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Abstract. Accumulating evidence indicates that exercise can improve learning and memory as well as attenuate neurodegen-
eration, including Alzheimer’s disease (AD). In addition to improving neuroplasticity by altering the synaptic structure and
function in various brain regions, exercise also modulates systems like angiogenesis and glial activation that are known to
support neuroplasticity. Moreover, exercise helps to maintain a cerebral microenvironment that facilitates synaptic plasticity
by enhancing the clearance of A�, one of the main culprits of AD pathogenesis. The purpose of this review is to highlight
the positive impacts of exercise on promoting neuroplasticity. Possible mechanisms involved in exercise-modulated neuro-
plasticity are also discussed. Undoubtedly, more studies are needed to design an optimal personalized exercise protocol for
enhancing brain function.
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INTRODUCTION

In line with population aging, the number of peo-
ple living with dementia worldwide is set to increase.
According to the World Alzheimer Report 2016,
there are about 47 million people worldwide living
with dementia and this number may reach 74.7 mil-
lion in 2030 and 131.5 million in 2050 (Alzheimer’s
Disease International. World Alzheimer report
2016: Improving healthcare for people living with
dementia. https://www.alz.co.uk/research/world-
report-2016). Alzheimer’s disease (AD) is the most
common form of dementia and possibly contributes

∗Correspondence to: Dr. Y.-M. Kuo, Department of Cell Biol-
ogy and Anatomy, National Cheng Kung University, 1 Ta Hsueh
Road, Tainan 70101, Taiwan. Tel.: +886 6235 3535/Ext. 5294;
Fax: +886 6209 3007; E-mail: kuoym@mail.ncku.edu.tw.

to 60–70% of dementia cases (WHO and Alzheimer’s
Disease International. Dementia: a public health
priority. Geneva, Switzerland: World Health Organi-
zation, 2012). The pathological features of AD are
characterized by extracellular depositions of amyloid
plaques, which are primarily composed of 39–43
amino acids long A� peptides, and intracellular
accumulations of neurofibrillary tangles, which
are mainly composed by hyperphosphorylated tau
protein [1]. Accumulations of amyloid plaques
and neurofibrillary tangles in the brain have been
hypothesized to cause deleterious responses in
neuronal function in several brain regions related to
cognition, such as the hippocampus and entorhinal
cortex [1]. To date, there is no promising pharma-
cologic treatment (medication) that can halt AD.
Therefore, nonpharmacological interventions that
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could improve or maintain cognitive function have
become alternative options for the prevention and
treatment of AD.

Epidemiological evidence has suggested that
some lifestyle factors, such as regular exercise and
cognitive activity, may delay age-related memory
impairment and decrease risk of AD [2–4]. A meta-
analysis examining the relationship between physical
activity and the risk of neurodegenerative disease
reported that engaging in physical activity reduces
the risk of dementia and AD by 28% and 45%,
respectively [5]. Higher levels of total daily physical
exercise is associated with a lower risk of develop-
ing AD [6, 7]. Exercise can have a positive effect on
multiple aspects of the brain, such as an increase in
synaptic and cerebrovascular plasticity [8], a decrease
in neuropathology [9], and an attenuation in neu-
roinflammation [10]. The wide variety of beneficial
effects induced by exercise enhances overall brain
health, which in turn helps to preserve neuronal
function and protect against aging-associated loss of
cognition. In this review, we summarize the recent
advances in the beneficial effects of exercise on brain
function and highlight some potential mechanisms.

BENEFICIAL EFFECTS OF EXERCISE ON
BRAIN FUNCTION

Behavior level – learning and memory function

A growing number of studies support the idea that
physical exercise increases brain function through-
out life [11, 12]. In a meta-analysis that included
a total of 59 studies (from 1947 to 2009) examin-
ing the relationship between physical activity and
academic achievement in school-age children, the
authors demonstrated significant and positive cor-
relations between physical activity and cognitive
outcomes [13]. In another meta-analytic review of
29 randomized controlled trials examining the asso-
ciation between aerobic exercise and neurocognitive
performance in a group with a mean age of ≥18
years of age, positive association between exercise
with attention, processing speed, and executive and
memory function was also evident [14]. Particu-
larly, exercise enhances pattern separation in humans,
which is defined as a process to remove redundancy
from similar input patterns so that events can be
separated from each other and interference can be
minimized [15]. An acute bout of moderate inten-
sity aerobic exercise improves the pattern separation

in young adults [16]. This mnemonic discrimination
ability is highly correlated with aerobic fitness. The
higher fitness group (i.e., high endurance capacity
during exercise) had better performance in the pattern
separation test compared with the lower fitness group
[17]. The memory-enhancing effect of exercise on
young adults has also been demonstrated in a series of
hippocampal-associated learning and memory tests
designed for rodents. Almost all young animal stud-
ies confirmed the memory-facilitating effect (i.e.,
acquisition and retention) of exercise. These tests
included novel object recognition [18, 19], object
displacement [19], Morris water maze [18, 20–22],
radial arm water maze [23], Y-maze [24], passive
avoidance [25, 26] and contextual fear conditioning
[27–29].

