
lower middle end plate during ageing is an important aetiological factor
leading to IDD.

A recent study showed that higher mean T2map values were found in
the lower end plate zones than in upper end plate zones, both with
unloading and axial loading, on MRI [36]. Consistent with the study, we
found that T2 map values of the lower end plate, especially in the lower
middle region, were higher than those of the upper end plate. Biome-
chanical studies indicate that the lower end plate, with a denser collagen
network and less efficient transport properties, resists load more effec-
tively than the upper end plate [37,38]. Moreover, the cartilaginous end



Supplementary Table 1
Correlation between the T1ρ and T2 map values of the nucleus pulposus (NP) and ROIs (the whole or front, middle, back one-third of the upper or lower end plate) in
monkeys (A) or humans (B) had been analyzed by Pearson's correlation.

A.

Monkey T1ρ Pearson r NP vs. Upper mean NP vs. UF NP vs. UM NP vs. UB NP vs. lower mean NP vs. LF NP vs. LM NP vs. LB

R 0.08038 0.1712 0.08953 0.2024 0.2179 0.1366 0.1554 0.2567
R square 0.006461 0.02931 0.008016 0.04095 0.0475 0.01865 0.02415 0.06592
P value 0.1912 0.0051 0.1453 0.0009 0.0003 0.0259 0.0112 <0.0001
P value summary ns ** ns *** *** * * ****
Significant? (a ¼ 0.05) No Yes No Yes Yes Yes Yes Yes

Monkey T2 map Pearson r NP vs. Upper mean NP vs. UF NP vs. UM NP vs. UB NP vs. lower mean NP vs. LF NP vs. LM NP vs. LB

R 0.3341 0.1836 0.3838 0.08046 0.5597 0.2887 0.5334 0.2606
R square 0.1116 0.03369 0.1473 0.006474 0.3133 0.08333 0.2845 0.06791
P value <0.0001 0.0074 <0.0001 0.2434 <0.0001 <0.0001 <0.0001 0.0001
P value summary **** ** **** ns **** **** **** ***
Significant? (a ¼ 0.05) Yes Yes Yes No Yes Yes Yes Yes

B.

Human T1ρ Pearson r NP vs. Upper mean NP vs. UF NP vs. UM NP vs. UB NP vs. Lower mean NP vs. LF NP vs. LM NP vs. LB

R 0.2125 0.1743 0.304 �0.04205 0.1126 0.1836 0.05338 0.0234
R square 0.04515 0.03037 0.09243 0.001768 0.01268 0.03371 0.00285 0.0005478
P value 0.0973 0.1755 0.0163 0.7456 0.3835 0.1532 0.6803 0.8567
P value summary ns ns * ns ns ns ns ns
Significant? (a ¼ 0.05) No No Yes No No No No No

Human T2 map Pearson r NP vs. Upper mean NP vs. UF NP vs. UM NP vs. UB NP vs. Lower mean NP vs. LF NP vs. LM NP vs. LB

R 0.4461 0.426 0.4721 0.2989 0.4574 0.3123 0.5636 0.2507
R square 0.199 0.1815 0.2229 0.08936 0.2092 0.09755 0.3176 0.06285
P value 0.0003 0.0006 0.0001 0.0183 0.0002 0.0135 <0.0001 0.0494
P value summary *** *** *** * *** * **** *
Significant? (a ¼ 0.05) Yes Yes Yes Yes Yes Yes Yes Yes

NP ¼ nucleus pulposus; ROI ¼ region of interest; LB ¼ lower back; LF ¼ lower front; LM ¼ lower middle; UB ¼ upper back; UF ¼ upper front; UM ¼ upper middle.
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
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plate thickness decreases towards the centre of the disc and is associated
with disc degeneration [39,40]. Taken together, these studies suggest
that the upper end plate is less tolerant to age-related degeneration than
the lower end plate and could explain our findings that degeneration of
the lower end plate, especially the lower middle region, is closely asso-
ciated with disc degeneration with age. However, sclerosis of the upper
end plate may be associated with discogenic pain, causing LBP without
IDD, because end plate sclerosis is accompanied by sensory nerve growth
into porous end plates [41].

There are many animal models of IDD [42,43], but they do not mimic
human disease very well. As humanoid primates, rhesus monkeys make a
more physiologically relevant model than other animals for studying
human IDD and LBP because of their anatomical similarities (e.g.,
walking and body size) [44,45]. In our previous study, we established a
slowly progressing IDD model in rhesus monkeys by blocking nutrition
exchange, which mimics the onset of disc degeneration in humans [17].
However, in the present study, we observed that the most common
degenerative segment was mainly in the thoracolumbar (T12–T13) re-
gion of rhesus monkeys, which is different from the lower lumbar
(L4–L5) region of human participants [46]. The discrepancy may be
caused by the long-term arching for monkeys rather than bending for
humans. These findings not only give a hint for future studies involving
monkey models of IDD but also indicate that mechanical alteration of
intervertebral discs caused by different postures and spinal curvature
may also be important factors for IDD.

There are three limitations in the present study. First, the number of
histology samples from rhesus monkeys was small, despite the number of
monkeys enrolled in the study was considerable. However, there were
different degenerative segments with different degrees of degeneration
because each rhesus monkey had multiple intervertebral discs (T13–L7).
Moreover, rhesus monkeys are very precious, and we sacrificed only one
rhesus monkey in both the young and aged groups to minimize
30
sacrificing nonhuman primates. Second, the number of human partici-
pants enrolled is small owing to the strict selection criteria to exclude
participants with obvious disc herniation and vertebral instability.
Although the data from human participants were consistent with the
findings from rhesus monkeys, more clinical data are needed to support
the results of the study. Third, this study is based on a single midsagittal
2D slice of the MRI image, which may lose some spatial information.
Three-dimensional MRI scanning parameters will overcome this defect,
which may be of benefit to find the changes of lateral end plate regions
during ageing.

Conclusion

In conclusion, these data suggest that end plate degeneration can be
quantitatively and precisely evaluated by T2 map in clinics. Furthermore,
lower cartilage end plate degeneration was associated with disc degen-
eration during ageing, which indicates that T2 map may be used to
evaluate end plate degeneration in the clinic.
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