In addition to benefiting healthy young adults,
physical exercise is known to delay age-related cogni-
tive decline. A randomized, controlled trial study that
evaluated the association between exercise and cogni-
tive function in 120 healthy participants aged over 65
showed that 6 months of exercise reversed age-related
loss in hippocampus volume and improved perfor-
mance in a computerized spatial memory task [30].
A meta-analysis including 42 studies (from 1966 and
2010) of cognitive interventions of exercise in 3,781
healthy older adults aged 55 and older concluded that
aerobic fitness training improves cognitive perfor-
mance [31]. Similar findings have also been obtained
in aged animals. For example, it has been shown
that 6-weeks of treadmill exercise ameliorates age-
induced losses in short-term (tested by step-down
avoidance task) and long-term memory (tested by
radial 8-arm maze) functions in 24-month-old rats
[32]. Another study demonstrated that one week of
mild treadmill exercise was enough to improve spa-
tial learning and memory ability, which was tested
by the Morris water maze in 23-month-old rats [33].
These results suggest that exercise not only enhances
learning and memory in young adults but also pro-
tects aged individuals from age-related cognitive
impairment.

Although the beneficial effects of exercise on
learning and memory have been well-documented in
numerous studies, some studies of rodents failed to
find such an association. This discrepancy may be
due to the different exercise intensities and durations
employed in each study. For example, high levels of
running exercise are known to impair hippocampus-
dependent spatial memory [34, 35] and other types of
memory [36]. It has been speculated that the exercise
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intensity affects cognitive performance in a reversed
U-shaped fashion. In other words, cognition improve-
ment is most effective at moderate-intensity exercise,
whereas exercise at low-intensity is less effective and
at high-intensity would induce high levels of stress
responses, hence impairing cognitive performance
[37, 38].

Behavior level – mental function

The beneficial effects of exercise extend beyond
cognitive function. A plethora of evidence supports
the notion that exercise can prevent or delay the onset
of various mental disorders such as anxiety, depres-
sion, and posttraumatic stress disorder [39, 40].
Several meta-analysis studies suggest that exercise
could reduce depressive and anxiolytic symptoms in
adolescents with clinical levels of mental illness [41,
42]. The effects of exercise on mental health are dose-
dependent. In adults, a moderate amount of exercise
exerts greater benefits in the mental health than low
or high doses of exercise [43].

The positive effects of exercise on mood disorders
have been examined in various animal models. It has
been shown that a 2-week period of treadmill exercise
effectively decreased anxiety-like (tested by elevated
plus maze) and depressive-like (tested by sucrose
preference test) behaviors in a single-prolonged
stress-induced post-traumatic stress disorder rat
model [44]. Besides stress, mood disorders com-
monly occur secondary to medical conditions such as
obesity and stroke. In high-fat diet induced obesity,
and middle cerebral artery occlusion-induced stroke
animal models, exercise was also capable of atten-
uating depression- and anxiety-like behaviors in the
modeled animals [45, 46].

Behavior level – motor function

Exercise has a profound effect on motor func-
tion. It has been demonstrated that a single session
of exercise not only significantly improves perfor-
mance in a motor learning task during the training
session [47] but also leads to longer retention of
said motor skills than the control group. This is
especially clear when motor memory is assessed
one day after practice [48]. In the animal studies,
both wheel and treadmill exercise enhanced animals’
motor performance in foot fault-placing and paral-
lel bar-crossing, as well as the staircase reaching
task [49], rota-rod test [50], beam walking and cylin-

der tests [51], and ladder-climbing tests [52], after
ischemic or hemorrhagic stroke. Furthermore, wheel-
running and treadmill exercise can also rescue motor
behaviors (e.g., rotarod performance test, rotational
behavior test, ladder rung walking task, and gait
parameters) that are impaired by different dopamine-
depletion methods such as LPS, 6-OHDA and MPTP
[53–55].

Cellular level – neurons

Neuroplasticity is a continuous process that modi-
fies existing neural networks by mediating structural
and functional adaptations of synapses in response to
changes in behavior. Exercise-induced structural and
functional changes in the brain have been reported in
both human and animal studies.

Structural changes – macroscopic levels
Using a resting MRI to evaluate human brain struc-

ture, it has been shown that aerobic exercise, from
several months to a year, increased brain volume
in various brain regions, such as the prefrontal and
temporal cortex, [56] as well as the hippocampus
[30]. Compared to healthy adults with a sedentary
lifestyle, higher gray and white matter cluster con-
centrations (Voxel-based analysis) in the subgyrus,
cuneus, and precuneus regions are found in ath-
letes of similar ages [57]. A functional MRI study
suggested that aerobic exercise at least enhanced
activity in the brain areas which are involved in atten-
tional control tasks [58]. Moreover, twelve months of
chronic exercise enhanced functional connectivity in
the default-mode network and the frontal executive
network [59]. The increase of brain regional volume
and activity may reflect an alteration in the num-
ber of neurons, synapses, and axonal and dendritic
arbors.

Animal studies also support that exercise induces
neuronal structural alteration in various brain regions,
including the dentate gyrus (DG) and the cornu
ammonis (CA) areas of the hippocampus, amygdala,
cortex, striatum, and cerebellum [28, 60–63].

Structural changes – microscopic levels
The effect of exercise on neuronal morphology has

also been studied in multiple brain regions. These
exercise-induced neuroadaptations will be discussed
separately.

In the hippocampal DG and CA regions, exercise
significantly enhances dendritic length and complex-
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ity as well as increases the dendritic spine density
of neurons [60, 64–67]. Schaefers et al. has scored
the presynaptic turnover rates by quantifying lysoso-
mal accumulations in degrading axon terminals [68].
Their study indicates that four days of wheel-running
in adulthood leads to a significant difference in the
level of synaptic turnover in the stratum lacunosum-
moleculare layer of the CA1 region, suggesting the
effects of exercise on pre-synaptic remodeling [68].
At the post-synaptic location, exercise increased the
dendritic arborization and spine density in both the
CA1 and CA3 regions. The dendritic branches in
the apical dendrites and the numbers of dendritic
spines on both the apical and basal dendrites of
CA1 pyramidal neurons also increased after tread-
mill and wheel-running exercise [28, 65]. In addition
to normal physiological conditions, exercise can also
restore impaired neuronal structure in CA regions
after brain injury. For example, in the middle cere-
bral artery occlusion-induced ischemic rats model,
the neurons in CA1 and CA3 exhibited the longer
dendritic length and higher arborization after two
weeks of treadmill exercise as compared to the seden-
tary group [69]. In the neonatal hypoxia-ischemia rat
model, physical activity improved the spine density
in the CA1 neurons [70].

The effect of exercise on the structure of amyg-
dalar neurons has also been studied in rats [28] and
mice [71]. By using the single neuron labeling tech-
nique, the dendritic arborization and spine density of
neurons in the basolateral amygdala increased after
one month of treadmill exercise [28, 71]. However,
it is interesting to note that different forms of exer-
cise induced distinct brain region-dependent neuronal
adaptations. For example, 1-month treadmill running
exercise, but not running wheel exercise, increased
dendrite complexity and spine densities of neurons in
the basolateral amygdala [28]. The differential effects
between treadmill and wheel exercise may be derived
from the difference in exercise intensity as skeletal
muscle citrate synthase activity is only elevated in
the rats trained by treadmill exercise, but not by run-
ning wheel exercise [28]. These results suggest that
the influences of exercise on amygdalar neurons may
depend on exercise intensity.

The cytoarchitecture of cortical neurons is also
affected by exercise. It has been shown that the nitr-
ergic neurons in the cerebral cortex exhibit larger size
and extended dendritic arborization after 16-months
of moderate exercise, suggesting that nitric oxide may
play a role in synaptic plasticity related to exercise
[61]. Higher density of dendritic spines in the medial

prefrontal cortex pyramidal neurons in rats could be
identified after 2-weeks of running wheel exercise
when compared to rats that didn’t do the wheel exer-
cise [62]. These results suggest that medial prefrontal
cortex pyramidal neurons are much more sensitive
to exercise, as such, intensity of wheel-running does
not significantly affect amygdalar neurons [28]. By
utilizing transcranial two-photon in vivo microscopy,
Chen et al. investigated the turnover of dendritic
spines in the barrel cortex of mice receiving exer-
cise [72]. They demonstrated that exercise decreases
the elimination but does not improve the forma-
tion of dendritic spines in the cortical neurons. The
net outcome of exercise increased the percentage of
mushroom-like spines and decreased the numbers of
thin and filopodia spines in the barrel cortex, which
represent the facilitation of maturation of dendritic
spines by exercise [72].

The cerebellum and striatum are the primary struc-
tures of a distributed system for the control of motor
functions [73]. Exercise has been shown to increase
the density of dendrites and dendritic spines in the
cerebellar Purkinje cells of animals [63, 74, 75].
Among the different types of dendritic spines, the
stubby, mushroom, and wild spines are more abun-
dant in the cerebellar Purkinje cells in exercise
animals than sedentary rats [75]. The changes in
morphology of dendritic spines could be related to
the regulation of excitability in Purkinje cells due
to motor activity [75]. Furthermore, exercise selec-
tively increases the thickness of the molecular layer
in the cerebellum [74], implying morphological adap-
tations in the basket and stellate cells.

Unlike other brain regions, the effects of exer-
cise on neuronal morphology of the striatum is
frequently investigated after local neurons undergo
pathological challenges. No apparent morpholog-
ical changes in the striatal neurons are evident
in healthy animals after 1-month to 1.5 years of
chronic exercise [61, 76–79]. However, in MPTP-
and 6-OHDA-treated Parkinson’s disease animal
models and in the collagenase-induced intracere-
bral hemorrhage model, the number of tyrosine
hydroxylase-immunostaining positive fibers and den-
dritic spine density in the striatum are higher in the
exercise group than the non-exercise group [77–79].
By using Drd2-eGFP-BAC transgenic (Tg) mice in
conjunction with biocytin injection methods, Toy et
al. showed that chronic exercise increased dendritic
spine densities in the striatal medium spiny neurons in
both DA-D1R-direct and DA-D2R-indirect pathways
of MPTP-treated animals [77].
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Functional changes
The structural changes in neurons (e.g., dendritic

complexity, spine density, and newborn neuron mat-
uration in the adult hippocampus) after exercise are
highly associated with functional alterations in neu-
rons (e.g., synaptic activity). Long-term potentiation
(LTP) is a form of synaptic plasticity characterized by
a prolonged increase in synaptic efficiency based on
application of a patterned stimulus. Numerous stud-
ies have shown that exercise efficiently increases the
LTP amplitude in the DG region [18, 21, 80–83]. It
has been suggested that exercise alters the expression
of LTP in the DG by reducing the threshold of LTP
induction. The weak theta burst stimulation, while
not reliably inducing a significant amount of LTP
in the DG of sedentary animals, can trigger robust
short-term potentiation and long-lasting LTP in run-
ning animals [80]. Moreover, the effectiveness of
exercise on the enhancement of LTP is of a time-
dependent manner (number of running days). Patten
et al. examined the expression of LTP in animals that
received different periods of exercise and found that
LTP expression gradually increased in the DG dur-
ing days 7–28 of the exercise period and reached a
significant level after 56 days of running [83].

Exercise-induced improvement of LTP has also
been demonstrated in other hippocampal regions.
Both treadmill and wheel-running enhance the
expression of a single burst of 100-Hz-induced LTP in
the Schaffer collateral pathway of CA1 area [84, 85].
In addition, this exercise promotes the occurrence of a
tetraethylammonium-induced potassium ion channel
blockade, which in turn leads to the expression of LTP
in the mossy fiber of the CA3 area [86]. A blockade of
NMDA receptors, NR2A or NR2B, inhibit the effects
of exercise on LTP enhancement [80, 81], suggest-
ing that the facilitation of LTP by exercise critically
relies on the functions of the NMDA and glutamate
receptors [87].

Cellular level – glial cells

In parallel with the effects of exercise on neu-
rons, exercise is also known to have multiple effects
on glial cells. Astrocytes, the major glial cells in
the brain, play a vital role in the regulation of
brain energy transmissions from the vasculatures
to the neurons [88, 89]. Because proper and effi-
cient astrocyte function is essential for supporting
neuronal function [88], it has been suggested that
exercise-induced enhancement of neuronal function
may occur via the adaptation of astrocyte behavior.

Exercise induces widespread plasticity in astrocytes
[90]. It has been shown that one month of tread-
mill exercise increases GFAP-labeled cell numbers
and the improvement of astrocyte plasticity in the
CA1 area [91]. Furthermore, immunostaining signals
of S100� and aquaporin-4, two astrocyte-specific
markers, in various brain regions related with cog-
nitive function, such as the hippocampus, medial
prefrontal cortex, and orbitofrontal cortex, increased
after 12 days of wheel-running in rats [90]. In mice,
4 weeks of physical exercise (a combination of
treadmill and running wheel) increased the aver-
age length and the area enclosed by each astrocytic
projection in the hippocampus [92]. The exercise
also changed the orientation of astrocytic projections
towards DG in the hippocampus, the region with
significant increase in neurogenesis following the
exercise [92].

The structure and function of microglia, the major
immune cells in the central nervous system, are also
affected by exercise. Exercise has been reported to
decrease the aging-induced activation and prolifer-
ation of microglia in the hippocampus [93, 94]. In
parallel to the in vivo findings, microglia isolated
from aged rodents that participated in chronic wheel-
running exercise have a lower basal level of IL-1� and
TNF-� when compared to the microglia isolated from
their sedentary littermates [95–97]. Similarly, when
stimulating these microglia with LPS, the production
of IL-1� was also lower in the chronic wheel-running
group. In addition to the inflammatory cytokines,
neuron-microglia contact signaling, an important
regulator of microglial activation, is affected by
exercise. For example, CX3CL1 and CD200 are
immunomodulatory factors expressed by neurons to
inhibit microglial activation through binding with the
CX3CL1 and CD200 receptor on microglia, respec-
tively [98]. Chronic exercise is known to upregulate
the expression of the CX3CL1 gene [99] and the
CD200/CD200R proteins in the brain [100], support-
ing that exercise may inhibit microglial activation
via the enhancement of neuron-microglia contact
signaling.

Molecular level – brain-derived neurotrophic
factor (BDNF)

The mechanisms underlying exercise-induced
neuroplasticity involve, at least in part, several neu-
rotrophic and growth factors. Among them, BDNF
is a well-characterized mediator of neuronal growth
[101], plasticity [102, 103], and survival [99]. Human
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and animal studies collectively suggest that exercise
is an active strategy to upregulate the expression of
BDNF, which plays an essential role in exercise-
induced neuroplasticity [104, 105]. Different types of
exercise (i.e., voluntary wheel-running and manda-
tory treadmill running) all seem to be capable of
enhancing the production of BDNF in the hip-
pocampus of young and aged animals [22, 28,
106–108]. It is believed that BDNF binds to its
receptor, tropomyosin receptor kinase B (TrkB),
which increases the phosphorylation levels of cAMP
response-element-binding (CREB) and the transla-
tion of synaptic-plasticity related proteins [22, 28,
103, 109, 110], and finally enhances neuroplasticity.
It has been demonstrated that animals with higher lev-
els of BDNF and TrkB receptor in the hippocampus
exhibit better performance in radial water mazes [23]
and passive avoidance tasks [26]. On the contrary,
blocking the TrkB receptor with a TrkB receptor-
IgG chimera or antagonist inhibits the efficacy of
exercise-induced upregulation of synaptic plasticity-
related proteins significantly [103, 109], resulting in a
disruption of benefits on cognitive function. Behavior
tests in the Morris water maze, passive avoidance, and
contextual fear condition also suggest that the learn-
ing and memory abilities enhanced by exercise are
reduced to sedentary levels after treating the animals
with TrkB receptor blockers [26, 28, 111].

Molecular level – insulin-like growth factor 1
(IGF-1)

IGF-1 is also a key modulator of neuronal functions
in the central nervous system, including synap-
tic plasticity, synapse density, neurotransmission,
neurogenesis and neuron differentiation [112–114].
Chronic exercise-enhanced adult hippocampal neu-
rogenesis, learning, and memory performance have
been attributed to IGF-1 signaling in the hippocampus
[115–117]. The levels of IGF-1 in the blood posi-
tively correlated with the time animals spent in the
target quadrant during the probe trial of the Morris
water maze [115]. The levels of IGF-1 in the brain
are also increased after exercise, which is a result of
uptake in circulating IGF-1 [118]. Infusion of anti-
IGF-I antiserum or neutralization of hippocampal
IGF-1 receptor inhibits the exercise-induced brain
uptake of circulating IGF-I, disrupts neurogenesis,
and lessens the effects of exercise on memory reten-
tion [116, 117, 119]. Exercise-induced upregulation
of BDNF may be partially affected by the IGF-1 path-
way. Blockade of the IGF-I receptor during exercise

inhibits the ability of exercise to enhance the expres-
sions of pro-BDNF and BDNF in the hippocampus
[119].

Molecular level – vascular endothelial growth
factor (VEGF)

VEGF, an angiogenic protein, is known to have
neuroprotective and neurotrophic functions [120].
VEGF can be synthesized and released by peripheral
vascular endothelial cells and brain cells, including
astrocytes, ependymal cells, and neuronal stem cells
[121]. Intracerebroventricular injection of VEGF or
gene transfer of VEGF in the hippocampus increases
the number of BrdU labeling cells in the sub-
ventricular zone and the subgranular zone of the
DG, suggesting an intimate association between
angiogenesis and neurogenesis [122, 123]. The
changes in the vascular niche promotes local sig-
naling that directly regulates or indirectly activates
other regulatory factors to stimulate the prolifera-
tion, differentiation, and survival of newborn neurons
[124]. Voluntary exercise is known to increase the
expressions of VEGF receptors, fms-like tyrosine
kinase (Flt-1/VEGF1), and fetal liver kinase (Flk-1
or VEGFR2) in the hippocampus [125]. The activa-
tion of the intracellular tyrosine kinase domains of
the VEGF receptors induces the activation of sev-
eral downstream signaling pathways which in turn
enhances the proliferation of neuron precursors [126,
127]. Peripheral VEGF seems to play an essential
role in exercise-induced adult hippocampal neuroge-
nesis [128, 129]. Blockade of VEGF signaling by
intravenous injection of adenoviruses carrying the
chimeric VEGFR1 receptor or conditionally knock-
ing down skeletal myofiber-specific VEGF gene
nullifies running-induced adult hippocampal neuro-
genesis [128, 129].

Molecular level – nerve growth factor (NGF)

NGF also plays a role in promoting neuronal
function, especially the survival of neural progen-
itors [130]. Results gathered from microarray and
nuclease protection assays indicate that the expres-
sion of hippocampal NGF is increased after wheel-
running, with a peak at 2 to 3 days after exercise
[87, 131]. The expressions of hippocampal NGF and
one of its receptors, tropomyosin receptor kinase A
(TrkA), are increased after 8-weeks of treadmill run-
ning in rodents. Similar to BDNF/TrkB signaling, the
binding of NGF to TrkA stimulates the downstream
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transcription factor, CREB, and induces various gene
transcriptions related to cell survival and neuroplas-
ticity [132].

PHYSICAL ACTIVITY, AGING, AND AD

Physical activity and aging

Aging is an irreversible and inescapable process.
Age alone increases the risk of dementia and AD
[133]. Even in the absence of overt disease symptom,
increasing age is associated with decreasing cogni-
tive function of varying severity in human beings.
The hippocampus is considerably vulnerable to aging
and is involved in the development of aging-related
deficits of neuroplasticity and memory functions
[134]. Aging-associated memory deficits are accom-
panied by abnormal structural and functional changes
in the hippocampus. Aging also reduces hippocam-
pus size, induces hippocampal neuron loss [135,
136], suppresses dendritic arbors and spine density
of the hippocampal neurons [137–139], decreases
the degrees of DG neurogenesis [140, 141], and
represses the field excitatory postsynaptic poten-
tials [142, 143] and LTP induction [144] in the
hippocampus.

Several lines of evidence indicate that exercise
can ameliorate the structural and functional changes
in the brain during aging. In the pioneer study,
Samorajski et al. showed that exercise (spontaneously
wheel-running) significantly increased recent mem-
ory in the passive avoidance test in adults (10–14
month), middle-aged (20–24 month), and old (28–30
month) C57BL/6J male mice [145]. Later studies
also demonstrated that physical activity increases the
cognitive reserve and prevents aging-related mem-
ory decline [108, 146, 147]. Regular aerobic exercise
increases the hippocampal volume by 2%, effectively
countering age-related loss in volume in older adults
(55–80 years old) without dementia [30]. Six-weeks
of moderate treadmill training reverses the age-
related declines in the complexity of dendritic arbors
and the density of the dendritic spines of hippocampal
CA1 pyramidal neurons in mice [139]. Furthermore,
six-weeks of moderate-intensity running enhanced
the LTP induced by high-frequency stimulation in
the CA1 regions and hippocampal memory in mice
of different ages, even when the memory impair-
ment had progressed to an advanced stage [139].
It is widely accepted that exercise enhances the
adult hippocampal neurogenesis that is critical for
hippocampal memory functions [21, 148–150]. The

decline in neurogenesis in aged (19 months of age)
mice is reversed to 50% of young (3 months of
age) control levels by 45-days of voluntary wheel-
running [141]. Yang et al. demonstrated that the
hippocampal neurogenesis dramatically decreased by
the time mice reached nine months of age and 5-
weeks of treadmill running attenuated the decrease
of the number of neural stem/progenitor cells dur-
ing aging and enhanced the maturation of newborn
neurons [66].

Physical activity and AD – neuroprotection

It is well known that neurotrophic and growth fac-
tors (BDNF, IGF-1, VEGF, NGF) are attenuated in
AD [151–154]. Therefore, one of the potential mech-
anisms for exercise to protect the brain against AD
may be via the upregulations of neurotrophic and
growth factors. In the following section, we will dis-
cuss exercise-induced neuroprotection against AD
with focuses on the four trophic factors.

Both clinical and basic research documents that
BDNF mRNA and proteins, including proBDNF,
are severely decreased in AD, especially in the hip-
pocampus [155–157]. Several lines of evidence have
suggested that decreases in brain BDNF and NGF
levels contribute to AD pathology [158, 159]. On
the contrary, administration of lentiviral vectors to
constitutively express BDNF in the hippocampus
can prevent cell death, reverse neuronal atrophy,
and ameliorate behavioral deficits, hence delaying
the development of AD [160]. As a physiological
approach to increase the production of neurotrophic
factors, exercise has been reported to alleviate hip-
pocampal functional impairment in AD through the
induction of BDNF expression in the hippocam-
pus [71, 105]. Exercise-induced BDNF signaling
activation has been applied to a variety of AD mod-
els, including the A� injection-induced non-Tg AD
model [161], APP/PS1 [71, 162], APOE4 [163],
NSE/APPsw [164] and NSE/PS2 m [165, 166] Tg
animal models. Increased BDNF signaling due to
exercise is suggested to protect against AD-induced
learning and memory deficits through enhancing
neurogenesis [167] and LTP expression [161, 162],
modulating dendritic morphology [71], and reversing
A�-induced neurotoxicity [168].

Neurotrophic signaling not only directly enhances
neuronal function but also decreases AD patholog-
ical burden. An in-vitro study suggests that APP
processing shifts towards the non-amyloidogenic �-
secretase pathway in response to BDNF treatment



102 T.-W. Lin et al. / Exercise Enhances Neuroplasticity

[169], which is known to reduce the production
of A�1-40 and A�1-42. Beyond amyloid pathology,
BDNF also affects the tau pathology through medi-
ating tau phosphorylation. In P19 neurons, BDNF
stimulation induces a rapid decrease in tau phos-
phorylation [170]. The effects of BDNF on tau
dephosphorylation is known to be TrkB dependent.
TrkB activation induces AKT-dependent phosphory-
lation of GSK-3� at the Ser9 site, resulting in the
inhibition of tau phosphorylation [171]. The K252a
treatment, a Trk receptor inhibitor, attenuates the
effect of BDNF stimulation on tau dephosphorylation
[170].

The reduction of the cerebrospinal fluid/plasma
IGF-I ratio has been found in AD patients and AD
model mice [172, 173], reflecting an impaired uptake
of IGF-I from the serum to the CSF. Exercise is
known to increase the uptake of IGF-1 in the cen-
tral nervous system [118]. Elevated IGF-1 not only
benefits neuronal functions but also influences the
production of A� and the formation of neurofibrillary
tangles [174]. IGF-1 also affects brain amyloido-
sis [175, 176]. Crossing APPswe/PS1dE9 Tg mice
with serum IGF-I deficient LID mice accelerates
brain amyloidosis significantly [175]. Conversely,
increases of serum IGF-1 levels decrease the A�
load in the brain of aged APP/PS2 Tg mice [176].
IGF-1-induced inhibition of amyloidosis could be
due to, at least in part, an increase of A� clear-
ance. This is because IGF-1 increases the levels
of A� carrying proteins, such as apolipoprotein J,
transthyretin, and albumin, which are all known to
facilitate A� clearance via blood-brain barrier (BBB)
transportation [176, 177]. Antagonization of IGF-
1 by TNF-� reduces IGF-I signaling at the BBB,
resulting in a decrease of the expression of A�-
carrying proteins and an increase of A� levels in the
brain [177]. Furthermore, in vitro cell culture studies
(i.e., NT2N cells and rat primary cortical neurons)
reveal that IGF-1 induces the phosphorylation of
GSK3� (ser21)/� (ser9) and attenuates tau phospho-
rylation through activating IRS1/PI3K/AKT/mTOR
pathway [178, 179]. It has been reported that exercise
increases the activity in the IRS/PI3/AKT pathway
to dephosphorylate GSK-3�/� [180] and inhibit tau
phosphorylation in APP/PS1 [181] and NSE/htau23
Tg mice [182] as well as in the ICV-STZ non-Tg
AD model [183]. This supports the assertion that
exercise-induced IGF-1 signaling plays an important
role in preventing pathologies associated with AD.

Exercise elevates VEGF transcription, mRNA,
and protein in the brain [184]. In addition to sup-

porting neurogenesis, VEGF could protect neurons
against AD via the following potential mechanisms.
Firstly, VEGF increases angiogenesis to help the
maintenance of BBB integrity [185, 186], which is
essential in preventing the entry of systemic A�
[187]. Secondly, VEGF regulates the expression of
A� transporters on the BBB [188]. It has been shown
that an implant of VEGF-secreting fibroblast micro-
capsules into the brain of APP/PS1 mice not only
enhances brain vessel density but also increases the
level of LRP-1 expression, which is an A� efflux
transporter on the BBB, accompanied by a reduc-
tion of A� deposition in the brain [189]. Thirdly,
VEGF directly affects APP processing by decreas-
ing �-secretase activity [190, 191]. Applying VEGF
to Tg2576 mouse brain slices decreases �-secretase
activity and production of both soluble A�1-40 and
A�1-42 [190]. Finally, VEGF directly binds to A�
and eliminates A� toxicity. VEGF contains a heparin-
binding domain that can be recognized by A� [192];
therefore, it is capable of binding to A� (at around
the 26–35 amino acid region), hence inhibiting A�
aggregation and A� neurotoxicity [192].

Decreases in mature NGF expression as well as
increases in Pro-NGF expression have been found
in postmortem AD brains [152, 193, 194], suggest-
ing that diminished conversion of pro-NGF to mature
NGF and increased degradation in the activity of
mature NGF in AD brains [152]. It is known that
proNGF preferentially binds to p75NTR and ini-
tiates the activation of apoptotic pathways, which
may contribute to AD neurodegeneration [195, 196].
Increased mature NGF due to exercise could pro-
tect neurons against AD pathologies through acting
on the trkA receptor to promote neurite generation,
neuronal survival, and synapse formation [197, 198].
It has been reported that exercise-induced increases
of mature NGF expression and decreases of Bax
expression, the downstream molecule of p75NTR, are
involved in the inhibition of neuronal death during
AD development [165]. An in-vivo study of Tg mice
expressing a neutralizing antibody directed against
NGF showed a progressive development of amy-
loid deposition and neurofibrillary pathology in the
brain [199, 200]. An in-vitro study using PC12 dif-
ferentiated cells revealed that withdrawal of NGF
caused the overproduction of A� peptides, increasing
tau phosphorylation and neurite degeneration [201,
202]. Similar to BDNF, mature NGF increases the
metabolism of APP from amyloidogenic towards
non-amyloidogenic processing through binding to
the TrkA receptor [203, 204]. Mature NGF is also
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able to decrease the hyperphosphorylation of tau via
increasing the phosphorylation of GSK3 � at the Ser
9 site [204].

Physical activity and AD – glia cells regulations

Accumulated evidence suggests a strong associa-
tion between risk factors of cerebrovascular disor-
ders, such as hypertension, diabetes, hypercholes-
terolaemia, hyperhomocysteinaemia, and APOE4,
with AD [205]. Astrocytes play an important role
in maintaining neurovascular function [205]. The
prodromal stage of AD has been linked to dysreg-
ulated astrocytes in the neurovascular unit, which
may then cause disruptions of neuronal metabolic
support, impairment of synaptic functions, onset of
neuronal death, and decreases of degradation and
clearance of A� [206–208]. One of the exercise-
induced neuroprotective pathways is mediated by
astrocytes. For example, S100B, a calcium-binding
protein, is predominantly secreted by astrocytes and
acts as a neurotrophic factor to support neuronal sur-
vival. In the sporadic AD animal model, five weeks of
treadmill exercise could reverse the reduced extracel-
lular levels of S100B [209], suggesting that exercise
can alleviate neuronal dysfunction via controlling
astrocyte signaling. Furthermore, exercise increases
the A� clearance abilities of astrocytes in the AD
brain. The recently identified glymphatic pathway,
which critically relies on AQP4 in astrocytes, con-
tributes to A� clearance. Mice lacking the AQP4 in
astrocytes exhibit slower paravascular cerebrospinal
fluid-interstitial fluid exchange and lower A�1-40
clearance rate than those of intact mice [210, 211].
Chronic exercise can increase A� clearance through
the glymphatic pathway [212]. Two-photon imaging
reveals that six weeks of wheel-running increases
AQP4 expression in the perivascular region and
increases the rate of paravascular cerebrospinal fluid-
interstitial fluid exchange in the brain of aged mice;
this is accompanied by a decrease of A� accumula-
tion in the cortex and hippocampus [212].

In addition to amyloid plaque and neurofibrillary
tangle deposition, neuroinflammation is considered
a key feature of AD pathology. AD inflamma-
tion is characterized by the presence of reactive
astrocytes and activated microglia surrounding amy-
loid plaques. Chronic exercise has been reported
to decrease neuroinflammation in AD. In the
Tg animal models, wheel-running and treadmill
exercise decreased the levels of hippocampal pro-
inflammatory cytokines (i.e., IL-1� and TNF-�) of

Tg2576 AD mice and NSE/htau23 Tg mice to levels
indistinguishable from wild-type mice [213, 214].

Physical activity and AD – Aβ transportation
and degradation

LRP-1 and RAGE are major A� carrier pro-
teins that regulate A� efflux and influx, respectively,
in transportation across the BBB [215, 216]. The
expression of LRP-1 and RAGE can be detected
in both neurons and glial cells [215, 216]. It has
been demonstrated that exercise increases LRP-1
and decreases RAGE expression in the hippocam-
pus of Tg2576 [217] and APP/PS1 [71, 181] mice,
suggesting enhanced brain-to-blood A� transporta-
tion after exercise. Also, exercise can increase the
activity of A� degradation enzymes that prevent the
aggregation of A�. Tg2576 mice given a 12-week
period of exercise significantly increased hippocam-
pal levels of neprilysin, insulin-degrading enzyme,
and matrix metallopeptidase 9; all of which are A�
proteolytic enzymes [217]. Interestingly, exercise-
induced changes in the expression levels of A�
transport proteins and proteolytic degrading enzymes
depend on the intensity of exercise training [217].

CONCLUSION

Although much progress has been made in AD
studies, effective pharmacological treatments remain
evasive. Alternatively, non-pharmacological strate-
gies to delay AD have become a major health issue.
There is no doubt that brain health can be improved
through physical exercise. Exercise benefits neuro-
plasticity in health and disease stages by targeting
different aspects of brain function. Firstly, increases
of trophic factors exert net effects on enhanc-
ing neuroplasticity, and cognitive and behavioral
function. Secondly, exercise synchronously changes
cerebrovascular function and glial cells to support
enhanced neuroplasticity. Finally, lowering of toxic
A� and tau by exercise decreases neuronal vulnera-
bility, which may help the maintenance of synaptic
function. Overall, exercise enhances neuronal plastic-
ity (brain reservoir) and could be a strategy to delay
the onset of AD.
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